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Hearing relies on a series of coupled electrical, acoustical, and mechanical interactions inside the

cochlea that enable sound processing. The local structural and electrical properties of the organ of

Corti (OoC) and basilar membrane give rise to the global, coupled behavior of the cochlea.

However, it is difficult to determine the root causes of important behavior, such as the mediator of

active processes, in the fully coupled in vivo setting. An alternative experimental approach is to use

an excised segment of the cochlea under controlled electrical and mechanical conditions. Using the

excised cochlear segment experiment conducted by Chan and Hudspeth [Nat. Neurosci. 8, 149–155

(2005); Biophys. J. 89, 4382–4395 (2005)] as the model problem, a quasilinear computational

model for studying the active in vitro response of the OoC to acoustical stimulation was developed.

The model of the electrical, mechanical, and acoustical conditions of the experimental configura-

tion is able to replicate some of the experiment results, such as the shape of the frequency response

of the sensory epithelium and the variation of the resonance frequency with the added fluid mass.

As in the experiment, the model predicts a phase accumulation along the segment. However, it was

found that the contribution of this phase accumulation to the dynamics is insignificant. Taking

advantage of the relative simplicity of the fluid loading, the three-dimensional fluid dynamics was

reduced into an added mass loading on the OoC thereby reducing the overall complexity of the

model. VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4990522]

[CAS] Pages: 215–227

I. INTRODUCTION

In this paper, we present a mathematical model of an

in vitro, excised cochlear turn mounted in the specialized two-

chamber experimental configuration developed by Chan and

Hudspeth1–3 (which we will refer to as the Chan-Hudspeth

experiment). We identified the key mechanical, fluidic, and

electrical elements and boundary conditions required to accu-

rately represent the vibrational response of the cochlear struc-

tures to acoustic stimulation. The predictions of the quasilinear

model are compared to the experimental results. We also pre-

sent a consistent method to reduce the three-dimensional (3D)

model to a lower-order model representation. These steps are

an important prelude to a tractable, computationally efficient,

fully nonlinear simulation of the experiment.

In vivo and in vitro experiments provide valuable data to

expose and analyze the unique transduction occurring in the

auditory periphery. Due to geometrical constraints of the

coiled cochlea and technical measurement limitations, it is

difficult to measure the vibration of most regions of the

organ of Corti (OoC) in vivo using traditional methods based

on laser velocimetry.4 New optical techniques, like optical

coherence tomography, make it possible to access heretofore

inaccessible locations in the living, intact cochlea (e.g., Refs.

5–7). However, there are limitations to these methods

(including spatial resolution and the ability to artificially

control the mechanical and ionic environment), restricting

the reductionist information that can be obtained about cellu-

lar function. Until these limitations are resolved, in vitro
preparations are still needed to address important questions

of cochlear function. An in vitro preparation enables the

study of discrete cochlear components. For instance, Beurg

et al.8 performed intricate and carefully controlled in vitro
direct mechanical stimulation of the hair bundle (HB) to

determine its transduction properties; in this case, the tecto-

rial membrane (TM) was stripped off of the preparation to

gain access to the HB. As another example, Ghaffari et al.9

isolated the TM in order to study traveling wave propagation

on it. Furthermore, the in vitro preparations enable us to

obtain an integrated understanding of how the individual

components such as the HB, TM, and basilar membrane

(BM) interact under mechanical, acoustical, or electrical

stimulations. Gummer et al.10 prepared freshly isolated sec-

tions of the cochlea and investigated the contribution of the

TM and BM motions to the electromechanics of the OoC.

Ulfendahl et al.11 developed an in vitro preparation of the

guinea pig temporal bone to study the micromechanical

behavior of the cochlea. This preparation, which is known as

ITER, consists of the cochlea opened at the apex, allowing

observation of cellular structures within the partition and

measurements of cellular vibration. The hemicochleara)Electronic mail: nankali@umich.edu
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preparation12–14 is another in vitro technique that allows

access to various cochlear structures with minimal physical

distortion. This technique bisects the cochlea such that the

tonotopic features of apical, middle, and basal regions can

be preserved and studied.

An active in vitro preparation of a small segment of the

cochlea, with minimal physical disruption of the epithelium,

is ideal to investigate the cochlear intrinsic dynamics. The

in vitro preparations of the Chan and Hudspeth,1–3 as well as

those of Nowotny and Gummer,15,16 are notable for isolating

a segment of the cochlea with controlled mechanical, ionic,

and electrical conditions in order to keep the OoC in as pris-

tine a state as possible. Both groups demonstrate that the

mechano-electric-transducer (MET) channels are kept at least

partially operational and measure the OoC motions due to

pressure and/or electrical stimulation. Both of these prepara-

tions hold the potential for uncovering important structure-

function relationships of the auditory periphery, such as the

cochlear amplification. However, neither of these experiments

has been modeled. Furthermore, computational simulation of

these experiments, such as those presented in this paper,

would allow us to analyze the data and explore the influence

of variations in mechanical and electrical conditions.

II. METHODS

A. Mathematical model

We use a 3D model of the cochlea based on

Ramamoorthy et al.17 This model is physiologically based in

that electrical and mechanical elements of the OoC are cou-

pled explicitly through kinematic constraints and forces.

Figure 1 depicts a schematic of the OoC and transverse sec-

tion of the model. In this paper, the BM is modeled as a

locally reacting structure and we set the parameters from

available gerbil data. The fluid is assumed inviscid except in

the subtectorial space, and viscosity is incorporated through

damping of the OoC and the BM.

A cable model is used to represent the macroscopic cur-

rent flow in the fluid. The deflection of the HB of the outer

hair cell (OHC) triggers the opening of the MET channels,

resulting in current flow into the OHC. The current is a func-

tion of the HB deflection, which in turn stimulates OHC

somatic motility, applying a mechanical force to the BM and

reticular lamina (RL). The OHC is modeled using linearized

piezoelectric relations, a model that provides forward and

reverse transduction to convert mechanical into electrical

energy and vice versa. In each cross-sectional circuit branch,

there are three electrical potentials corresponding to scala

tympani (/st), scala media (SM; /sm), and OHC (/ohc; note,

there is no scala vestibuli in the Chan-Hudspeth preparation,

hence, it is not modeled). Similarly, the displacements,

ubmðxÞ; utmsðxÞ, and utmbðxÞ represent the longitudinal varia-

tion of the BM, TM shear, and TM bending motion, respec-

tively, as shown in Fig. 1(b). The structural degrees of

freedom are coupled to both the fluid pressure and the electri-

cal potentials.17 The OHC transduction channel is modeled as

a linear function of the HB rotation with respect to RL (hhb=rl).

