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Abstract

The Protein Data Bank (PDB) has been an integral resource for shaping our fundamental 

understanding of protein structure and for the advancement of such applications as protein design 

and structure prediction. Over the years, information from the PDB has been used to generate 

models ranging from specific structural mechanisms to general statistical potentials. With 

accumulating structural data, it has become possible to mine for more complete and complex 

structural observations, deducing more accurate generalizations. Motif libraries, which capture 

recurring structural features along with their sequence preferences, have exposed modularity in the 

structural universe and found successful application in various problems of structural biology. 

Here we summarize recent achievements in this arena, focusing on sub-domain level structural 

patterns and their applications to protein design and structure prediction, and suggest promising 

future directions as the structural database continues to grow.

Introduction

The observation that proteins exhibit recurring structural motifs, ranging from secondary 

structure elements (SSE) to domains, has in many ways shaped the development of 

structural biology, providing insights into sequence determinants of structure and function, 

and enabling the classification of protein structure space [1-6]. This review focuses on local 

structural patterns that recur at the sub-domain level, involving one or several SSE 

fragments. Such patterns provide a potentially potent combination of high degree of detail, 

allowing for the possibility to discern quantitative sequence-structure relationships, with 

generally high degree of recurrence in the structural database, strengthening associated 

statistics. Whereas some such patters may be associated with specific functions (e.g., 

phosphorylation [4], small molecule binding [5], or catalysis [6]), others recur in a wide 

range of functional and evolutionary contexts, indicating that the structural universe is 

fundamentally modular. This modularity has been recognized for some time [7], but more 

recent analyses, armed with considerably more data, have described it in higher detail, 

leading to new insights. For example, Kolodny and co-workers modeled domain space as a 

network, where domains were connected by sub-regions of similar structure and sequence, 
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showing that this space is modular with regions of both low and high connectivity [8]. In 

another recent analysis of sub-domain modularity, Lupas and colleagues discovered a set of 

40 super-secondary motifs representing possible remnants of a primordial RNA-peptide 

world by looking for similar sequence-structure patterns across unrelated proteins [9].

Fragment libraries—collections of (typically short) structural segments that are highly 

recurrent across proteins—have been an important means of describing protein structural 

modularity. In addition to being of fundamental interest, such libraries have enabled 

advancements in modeling, prediction, and design applications (see Figure 1). For example, 

Fernandez-Fuentes et al. generated the Smotif library of super-secondary motifs, which they 

defined as two sequence-adjacent SSEs connected by a loop [10,11]. The authors used four 

geometric parameters that describe the relative orientation of adjacent SSEs to group all 

Smotifs instances into just 324 types [12]. Importantly, they found that even novel folds can 

be described as combinations of previously seen Smotifs (i.e., those found in pre-existing 

folds), indicating that while new folds are globally different from previous ones, local 

structural patterns within them are saturated [12]. On the other hand, novel folds did show 

different patterns of Smotif utilization, including higher usage of rare motifs. The group has 

shown the utility of Smotifs in loop modeling [10,11], NMR structure determination [13], 

and structure prediction [14]. Other attempts to discern motifs that make up the structural 

universe have focused to classifying contigious backbone segments by root-mean-square-

deviation (RMSD) upon optimal superposition. The FragBag library clustered segments of 

4-7 residues by Ca RMSD [15]. The pattern of motif usage within proteins was sufficient to 

identify structural neighbors at a level comparable to advanced structural alignment methods 

like CE and STRUCTAL [16]. The BRIX project took advantage of increased data and 

computational power to create a thorough database of fragments grouped by length (4-14 

residues) and clustered by backbone RMSD at a variety of thresholds (0.5 to 1.0 Å) [17]. 

While the BRIX database is a highly compressed representation of local backbone structure 

space (e.g. ∼2,500 clusters at 0.7 Å out of ∼260,000 7-residue fragments), it was 

nevertheless sufficient to reconstruct backbones of previously unseen native proteins to an 

average accuracy of ∼0.5 Å [17]. BRIX fragments have been extended to the modeling of 

loops [18], interface geometries [19], and protein-peptide docking [20].

Beyond local backbone geometries, there have been efforts towards describing modularity at 

the tertiary and quaternary structural levels [19,21-30], which requires consideration of 

motifs with multiple disjoint segments. Several studies have characterized helix-helix 

associations, showing that they can be described with a small set of structural classes or 

restricted parameters [23-27]. Grigoryan and Degrado used a generalized set of parameters 

to describe the structural space of helical bundles [25], showing that coiled coils largely 

sampled near-ideal parametric structures. By breaking multipass transmembrane (TM) 

proteins into interacting three-segment helical motifs, Feng and Barth found that the TM 

regions of these proteins consist of six major structural classes, each dominated by only a 

few sequence motifs [26]. Another recent study revealed that interacting helical segments in 

TM and soluble proteins can be described with a small number of shared structural classes, 

even though there were important differences in sequence preferences and hydrogen bonding 

patterns [27]. Recent work has also found considerable modularity at the level of quaternary 
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structure [19,21,22,28-30]. For example, pairs of interacting BRIX fragments from 

monomeric proteins were used to show that 65% of protein-peptide interactions were similar 

to structural motifs in monomeric folds [19]. Also, protein-protein interactions were 

characterized with ∼2,000 motifs created by clustering two-segment fragments built around 

quaternary contacts [30], with many of these found in a wide range of contexts (e.g., 

quaternary interactions between different domains).

Still, in comparison to the many of ways in which secondary and super-secondary structure 

has been classified, understanding of the degeneracy and modularity of tertiary and 

quaternary structural levels (higher-order degeneracy) has lagged behind. In part, this is due 

to the greater ambiguity associated with both defining and classifying tertiary structural 

motifs—i.e., motifs that are not necessarily contiguous in sequence. In recent years, we have 

been working towards addressing these issues to enable a more thorough and general 

decomposition of structure space across all structural levels. We have developed efficient 

structure search algorithms, MaDCaT and MASTER, that find all matches to a given query, 

composed of one or more disjoint segments, within a user-specified similarity cutoff [31,32]. 

We have used MASTER, which searches by backbone RMSD, to describe and take 

advantage of higher-order degeneracies [33,34]. Towards this, we adopted a common 

definition of a motif that captures the secondary, tertiary, and quaternary structural 

environments around a given central residue. Referred to as a TERM (tertiary motif), this 

motif is defined as the union of the local backbone fragment around the central residue (e.g., 

± 2 residues around it) with that around all residues with which the central residue can form 

interactions [33]. We have shown that TERMs can be used to blindly evaluate the quality of 

structural models. Specifically, a TERM was defined for every residue in a given model, and 

MASTER was used to search for closely matching geometries in the PDB. From this, we 

quantified whether 1) the TERM represented a common designable geometry, and 2) 

sequence features emergent from the TERM's matches (from diverse proteins) agreed with 

the corresponding sequence region of the modeled protein [33]. The resulting score showed 

a strong correlation with model quality, evaluated as its distance from the native structure, 

and was further able to identify poorly predicted regions. We have also described a minimal 

set of TERMs that captures the observable structural universe (Figure 1) [34]. This has 

revealed considerable degeneracy beyond the secondary-structural level, such that only ∼600 

TERMs are sufficient to describe over 50% of the known protein structural universe at sub-

Angstrom resolution. Further, we have shown that TERMs, along with their structural 

matches from unrelated proteins, provide an effective mapping between sequence and 

structure. For example, TERM-based statistics alone recapitulate close-to-native sequences 

given either NMR or X-ray backbones, with corresponding predicted sequence variations in 

close agreement with evolutionary ones [34].

Protein Structure Prediction

Fragment libraries have a long history of use in protein structure prediction. Typically, short 

fragments are selected based on the predicted secondary structure of the target and are used 

to bias structural sampling towards models more likely to be compatible with the target 

sequence [35,36]. Combined with other forms of structural sampling and knowledge-based 

potentials, fragment-based prediction methods are among the best performers in the free 
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modeling (FM) section of the semi-annual CASP competition (Critical Assessment of 

Structure Prediction) [37,38]. The highly successful structure prediction program Rosetta 

uses contiguous fragments of 3-9 residues to enhancing structural sampling [39,40] and has 

been a top performer at CASP meetings [37,38]. Rosetta's fragment sampling method, which 

uses torsion angles from fragments to replace those in the modeled structure guided by a 

Monte Carlo simulation, has also been applied to NMR structure determination [41], 

molecular replacement [42], and cryo-EM structure refinement [43].

Another top CASP performer, I-TASSER, threads the protein onto a set of representative 

structures to identify larger fragments (from super-secondary motifs to folds) that are 

compatible with regions of the target sequence and predicted secondary structure [44,45]. 