For each row of HBs, the current due to fluctuating conduc-

tance (i.e., the MET channel sensitivity) flowing through the

OHC is expressed as (more details of the equations and param-

eters of the model can be found in Refs. 17 and 19)

Ihb ¼ lDV0Gmaxhhb=rl; (1)

where DV0 is the resting value of the potential difference

between the SM and intracellular OHC potential, Gmax is the

maximum saturating conductance of the HB, and l is the

MET scale factor that controls activity level (as a means to

simulate the nonlinear sensitivity of the channel); l varies

from 0 to 1 such that l¼ 0 represents the low activity and

l¼ 1 denotes the full activity (l > 1 causes instability of the

segment through a Hopf bifurcation21). The OHC somatic

electromotility is introduced as the mediator of the electri-

cal–structural interaction and the cochlear active processes.

The HB motility, another hypothesized active mechanism, is

not considered in this model. However, its inclusion is possi-

ble and, indeed, needed to analyze the full experiment. We

do not do so here because we are focusing on accurate repre-

sentation of the boundary conditions and simplification of

the fluid dynamics. The electrical and structural domains in

the model are coupled through a set of linearized piezoelec-

tric relations of OHC (e.g., Ref. 22) that relate the compres-

sional force on the OHC (Fohc) as

Fohc ¼ Kohcucomp
ohc þ e3ð/ohc � /stÞ; (2)

and current flowing through the basolateral wall (Iohc) as

Iohc ¼ /ohc � /stð Þ=Zm � e3

ducomp
ohc

dt
: (3)

These equations relate the OHC compression (ucomp
ohc , a linear

function of ubm, utms, and utmb) and transmembrane voltage

(/ohc � /st) to the OHC force and current. Here, Zm is the

OHC basolateral impedance, e3 is the piezoelectric electrome-

chanical coupling coefficient, and Kohc represents the OHC

stiffness.17 Both terms in Eq. (3) are frequency dependent

FIG. 1. (Color online) (a) A schematic transverse sec-

tion of the OoC. TM, tectorial membrane; OHC, outer

hair cell; RL, reticular lamina; BM, basilar membrane;

D, Deiters cell; AN, auditory nerve fibre; HB, hair bun-

dle; IHC, inner hair cell (image from Ref. 18). (b)

Micromechanical model for the OoC structures (x axis

into the page).
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and their amplitudes are comparable depending on the domi-

nance of either the transmembrane potential or piezoelectric

strain rate. The mathematical modeling gives rise to a set of

coupled partial differential equations (PDEs), which are

approximated using the finite element method (FEM).23 The

coupled mechanical-fluidic-electrical equations can be repre-

sented in the matrix form as

Kf Qfs 0

Qsf Ks Qse

0 Qes Ke

2
64

3
75

p

u

/

2
64

3
75 ¼

f p

0

0

2
64

3
75: (4)

In this equation, u is the nodal vector of the OoC structural

displacements, ubm, utms, and utmb, for each cross section.

Similarly, / is the nodal vector of scalar voltages, /sm; /ohc

and /st, for each cross section. Last, the vector p represents

nodal fluid pressure in the upper and lower compartments.

These vectors represent the finite element nodal interpolants

of the cochlear structural-electrical-acoustical responses cal-

culated by solving the linear matrix of Eq. (4). The sizes of

these vectors depend on the resolution of our mesh (25 lm in

the x direction and 50 lm in the z direction), as well as the

number of y-direction modes used in each cross section.

Structural, electrical, and fluid components are denoted by

subscripts s, e, and f, respectively, while Q represents cou-

pling between the domains, e.g., Qse and Qes arise from Eqs.

(1)–(3) and model coupling between the structural and elec-

trical components. As illustrated in Fig. 1, the acoustical

stimulation is applied to the fluid nodes at the bottom of the

lower compartment. On the right-hand side of Eq. (4), f p

represents the pressure loading vector on these nodes. A list

of important parameters used in this study is presented in

Table I (see Ref. 24 for other parameters).

B. Model geometry and boundary conditions

A schematic of the experimental configuration and the

simulation model are illustrated in Fig. 2. In the experiment,

a small segment of the Mongolian gerbil cochlea is excised

[see Fig. 1(c) in Ref. 1] and mounted in a two compartment

recording chamber. The bony portion of the excised segment

was affixed atop a 250 lm thick, 12.5 mm diameter cover-

slip. Roughly 700 lm of the turn was exposed to the fluid

above and below the BM through a roughly 1.5 mm hole

punched in the plastic to provide an opening to mount the

cochlear segment. The lower compartment was comprised of

two sections. The first was a horizontal channel 15 mm long,

1.3 mm � 0.8 mm in cross-section. This horizontal channel

connected to the curved surface of cylindrical segment,

1.8 mm in diameter and 1 mm high. Artificial endolymph

(AE) and perilymph surrounded the cochlear partition from

the apical and basal surfaces, respectively [see Fig. 2(a)].

The upper and lower compartments were connected through

an electrical circuit and a transepithelial potential was

applied to preserve activity. Acoustical stimuli for a range of

intensities and frequencies were applied through the lower

compartment and movement of the OoC components [i.e.,

the BM, TM, and inner hair cell (IHC) HBs] were measured

at various positions across their radial dimension. In this

paper, we simulate the configuration used for the TM and

HB movement measurements as the apical and basal aspects

of the OoC are immersed in AE and artificial perilymph

(AP), respectively, as usual. We do not compare our results

to BM displacement of the experiments. In the experiment

for the BM measurements,2 a flipped configuration from the

orientation described above is used. The apical portion of the

preparation is oriented downward toward the cylindrical

hole and the basal portion upward in contact with the drop of

fluid, a configuration requiring a different model.

Figure 2(b) illustrates our main 3D mathematical model

and corresponding boundary conditions. This model geome-

try is simplified and only the exposed section of the BM and

OoC are modeled. The scala tympani and scala media in Fig.

2(b) are modeled as two chambers, maintaining the fluid vol-

ume inside the lower and upper experimental compartments,

respectively. For the sake of modeling simplicity, in our

TABLE I. Material properties for the gerbil cochlear model (x is in meters).