These fragments are assembled into structural models in a Monte Carlo simulation while ab-
initio modeling is used for unaligned regions. The preliminary structural models are 

clustered and structurally matching fragments from the PDB are identified for another round 

of fragment assembly. The Quark structure prediction method, which was ranked number 

one in free modeling in CASP 9-11, uses short fragments to construct models in a Monte 

Carlo simulation with a knowledge based potential [46,47]. Unlike I-TASSER, it does not 

require templates from homologs to generate fragments. Instead, it finds fragments from a 

database of known (but non-homologous) structures based on sequence and predicted 

secondary structure similarity to short regions of the target sequence. In addition, an inter-

residue distance-based energy term is derived from pairs of fragments in the PDB. A 

pipeline has been developed in which Quark is used to produce initial models for I-TASSER 

to refine, improving the accuracy for models in both the FM and Template-Based Modeling 

categories of CASP [48]. Smotifs have also been applied to structure prediction, showing 

that they can identify the correct global fold from sequence alone about half of the time, in 

close competition with other state-of-the-art methods [14]. In this approach, locations of 

putative Smotifs within the target are predicted from sequence alone, and structural models 

are generated by replacing these predictions with combinations of actual Smotifs, with 

matching SSE types, generated from structures of remote homologues.

By taking advantage of higher-order structural degeneracies, it may be possible to identify 

contacting structural segments that are not necessarily close in sequence—a highly 

challenging aspect of structure prediction. Although methods based on evolutionary co-

variation have shown considerable promise towards predicting contacts in recent years 

[49-51], such prediction applies only to native proteins and works best in cases with 

available deep evolutionary sequence alignments. On the other hand, universal structural 

degeneracies could apply equally well to evolutionarily ancient, relatively novel, or even 

engineered proteins. In our own work, we have shown that the presence and location of 

multi-segment TERMs can be identified within proteins based purely on sequence 

information [34]. We built sequence models for each multi-segment TERM, from 

corresponding structural matches, and scored all alignments in previously unseen sequences 

to identify likely TERM positions. Despite the number of possible alignments growing 

exponentially with the number of disjoint TERM segments, structurally correct alignments 

were highly enriched in the resulting predictions, whether the method was applied to native 

or de novo designed proteins [34].
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Protein Design

Motifs can also be used to limit structure space in design. Reusing naturally occurring local 

geometries effectively focuses on parts of structural space more likely to be designable—i.e., 

realizable with natural amino acids. Several recent studies have reported using structural 

statistics of constituent fragments to filter sets of de novo generated templates for high 

designability [52-54]. For example, Brunette et al. estimated the designability of de novo 
repeat protein templates by calculating the frequency with which backbones from pairs of 

positions within these structures matched residue pairs with interacting side-chains in the 

PDB [53]. Kuhlman and co-workers have further pushed the idea of using fragments from 

existing proteins to generate designable templates [55]. In their SEWING approach, novel 

proteins were computationally assembled from single or multi-segment fragments extracted 

from the PDB [55]. Models were generated by combining fragments that superimposed well 

and did not clash with the growing structure. For models assembled from multi-segment 

motifs, loop design was required to connect segments. With this method, the authors 

successfully designed two novel proteins in good agreement with their corresponding X-ray 

or NMR structures. While this study focused on helical motifs and only combined a small 

number of fragments, this method is general and could be extended to larger assemblies with 

different fragments. This study is especially exciting as an important step towards using 

multi-segment motifs for generating novel templates and assuring their designability. A 

study by Azatoie and colleagues showcased another use of discontinuous motifs in design, 

whereby the authors transplanted a disjoint fragment consisting of two loops from HIV 

gp120 to an unrelated scaffold [56]. The PDB was scanned for scaffolds that could 

structurally accommodate this fragment and a library was computationally designed and 

screened in vitro, resulting in a novel protein that bound a gp120-targeting antibody with 

affinity and specificity near that of gp120 itself.

Of course, motifs can focus the sampling of not only structure but also sequence. This is 

because sequence statistics emergent from motif instances can report on important 

determinants of the targeted structure. Whereas contiguous fragments have been widely used 

for deriving such empirical sequence constraints in design [22,53,57], applications of multi-

segment motifs towards this end sparser [52,56] [34]. Still, this represents a promising 

direction, especially as more structural data accumulate, with the prospect of providing 

quantitative sequence determinants of tertiary and quaternary structure, just as sequence 

statistics of local backbone fragments enabled the quantification of secondary-structural 

propensities. Such higher-order sequence statistics would be greatly beneficial to protein 

design and structure prediction applications.