Property Description Value

b BM width 80 lm base–180 lm apex

hbm BM thickness 7 lm base–1.7 lm apex

Kbm BM stiffness per unit area 4:49� 109ðhbm=hbm0Þ3ðb0=bÞ4 N=m3

Ktms TM shear stiffness per unit length 1:2333� 104e�672:7x N=m2

Ktmb TM bending stiffness per unit length 1:2333� 104e�672:7x N=m2

Krl RL stiffness per unit length 4:0083� 103e�706:4x N=m2

Kohc OHC stiffness per unit length 4:0083� 103e�706:4x N=m2

Kst Stereocilia stiffness 1:879� 104eð�706:4xÞ N=m2

Mbm BM mass per unit area qbmhbm ðqbm ¼ 1000 Kg=m3Þ
Mtms TM shear mass per unit length 1:08� 10�12eð84:09xÞqtm Kg=m ðqtm ¼ 1000 Kg=m3Þ
Mtmb TM bending mass per unit length 0:7 Mtms

cbm BM damping coefficient per unit length 0:03 Ns=m2

ctms TM shear damping coefficient per unit length 0:03 Ns=m2

ctmb TM bending damping coefficient per unit length 0:05 Ns=m2

Lhb HB length 1 lm base–6 lm apex

Gmax Saturating HB conductance 800:36� 104 Lhb0=Lhb eð�252:3xÞ S=m2

e3 Electromechanical coupling coefficient �122e�7 (base)–�152e�7 (apex) N/m/mV

DV0 Resting potential difference between vsm and vohc 150 (base)–131.5 (apex) mV
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main model we have combined the two lower compartments

into a single chamber and did not include the right angle

bend in the chamber system. However, in order to investi-

gate the effect of the geometry simplification on our simula-

tions, a second more complicated model with two sections in

the lower compartment is used and fluid dynamics of the two

configurations are compared in Sec. IV. The cochlear section

was assumed to be glued and stationary except over a

�700 lm segment of the �1:5 mm diameter hole drilled

into the coverslip, as reported in Ref. 2. Boundary conditions

corresponding to the single chamber and two chambers con-

figurations are shown in Fig. 3, labeled as model A and

model B, respectively.

In Table II, the baseline model dimensions for models A

and B are given. The length (L), width (W), and height (H)

represent the x, y, and z dimensions, respectively [see Fig.

3(a), with the y direction into the page] and the subscripts

refer to the two scalae. The SM occupies the region for 0

< z < Hsm while the ST occupies the region below the

cochlear segment. The fluid pressure and velocity at z¼ 0

were coupled to our structural model of the OoC and BM

over the flexible portion and rigid boundary conditions else-

where on that plane. In the ST, the surfaces normal to the x
and y directions are rigid, while a known external pressure

was applied to the base. In the SM, the water-immersion

objective lens, located on top of the upper compartment,

constrains the SM fluid, hence, that entire surface (z ¼ Hsm)

was modeled as a rigid wall boundary condition. The pressure

release (free) condition on the endolymphatic droplet of the

experimental configuration is represented by the free (pressure

zero) boundary conditions on the x-normal faces in the SM.

III. RESULTS

Unless otherwise noted, the segment length and pressure

stimuli for the reported plots are, respectively, Lbm ¼ 700 lm

and p0 ¼ 67 dB relative to 20 lPa [i.e., sound pressure level

(SPL)]. The excised segment was located in the lateral half of

the middle turn of the cochlea corresponding to a region span-

ning 2.0–3.5 mm from the helicotrema, or roughly 8.5–10 mm

from the base of the BM.40 The parameters in our model are

set to account for a segment excised from the apical part of

the cochlea; the properties at the segment center match those

of an intact cochlea at a location x0 from the base, denoted in

each figure of the results. As in the Chan-Hudspeth experi-

ment, acoustic stimuli are applied to the base of the fluid in

the ST.

A. Mechanical responses of the OoC to acoustic
stimulation

In Fig. 4(a) the normalized IHC HB frequency response

of the experiment measurements [Fig. 2(c) of Ref. 1] are

compared to the predicted OHC HB motion (our model does

not predict the IHC HB motion). Note that all frequency

responses reported in the Chan-Hudspeth1–3 are for displace-

ments of the IHC HBs. We observe that our model OHC HB

response predicts the quality factor of the measured IHC HB

motion very well; however, the maximum amplitude of the

OHC HB deflection is predicted 26 times smaller than IHC

FIG. 3. (Color online) The longitudinal cross section of the FEM models for

(a) simplified configuration (denoted as model A) and (b) two-chamber

lower duct configuration (denoted as model B).

FIG. 2. (Color online) The experimental setup (Refs. 1–3)

and simulation. (a) In vitro cochlear preparation (not to

scale). The apical and basal aspects of the OoC were

immersed in artificial endolymph (AE) and artificial peri-

lymph (AP), respectively. Pairs of recording electrodes

(RE) and stimulating electrodes (SE) measured micro-

phonic potentials and provided transepithelial electrical

stimuli. Acoustic stimuli from an earphone (red arrow)

were delivered to the BM through the fluid filled lower

compartment. (b) The computational simulation of the

cochlear segment experiment. The segment was stimulated

through the pressure boundary condition on the bottom

side of the fluid (red arrows). Two chambers located on the

top and bottom of the OoC, simulated ST and SM, respec-

tively. Boundary conditions were set as rigid wall (R) or

pressure free (F) on each face, according to the experimen-

tal configuration as discussed in the text (Sec. II B).

TABLE II. Geometrical dimensions of the models corresponding to the

Chan-Hudspeth experiment are shown in Fig. 3. The models’ dimensions

are chosen such that the fluid volume inside the ST and media match,

respectively, the reported volume of the fluid in the bottom compartment

(2–15 lL) and droplet on top (600 lL). All dimensions in the table are in

millimeters.

Property Description Model A Model B

Hsm SM height 2.5 2.5

Wsm SM width 11 11

Lsm SM length 2.5 2.5

Lst Scala tympani length 1.8 1.5

Wst Scala tympani width 1.4 1.5

Hst Scala tympani channel height variable 1.25

Hd Lower duct height — variable

Ld Lower duct length — 0.7

Wd Lower duct width — 1.5
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HB (1.3 nm versus 36 nm). From the radial dependency of the

reticula lamina motion reported in Fig. 2(b) of Ref. 2 and also

the HB motion measurements of Ref. 25, the IHC HB motion

is expected to be greater than the OHC HB motion.

Furthermore, we note that the IHC HB displacement reported

in this experiment [36 nm for 60 dB SPL at the 850 Hz charac-

teristic frequency (CF)] is much greater than those reported in

Ref. 25 (20 nm for 98 dB SPL at the 200 Hz CF), as well as

the TM radial motion measured in Ref. 26 (0.17 nm for 60 dB

SPL at the 650 Hz CF); this could be due to the difference in

the boundary conditions of this configuration compared to the

normal cochlea or the difference in the CF.

A quantitative comparison between the experimental data

and simulation results is presented in Fig. 4(b). In Fig. 4(b),

the dependence on pressure of the predicted and measured

[Fig. 5(d) of Ref. 1] transverse motion of the TM at the reso-

nance frequency for passive (with the transepithelial potential

turned off) and active preparations are compared. We chose a

location where the resonance frequency of the model and

the experiment match and then proceed to make a level com-

parison between the two. The asterisk and triangle markers

represent the data for passive experiment and simulation,

respectively. It is observed that our model is able to predict

the TM passive displacements very well.

In addition to the passive configurations, we used our

linearized active model to predict the measured nonlinear

responses by altering the MET scale factor [see Eq. (1)] as

SPL varies. Figure 4(b) compares the active experiment

(square markers) and simulation (circle markers) results; the

MET channel sensitivities that we used for the stimulations

are denoted in the plot. We are able to match the trend (qual-

itatively and quantitatively) using a decreasing value of the

MET scale factor, mimicking the saturating MET channels.

All models used were globally stable. The TM nonlinear

(active) data reported in the Chan-Hudspeth experiments are

only for the preparations in which the Kþ in the endolymph

was replaced with N-methyl-D-glucamine (NMDG); hence,

we have compared our active model results to those data.

NMDG is a permeant cation that does not traverse the trans-

duction channel thereby reducing the MET channel sensitiv-

ity.27 In order to simulate the effect of NMDG, we set the

maximum of the MET channel conductance [embodied by

the activity factor (l)] to a value of 0.45 in Fig. 4(b), less

than half of the highest stable value for normal endolymph.

Figure 4(b) reveals that the nonlinearity seen in the

Chan and Hudspeth experiments can be reproduced using

our cochlear model with OHC somatic electromotility as the

sole mediator of the active process. A nonlinear model that

includes the HB motility is forthcoming to further probe this

interesting finding.

B. Adding fluid in the ST decreases the segment
resonance frequency systematically

In the Chan-Hudspeth experiment,1 it is shown that

increasing fluid mass inside the lower compartment gives

rise to a linear increase of the inverse square of the system

natural frequency. Figure 5 illustrates the experimental data

[Fig. 2(e) of Ref. 1] together with our simulation results

(model B). The initial fluid mass inside the ST compartment

(m0) is not given in the experimental data; instead, a range of

2–5 mg is reported. In our simulation we use m0 ¼ 4:1 mg in

order to match the first resonance frequency of the experi-

ment. It is observed that our model predicts the linear varia-

tion of the inverse of the segment resonance frequency with

the ST fluid mass precisely.

The variation of the BM resonance frequency with chang-

ing the lower and upper compartments’ fluid heights of the

simplified configuration (model A) are presented in Table III.

It is observed that for fixed Hsm, increasing the fluid height

in the lower channel reduces the resonance frequency mono-

tonically. Moreover, the effect of increasing Hsm saturates at

200 lm for Hst ¼ 200 lm, after which added fluid has little

effect. Both of these results match the findings of Chan and

Hudspeth,1,2 indicating that the simple geometry of model A

FIG. 4. (Color online) Comparing experimental measurements to the simulation results (model B). (a) Experimental IHC HB frequency response reported in

Fig. 2(c) of Ref. 1 and the simulated OHC-HB response at x0 ¼ 8:3 mm (both results normalized to their maximum values). (b) The TM vertical displacement

at the resonance peak over a range of stimulus levels for active (with NMDG) and passive (transepithelial potential turned off) experiments [Fig. 5(d) of Ref.

1] together with the corresponding simulations. The passive case is simulated by setting the MET scale factor (l) equal to zero while for the active simulations

l is decreased as the SPL increases in order to match the experimental nonlinear data; corresponding l values are denoted next to the data of each simulation.

The power-law slope of the TM response with NMDG diverged from linearity (dashed gray line) at low stimulus levels. For simulation of (b), the distance

x0 ¼ 10 mm and amount of the fluid inside the lower chamber (m¼ 11 mg) is chosen to match the resonance frequency of the experiment (CF¼ 450 Hz)

reported in Fig. 5(c) of Ref. 1.
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has captured the macroscopic fluid dynamical boundary condi-

tions qualitatively.

C. Phase accumulation occurs on small segments
of the cochlea

Sound-evoked vibrations transmitted into the mamma-

lian cochlea produce traveling waves along the BM, which

results in a phase dependence of the spatial fields (e.g., the

BM velocity). This phenomenon first was explored by Von

B�ek�esy28 and later by in vivo measurements (e.g., Refs. 4

and 29). The wavelength of the in vivo BM response near the

location of the CF is seen to depend on the intensity level of

the sound (an effect well-modeled by modifying the MET

scale factor20). We investigate existence of a spatial phase

dependence in our model and explore the conditions under

which it may exist even with such a short cochlear segment.

Figure 6 illustrates the predicted BM displacement and

phase responses along the segment for different activity lev-

els. The cochlear activity in this study is generated by

somatic electromotility of the OHC and it is controlled by

altering the MET scale factor (l) which was varied from 0

(passive) to 1 (the stability boundary). It is observed that

increasing activity correlates to a larger phase accumulation

along the cochlea. These results are in accordance with the

BM vibration measurements at multiple locations along the

cochlea.4,29 The BM phase lags increasingly with distance

from the basal end (except at a small segment near the apical

end, which we attribute to the reflection at the boundary).

Even for the passive case (l¼ 0) a small phase lag is pre-

dicted arising from the variation of the structural properties

(such as stiffness) along the segment. Hudspeth and Chan3

reported a phase accumulation of about 0.94 rad over the

700 lm exposed length of the BM. This phase lag matches

our simulation results with l ¼ 0:1, as indicated in Fig. 6.

Also, we note that a phase accumulation of 0.94 rad over a

700 lm segment corresponds to a wavelength of nearly

4.6 mm, much longer than any measured values in a living

cochlea.29 Because of the apparent reflection of the apical

portion of the preparation, a combination of traveling wave

and standing wave is likely present.