Fragment libraries have also been increasingly used to assess the conformational landscape 

of designed proteins by sampling over large number of structural possibilities to verify that 

the target state is preferred for the designed sequence [53,58,59]. In what is often referred to 

as forward folding simulations, the designed sequence is subjected to broad conformational 

sampling via Rosetta using fragments biased by the secondary structure of the targeted 

template. The presence of an energy funnel leading to the target state is then treated as a 

necessary condition for design success [39]. In an approach targeted towards the redesign of 

antibody binding, Fleishman and co-workers have exploited PDB fragments for both of the 
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abovementioned benefits—to focus structural sampling on designable space and to discern 

relevant sequence-structure relationships. Relying on the relatively large number of antibody 

entries in the PDB, their computational method, AbDesign, uses backbone fragments from 

aligned regions of antibody structures to combinatorially generate new putative templates. 

The sequence for each combination is optimized with a modified Rosetta design procedure, 

in which amino acids are constrained to those naturally found in the fragments [57,60].

Koga et al. reported a set of rules relating SSE patterns in super-secondary motifs and used 

these to successfully design a number of novel proteins [58]. These rules, which were 

derived from observations in the PDB and Rosetta folding experiments, explained super-

secondary motif geometries in terms of constituent SSEs, their lengths and registers, and the 

length of the loop connecting them. This information was used to select SSE and loop 

lengths to favor each of five design blueprints prior to sequence optimization. NMR 

structures of designs corresponding to each of these five folds showed close agreement with 

computational models. Building on this work, packing geometries between successive SSEs 

were described using more detailed rules that accounted for the co-dependence between the 

length of SSEs and the loop connecting them, and the backbone torsion angles of the loop 

[59]. Rules were developed based on the frequencies of each pattern in naturally occurring 

proteins and extensive Rosetta folding simulations. These insights were used to 

computationally design seven folds based on SSE blueprints, six of which led to NMR 

structures that agreed with design models to within 1.1-2.4 Å of backbone RMSD. Similar 

design rules were recently used to aid in the design of hyperstable disulfide-crosslinked 

peptides, some of which were heterochiral and/or backbone-cyclized [61]. Using fragments 

biased towards the detailed backbone geometry of the desired structures, hyperstable 

peptides were computationally designed and experimentally validated with 12 X-ray and 

NMR structures highly similar to corresponding design models.

Conclusions

In recent years, structural patterns from the PDB, across a variety of scales, have enhanced 

our understanding of the structural universe and led to considerable advances in protein 

structure prediction and design. Fragment libraries have served as an important tool for 

expressing and taking advantage of the modularity in the structural universe. Such libraries 

have been used both to limit structural space in sampling, focusing on designable templates 

in design or native-like models in structure prediction, and to develop sequence-structure 

relationships at the sub-domain level. Incorporation of tertiary information into fragment 

libraries appears to be the key next step in building more complete fragment libraries for use 

in both applications. There has been some work in this direction recently, but many new 

developments will likely emerge in the near future. In general, as the structural database 

continues to grow, we anticipate that the reductionist approach of studying protein structure

—i.e., decomposing the protein structural universe into its recurrent building blocks to 

synthesize emergent principles—will provide increasingly accurate and complete insights.
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Highlights

• statistical analyses of the PDB have shaped our understanding of protein 

structure

• recurrent motifs have been used to great effect in structure prediction and 

design

• increasing amounts of data give new insights into structure-sequence 

relationships

• tertiary structural motifs are poised to provide new knowledge and 

capabilities

• decompositions of tertiary structure space have revealed strong degeneracies
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Figure 1. 
Decomposition of protein structure space into motif libraries has revealed considerable 

modularity across the structural hierarchy, providing useful insights for protein design and 

structure prediction applications. Shown are six recent examples of motif libraries, each 

covering local-backbone and secondary (L/S), super-secondary (SS), or higher-order (HO) 

structural information to different extents (black, gray, or missing checkmarks in the 

structural coverage table correspond to detailed, sparse, or low coverage). Shown on the 

bottom are examples of uses of each motif library in either design or prediction/modeling 

applications (examples denoted by references).
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