IV. DISCUSSION

A. The near field acoustic mass is significant but can
be represented by a simple geometry

As discussed in the Sec. II B, the geometry of the lower

compartment of the experimental configuration is simplified in

model A. In order to investigate the effect of the geometrical

simplification on our simulations, the fluid pressure predic-

tion arising from the two configurations (models A and B,

introduced in Fig. 3) are compared in Fig. 7. As shown, the

acoustical pressure is applied from the bottom lower channel

(representing the ST) and boundary conditions are discussed

in Fig. 3. The geometrical dimensions are set such that the

amount of fluid in both configurations is the same. For both

of the configurations the following conditions are seen: uni-

form cross sectional pressure far from the cochlear segment,

a prominent near field pressure effect close to the BM, and

the SM pressure is low compared to that found in the ST. The

pressure amplitude near the BM on the ST side is found to be

larger for model B than model A. The fluid pressure can be

decomposed into two components: the near field and far field

contributions.31 The near field component arises from the

TABLE III. The effect of the height of the fluid chambers (Hst and Hsm) on

the resonance frequency of the system while keeping the y-dimension

(width) and x-dimension (length) of the chambers constant.

ST fluid (Hsm¼ 250 lm) SM fluid (Hst¼ 200 lm)

Hst ðmmÞ fres ðHzÞ Hsm ðmmÞ fres ðHzÞ

100 1390 100 1245

200 1250 200 1250

300 1155 300 1250

500 1002 500 1250

700 900 700 1250

FIG. 6. (Color online) The BM displacement under acoustical stimulation at

the CF of the segment (frequency¼ 0.9 kHz) for different MET channel sen-

sitivities [varied by l coefficient defined in Eq. (1); l¼ 0 represents the pas-

sive preparation and l¼ 1 is stability boundary]. The amount of phase

accumulation increases with increasing MET scale factor.

FIG. 5. (Color online) The inverse square of the HB resonance frequency

increases linearly with fluid mass inside the ST compartment. The ST fluid

mass is added by increasing Hd [Fig. 3(b)] from its initial value (1.9 mm).

There is an excellent agreement between the experimental data [Fig. 2(e) of

Ref. 1] and our simulation (model B; x0¼ 9.3 mm) predictions.
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evanescent pressure field (as can be seen by the hot spot in

the pressure field near the BM in Fig. 7). The far field compo-

nent is due to the pressure that is uniform across the cross

section of the chamber (see Fig. 7) and has a nearly linear

dependency on z. Both of these effects can be seen in the

height dependence of the pressure field (shown in Fig. 7 and

in Appendix B, Fig. 14).

The fluid pressure loads the BM and OoC, acting as an

added mass. The macroscopic fluid boundary conditions

influence the added mass and, consequently, the resonance

frequency of the cochlear segment. In order to explore this

effect further, we compute the added mass from our FEM

formulation as

Mlump�FEM
fl ¼ q �U

T
QfsKf

�1Qsf
�U ; (5)

where q denotes the fluid density and the displacement vec-

tor ( �U) is the normalized solution of the BM response for a

given frequency. The dynamical stiffness matrix of the fluid

is Kf while Qfs and Qsf correspond to fluid-structure cou-

pling at the BM [see Eq. (4)]. The superscripts “T” and “�1”

denote transpose and inverse of the corresponding matrix,

respectively. The distributed fluid loading added mass is pre-

and post-multiplied by the displacement vector in order

to lump the added mass by integrating out its spatial depen-

dency. This fluid condensation is used in structural acoustic

analysis.30 The results are shown in Fig. 8 (green curves).

Note, if instead of using the computed finite element dis-

placement, we use an approximate basis function (either

assumed mode or calculated mode) the degrees of freedom

in the model can be reduced, speeding the computations.

In Fig. 8 the near field and far field added mass compo-

nents for the models A and B are presented. The near field

added mass is estimated by subtracting the one-dimensional

(1D) added mass [Mff in Eqs. (B10) and (B13)] from the total

added mass computed from the FEM [Eq. (5)]. It is shown

that the far field added mass is significantly different for the

two configurations; however, the near field components asso-

ciated with the evanescent field are almost overlapping.

Moreover, it is observed that the far field components for

both configurations increase as the ST fluid mass increases

(by increasing the lower channels heights) while the near

field added masses are nearly constant for ST fluid masses

above 5 mg; this is predicted from our closed form expression

of the added mass [Eq. (B10)] where the hyperbolic tangent

function and exponential terms which comprise the near field

mass asymptote to a constant with increasing channel height.

This shows that for the geometry of the Chan-Hudspeth

experiment the near field mass loading is controlled by the

interaction at the BM-fluid surface and not affected by the

sudden change in cross-sectional area in model B. If Hst was

less than 0:5 mm, where the evanescent pressure is dominant

(see Fig. 14), a more complicated geometric model would be

needed to represent the interaction.

The far field component can be well described using

the simple 1D control volume analysis (as described in

Appendix A). The assumption of the control volume analysis

that the pressure is only a function of height (z) is largely

true except in the near field of the BM where evanescent

pressure fields are important (we will see this has a dramatic

effect on our estimation of the fluid loading added mass).

Because the pressure in the SM is much smaller than that in

the ST (�1/10 in amplitude; see Fig. 7), giving rise to a

much smaller fluid loading mass in the SM side comparing

FIG. 7. (Color online) Fluid pressure profile for (a)

model A and (b) model B in response to a 60 dB SPL

acoustical excitation at a frequency equal to the CF of

the segment (x0¼ 9.3 mm) applied at the lower bound-

ary. The units are in Pascal and the fluid mass inside the

ST compartment is 5 mg.

FIG. 8. (Color online) The fluid loading added masses (Mfl) to the BM and

corresponding near/far field components for the model A and B configura-

tions, illustrated in Fig. 3. The total added masses (green curves) and the far

field (FF) components are calculated, respectively, from the FEM formula-

tion [Eq. (5)] and the control volume analysis (Appendix A). The near field

(NF) components then are estimated by subtracting the far field component

from the total added mass.
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to that of the ST (�1/100). Hence, we neglect the SM fluid

mass in our simple control volume model. Under these

assumptions, using a model that only includes the 1D fluid

loading, the resonance frequency of the segment is approxi-

mated as (see Appendix A)

xcv
res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kvol

cp Sst

qH

s
; (6)

where Kvol ¼ P=Uvol is the volumetric or acoustical stiffness

(see Ref. 33) and Uvol ¼
Ð

Su ds is the volume displacement,

which is constant along the height (H), under the assumption

of incompressibility. Equation (6) predicts that the far field

volumetric added mass (Mvol�1d
fl ¼ qHst=Sst) is simply pro-

portional to the ratio of the height to the cross-section area

of the duct. Furthermore Eq. (6) shows that the resonance

frequency decreases with increasing fluid column height (as

in the experiment and predicted by 3D fluid dynamical simu-

lations; see Fig. 5). Somewhat counterintuitively, Eq. (6)

predicts that the resonance frequency increases with increas-

ing channel width, and we validated this prediction using 3D

simulations (not shown). Hence, even in this approximate

formula the resonance frequency does not equal the square

root of the quotient of the stiffness of the partition and the

total fluid mass. Note that Eq. (6) is different from the equa-

tions given in Refs. 1 and 2. Moreover, this 1D control vol-

ume analysis does not account for the near field fluid mass.

In Appendix B, Eq. (B12), we present a correction term to

include the effect of the near field pressure into a simple con-

trol volume analysis.

Assuming a half sinusoidal wave dependence in both the

x and y directions for the BM displacements, a 3D structural-

acoustic analysis of model A is developed and a closed form

formulation for the fluid loading added mass is calculated

(see Appendix B for the full derivations). This closed from

representation explicitly demonstrates the near field and far

field contributions to the added mass in Eq. (B10). Hence, if

one wishes to approximate the added mass without resorting

to the finite element (FE) calculations, the expressions in

Appendix B can be used to provide a reasonable approxima-

tion for the 1D and near field added masses.

B. Estimation of the cochlear partition effective
stiffness from the OoC frequency response

Analyzing the frequency response of the cochlear seg-

ment under acoustical stimulation while varying the fluid

loading provides us with a means to estimate stiffness of the

partition. Stiffness is not a material property, but rather

depends on the boundary conditions, geometry, and forcing

of the electro-elastic-acoustic system. In this section, we

show how to use the experimental results to estimate the

overall partition volumetric stiffness.

In order to estimate the volumetric (acoustic) stiffness

of the cochlear partition, we need not compute the exact

added mass for the experimental configuration. We need

only have an estimate of the change in the acoustical mass.

Although the 1D model incorrectly computes the added

mass, neglecting the near field effect, our analytic expression

for the variation of the volumetric added mass (DMvol
fl ) of the

3D model asymptotes to the 1D model, qDHst=Sst (Fig. 9).

That is because the near field component of the added mass

is nearly constant for ST fluid masses larger than 5 mg (see

Fig. 8). Hence, the slope of the x�2
res versus the 1D fluid mass

(linearly dependent on the fluid height in the 0.8 � 1.3 mm

chamber in the experiment) yields the inverse of the volu-

metric stiffness. It is important to estimate the resonance fre-

quency as the peak of the frequency response of the velocity
rather than displacement to avoid the confounding effect of

the changing damping ratio with mass loading (even if the

damping itself remains constant).

To test this method, we used the results predicted by our

3D FEM simulation (model A) as experimental data and com-

pared our estimation of the volumetric stiffness to the known

value of our model. Figure 9(a) illustrates how the square

inverse of the frequency corresponding to the peak of BM

velocity-frequency response (obtained from FEM simulation)

depends on the fluid volumetric mass, calculated from 1D and

3D analytical models. The slope of the curves in Fig. 9

FIG. 9. (Color online) Estimation of the cochlear partition volumetric stiffness from the velocity frequency response. (a) Square inverse of the BM resonance

(characteristic) frequency (from FEM simulation, model A) versus volumetric added mass, calculated from 1D control volume analysis [Eq. (6)] and 3D ana-

lytical model [Eq. (B11)]. (b) Volumetric stiffness calculated from inverse of slopes of curves in (a), assuming a simple harmonic characteristic for the

cochlear segment. The OoC volumetric stiffness approximated from the two models are the same (Kvol
approx ¼ 1:09� 1014 N m�5) and match the exact volumet-

ric stiffness of the segment, calculated by the FEM model (Kvol
exact ¼ Pbm=Uvol

bm) for uniform pressure on the BM and low frequency stimulation.
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represents the inverse of the BM volumetric stiffness, as illus-

trated in Fig. 9(b). In this plot the OoC volumetric stiffnesses

estimated using the two models (1D and 3D) are shown to

converge to a value which we have verified to be the same as

the true value of the volumetric stiffness calculated by the

FEM model (Kvol
exact ¼ 1:09� 1014 N m�5). Hence, the 1D

approximation [Eq. (6)] can be used to estimate the stiffness.

We applied the simplified method (requiring only the

comparison of the change of the resonance x�2 as a function

of the added mass as in Fig. 9) to compute the volumetric

stiffness of the experimental data from the Chan-Hudspeth

experiment1 Fig. 2(e) and found it to be 1:9� 1014 N m�5.

The effective volumetric stiffness is a direct prediction of

the method. To compare to the more commonly measured

point stiffness we must use a model. If we approximate the

BM deflection using a strongly orthotropic plate model [Eq.

(B9)] with simply supported boundary conditions, the rela-

tionship between volumetric and point stiffnesses can be

obtained as in Refs. 34 and 35. Using the relation presented

in Eq. (A5b) of Ref. 34 with probe diameter d ¼ 25 lm, we

obtain a point stiffness of 0.06 N/m for the center of the

experimental cochlear segment. We note that the measured

point stiffness depends on the radial location and load;34–37

hence, the point stiffness values reported by different investi-

gators do vary. For instance, the experimental data by Ref.

36 estimates a point stiffness of kmeasure¼ 0.08 N/m at the

similar location. Hence, our estimate for the stiffness from

the Chan-Hudspeth experiment is consistent with experimen-

tal data.

The effect of the cochlear activity on the partition stiff-

ness is investigated by applying the proposed method to the

numerical experiment data. Figure 10(a) demonstrates the

frequency responses of the velocity for various MET channel

sensitivities computed using the 3D FEM code. The varia-

tion of the inverse square of the CFs as a function of the esti-

mated added mass [from Eq. (B10)] are illustrated in Fig.

10(b) for each activity level. Using the slopes in Fig. 10(b)

we find the lumped stiffness of the partition to be 0.225,

0.230, 0.232, 0.234 N/m for l equal 0.1, 0.2, 0.3 and 0.5,

respectively. Therefore, this technique predicts a stiffness that

is relatively insensitive to activity. This result is consistent

with the experimental data by Olson and Mountain,34 where

they did not detect changes in situ between pre-mortem stiff-

ness and stiffness measured within 1 h post-mortem.

The quality factor did turn out to accurately predict the

activity level. In our 3D mathematical model, energy loss is

implemented as fluidic damping in the OoC. The quality fac-

tor (Q) of the frequency response of a single degree of free-

dom oscillator is related to the effective damping ratio as38

f ¼ 1

2Q
; (7)

and this can be computed directly from Fig. 10(a). Variation

of the quality factor with respect to the MET scale factor (l,

representing the activity level of the segment) is depicted in

Fig. 11. The value of Q at l¼ 0 (passive) corresponds purely

to the structural/fluid damping, while larger activity levels

involve both damping and active process effects. We see a

nearly linear relation between the Q of the system and the

activity level. This means for our model that the activity

level of the cochlear segment can be estimated via a direct

measurement. The linear behavior is probably due to mini-

mal effect of the traveling wave on the OoC dynamics in this

small segment preparation. The activity level of the in vitro
experimental setup can be altered by varying the artificial

endocochlear potential between SM and ST. Manipulations

of the ionic content of the SM could also be used to affect

the active processes and their effect measured by monitoring

the Q of the system.

FIG. 10. (Color online) (a) Velocity

frequency response for different MET

scale factor (l). Higher MET channel

sensitivity gives rise to sharper response

with larger CF. (b) Inverse of the char-

acteristic frequency with respect to the

added mass for different activity levels.

The added mass is calculated from the

analytical model [Eq. (B10)].

FIG. 11. (Color online) The variation of the quality factor with respect to

the MET scale factor l. Increasing activity level gives rise to higher quality

factors (sharper responses) in a linear fashion.
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V. CONCLUSION

The main purpose of the present paper was to simulate

the experimental conditions of an active cochlear segment

preparation and make recommendations on how to use this

model to analyze the Chan-Hudspeth experiments. In this

study, we have presented a physiologically motivated

mechanical-electrical-fluidic model for predicting the

response of the cochlear segment to acoustical stimulus. The

dependency of the fluid loading added mass components

(near field and far field) on the experiment geometry was cal-

culated and utilized together with the resonance frequency

of the segment to approximate the partition effective/volu-

metric stiffness. The accuracy of this simple technique was

demonstrated by estimating the partition stiffness of our

model as a virtual experiment and then used the same calcu-

lation on experimental data. We show that even for very

small segments of the cochlea (700 lm) traveling waves may

exist in an active preparation; however, the phase accumula-

tion amounted to only 15% of a wavelength, which allows us

to treat the preparation as a simple harmonic oscillator. The

quality factor of the segment frequency response is found

to be the most reliable metric of cochlear activity while

changes in the phase accumulation were found to be a less

reliable measure of the activity. Our results show that OHC

somatic motility is able to replicate the nonlinear input-

output relationships seen in the experimental data. Future

work includes implementing an active HB model and a fully

nonlinear simulation in order to explore contribution of each

active process in the cochlear mechanics.

ACKNOWLEDGMENTS

This work was supported by National of Institutes of

Health (NIH) Grant Nos. DC-004084 and T32DC-00011.

APPENDIX A: CONTROL VOLUME ANALYSIS

A control volume analysis32 is utilized to estimate the

resonance frequency of the simplified 1D model of the

Chan-Hudspeth experiment, demonstrated in Fig. 12. In the

analysis, we consider the fluid incompressible, inviscid with

only height dependence. The conservation of the momentum

for the selected control volume results in

P0Sd � PbmSst þ PchðSst � SdÞ ¼ �qx2Uvol
bmðHd þ HstÞ;

(A1)

where the Sst and Sd are, respectively, the area of the fluid

chamber just below the BM and the area of the lower duct

where the acoustical pressure P0 is applied. A separate con-

trol volume for the chamber below BM gives rise to

PchSst � PbmSst ¼ �qx2Uvol
bmHst: (A2)

The incompressibility of the fluid implies conservation of

the volumetric displacement (velocity)

Uvol
st ¼ Uvol

bm: (A3)

Moreover, the fluid pressure below the BM (Pbm) can be

expressed as multiplication of the cochlear partition volu-

metric stiffness and the BM volumetric displacements

Pbm ¼ Kvol
cp Uvol

bm : (A4)

Plugging Eqs. (A3) and (A4) into Eqs. (A1) and (A2), the

resonance frequency of this configuration, labeled as model

B in the text, is derived as

xB
res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kvol

cp Sd

q Hd þ HstSd=Sstð Þ

s
: (A5)

In the simplified configuration (model A) we use the case

where Sd ¼ Sst and Hd¼ 0

xA
res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kvol

cp Sst

qHst

s
: (A6)

However, as discussed in the text (Sec. IV A), this simple

model neglects the near field mass. Hence, the more accurate

approximation formula is given by Eq. (B12).

APPENDIX B: ANALYTICAL APPROXIMATION OF THE
FLUID PRESSURE AND ADDED MASS

The cochlear partition is stimulated by pressure differ-

ence across the OoC. An analytical formulation of the fluid

dynamics interacting with the OoC mechanics provides us

with a robust explanation of the results obtained from the

computational model. By utilizing a Fourier series along the

x and y directions, we approximate the pressure distribution

in the fluid. This approach along with the WKB method has

been developed by Steele and Taber39 to calculate the

cochlear response in a 3D model. They employed the WKB

method to compute the BM wavelength, which is varying

spatially along the cochlea. However, compactness of the

segment in our simulation allows us to approximate the

wavelength as k ¼ p=Lbm by assuming a half sine wave

shape for the BM displacement. The spatial dependence of

the assumed BM displacement is compared to displacement

of the FEM simulation results for two different frequencies

FIG. 12. (Color online) The 1D control volume model of the experiment;

the lower (narrow) part represents the long horizontal channel in Fig. 2.

Pressures for three cross sections are labeled in the figure.
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and activity levels in Fig. 13. Considering this simplification

for the exposed short segment, the pressure distribution

inside the ST of the simplified configuration [model A pic-

tured in Fig. 3(a)] is given by

Pstðx; y; z; tÞ ¼
X

k

X
j

Qst
jkðzÞ/st

j ðyÞwst
k ðxÞe�ixt

for z ¼ �Hst; 0½ �: (B1)

Moreover, the boundary condition at z ¼ �Hst corresponds

to the acoustical pressure stimuli, p0, in the bottom, while a

linearized Euler relation satisfies the BM-fluid interaction at

z¼ 0

BC :

Pstj z¼�Hstð Þ ¼ p0e�ixt

@Pst

@z

����
z¼0ð Þ
¼ qx2Ubmg yð Þv xð Þe�ixt:

8>><
>>: (B2)

As depicted in Fig. 2(c), geometrical dimensions corresponding

to the ST and SM are illustrated by “st” and “sm” superscripts,

respectively. Moreover, q and Ubm denote fluid density

and BM maximum displacement ðubm ¼ UbmgðyÞvðxÞe�ixtÞ,
respectively. A time dependence of e�ixt is assumed, where x
is the angular frequency. Considering the rigid wall pressure

boundary conditions in x and y directions (see Fig. 2) and

hinged edges for the BM, the representing functions in Eq.

(B1) have the following forms:

/st
j yð Þ ¼ cos

jp yþWst=2ð Þ
Wst

� �
; g yð Þ ¼ sin

p yþ b=2ð Þ
b

� �
;

wst
k xð Þ ¼ cos

kp xþ Lst=2ð Þ
Lst

� �
; v xð Þ ¼ sin

p xþ Lbm=2ð Þ
Lbm

� �
:

(B3)

The functions /st
j ðyÞ and wst

k ðxÞ represent the pressure com-

ponents corresponding to modes j and k, respectively.

Taking advantage of orthogonality of the modes, we can

integrate out the longitudinal and lateral modes by multiply-

ing both sides of the BC by wkðxÞ and /jðyÞ and integrating

over ð�Lst=2; Lst=2Þ and ð�Wst=2;Wst=2Þ, respectively

Qst
jkjz¼�Hst

¼
p0Ast

0 Bst
0 = LstWstð Þ; j ¼ k ¼ 0

0; otherwise;

(

@Qst
jk

@z

����
z¼0

¼
qx2UbmAst

j Bst
k

nst
j mst

k LstWst

; (B4)

where

mst
k ¼

1

Lst

ðLst=2

�Lst=2

wst
k

� �2
dx; Ast

j ¼
ðb=2

�b=2

g/st
j dy ;

nst
j ¼

1

Wst

ðWst=2

�Wst=2

/st
j

� 	2

dy; Bst
k ¼

ðLbm=2

�Lbm=2

vwst
k dx :

(B5)

Note that vðxÞ and gðyÞ are defined in the domain of

ð�Lbm=2; Lbm=2Þ and ð�b=2; b=2Þ, respectively, and are

zero everywhere else. Considering the Laplace equation for

the inviscid and inviscous fluid on the ST, we have

r2Pst ¼ 0: (B6)

Next, we substitute pressure expansion from Eq. (B1) into

Eq. (B6),

d2Qst
jk

dz2
� a2

jkQst
jk ¼ 0; (B7)

where, ast
jk

2 ¼ ðkp=LstÞ2 þ ðjp=WstÞ2. This second-order dif-

ferential equation together with corresponding boundary

condition [Eq. (B4)] has an exponential solution for all j’s
and k’s except when ajk ¼ 0 in which, then, the solution is a

linear polynomial

Qst
jk zð Þ¼

qx2UbmA0B0

WstLst

zþHstð Þþp0; k¼ j¼ 0

qx2UbmAst
j Bst

k

ast
jkWstLstnst

j mst
k

sinh ast
jk zþHstð Þ

h i
cosh ast

jkHst

� � ; otherwise;

8>>>>><
>>>>>:

(B8)

where A0 ¼ 2b=p and B0 ¼ 2Lbm=p. Finally, we plug Eq.

(B8) into Eq. (B1) and obtain pressure distribution inside the

ST. A similar process is performed for the SM compartment

to calculate Psm. Appropriately with the given circumstance,

we need to redefine wsm
k ðxÞ ¼ sin ðkpðxþ Lsm=2Þ=LsmÞ, thus,

indicating that the pressure boundary condition for the SM

compartment is different than the ST (see Fig. 2). Finally,

the pressure difference on the BM appears in the right-hand

side of the BM equation of motion (plate model)

Dxx
@4ubm

@x4
þ 2 Dxy þ 2Dshð Þ

@4ubm

@x2@y2
þDyy

@4ubm

@y4

� ixCbmubm �Mbmx2ubm ¼ Pst � Psm½ � x;y;0;tð Þ; (B9)

FIG. 13. (Color online) The BM displacement along the segment is approxi-

mated with a sinusoid function, vðxÞ. The BM displacement peaks for the

numerical responses are shifted toward the apex due to the BM stiffness spa-

tial variation.

J. Acoust. Soc. Am. 142 (1), July 2017 Amir Nankali and Karl Grosh 225



where Cbm is the BM viscous damping per unit area and

Mbm is the mass of the BM per unit area. Dxx, Dyy, Dxy, and

Ds are the orthotropic plate bending stiffnesses of the BM

mode. Locally reacting model of the BM corresponds to

Dxx ¼ Dxy ¼ Ds ¼ 0. In Fig. 14, pressure distribution along

the z axis [Eq. (B1)] of the analytical computation are com-

pared to the FEM results. An excellent agreement between

the two approaches validates the assumed structural model

consideration in the analytical calculation.

From Eq. (B8) we note that there exists a dynamical

added mass due to the fluid loading on the BM. Hence, the

effective BM mass is Mlump
bm ¼ Mlump-analytical

fl þMbmI, in

which I ¼
Ð Lbm=2

�Lbm=2

Ð b=2

�b=2
gðyÞ2vðxÞ2 dy dx and

Mlump-analytical
fl ¼

X
k

X
j

q Ast
j Bst

k

� 	2

ast
jkWstLstnst

j mst
k

tanh ast
jkHst

� 	2
4

þ
2q Asm

j Bsm
k

� �2

asm
jk WsmLsmnsm

j

exp �2asm
jk Hsm

� �þ 1

exp �2asm
jk Hsm

� �� 1

#

þ 16Hstqb2L2
bm

p4WstLst

¼ Mnf þMff :

(B10)

This formula involves the near field (Mnf, summation terms)

and far field (Mff, last term) contributions on the fluid load-

ing added mass calculation. The number of modes necessary

for convergence is determined by the summation limits

j; k ¼ 0; 1; 2; ::: (except j ¼ k ¼ 0; which is separated out in

the last term). We found that using as few as ten modes for

each x and y component was enough for convergence in our

simulations. One can compute the acoustical/volumetric

added mass by dividing Eq. (B10) by the BM mode shapes

Mvol-analytical
fl ¼ Mlump-analytical

fl

16b2L2
bm=p

4
� � : (B11)

In Eq. (A5) the resonance frequency of the model B is esti-

mated using the control volume analysis. However, the eva-

nescent added mass is neglected in this analysis. Here, we

can correct it by considering the near field added mass (Mnf),

xB
res ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kvol

cp Sd

q d þ hSd=Sstð Þ þMnfSd=Sst
2

s
: (B12)

Here, qðd þ hSd=SstÞ=Sd is the far field volumetric added

mass that can be lumped by multiplying to the BM mode

shapes

Mlump-B
ff ¼ q d þ hSd=Sstð Þ16b2L2

bm

p4Sd
: (B13)
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