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Abstract

Background—Many studies in multiple sclerosis (MS) have investigated the retina. Little 

however is known about the effect of MS on the cornea, which is innervated by the trigeminal 

nerve. It is the site of neural-immune interaction with local dendritic cells reacting in response- to 

environmental stimuli.

Objective—This study aims to investigate the effect of MS on- corneal nerve fibres and dendritic 

cells in the subbasal nerve plexus using in vivo confocal microscopy (IVCM).

Methods—We measured the corneal nerve fibre and dendritic cell density in 26 MS patients and 

matched healthy controls using a Heidelberg Retina Tomograph with Cornea Module. Disease 

severity was assessed with the Multiple Sclerosis Functional Composite, Expanded Disability 

Status Scale, visual acuity and retinal optical coherence tomography.

Results—We observed significant reduction in total corneal nerve fibre density in MS patients 

compared to controls. Dendritic cell density was similar in both groups. Reduced total nerve fibre 
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density was associated with worse clinical severity, but not with previous clinical trigeminal 

symptoms, retinal neuroaxonal damage, visual acuity, or disease duration.

Conclusion—Corneal nerve fibre density is a promising new imaging marker for the assessment 

of disease severity in MS and should be investigated further.
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Introduction

Multiple Sclerosis (MS) is the most common autoimmune disorder of the central nervous 

system (CNS). The cause of MS is unknown, but suggested factor in accruing clinical 

disability in MS are the myelin and axonal damage as well as neurodegeneration caused by 

an autoimmune reaction against CNS-specific myelin and myelin-forming 

oligodendrocytes 1.

Changes in the eye’s retina have been intensely studied in MS (for a recent review see 2). 

The retina is affected by retrograde damage from acute optic neuritis 3, and shows chronic 

axonal and ganglion cell degeneration also without clinically overt optic neuritis 4–6. 

Imaging the retina using optical coherence tomography (OCT) has therefore been suggested 

as potential surrogate marker of disease severity in clinical trials 7. In contrast to the retina, 

the cornea has not been investigated in MS.

Axons of the trigeminal nerve’s third terminal branch, the ophthalmic nerve, form the 

subbasal nerve plexus (SNP) in the human cornea. Imaging of nerve fibres in the SNP is 

possible with corneal in vivo confocal microscopy (IVCM), a non-invasive imaging 

technique providing high-resolution real-time images of corneal tissue at cellular 

resolution 8.

Next to nerve fibres, dendritic cells (DC) can be analyzed using IVCM. These cells usually 

respond to external stimuli, e.g. from contact lenses or dirt, and maintain a healthy immune 

state of the cornea on the outer surface to the environment. IVCM, thus, provides a unique 

opportunity for analysing immune and peripheral nerve system interactions with 

microscopic resolution in vivo 9–14.

Our study explored the potential of IVCM imaging of the SNP as a tool in the assessment of 

MS-related clinical parameters. First and foremost, we aimed to assess nerve fibre and DC 

differences in the corneal SNP in patients with MS compared to HC. We also investigated 

the association between corneal SNP differences and measures of clinical disability, as well 

as neuro-axonal damage in the retina assessed by optical coherence tomography (OCT).
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Material and Methods

Patients and controls

Twenty-six MS patients and 26 healthy controls (HC) were initially enrolled. Patients with 

relapsing-remitting MS (RRMS) were recruited from the neuroimmunology outpatient clinic 

of the Charité – Universitätsmedizin Berlin. Inclusion criteria were age between 18 and 65 

years, diagnosis of MS according to the 2010 revised McDonald criteria 15 and stable 

immunomodulatory therapy for at least six months. Exclusion criteria were disease attacks 

and administration of intravenous corticosteroids within six months prior to study 

recruitment, any known neurologic or ophthalmologic disorder unrelated to MS, diabetes 

mellitus, previous refractive surgery, pathological cornea changes due to corneal dystrophy 

or keratoconus, history of corneal transplantation and any other form of ocular surgery. 

Healthy controls (HC) were recruited from volunteers. All participants were surveyed 

regarding eye dryness, specifically epiphora or burning and aching, and usage of artificial 

tears and contact lenses to account for exogenous factors influencing SNP 16. Exclusion 

criteria for healthy controls were corneal DC density exceeding 137.1 cells/mm2 

corresponding to two standard deviations of published reference data 17. All MS patients 

were clinically scored using the Expanded Disability Status Scale (EDSS) and the Multiple 

Sclerosis Functional Composite (MSFC) with its components Timed 25ft Walk Test 

(T25FW), 9-Hole Peg Test (9-HPT) and Paced Auditory Serial Additions Test (PASAT) 18. 

Multiple Sclerosis Severity Scores (MSSS) were calculated from disease duration and 

EDSS 19.

Single eyes of two patients and two controls were excluded after IVCM measurement due to 

insufficient image quality. Both eyes of three HC and single eyes of four further HC were 

excluded because DC density exceeded 137.1 cells/mm2 in each eye, leaving 23 subjects in 

the HC cohort and the initial 26 subjects in the patient cohort. A demographic and clinical 

overview of the cohort after application of exclusion criteria is given in Table 1.

The study was approved by the ethics committee of the Charité – Universitätsmedizin Berlin 

and was conducted in conformity with the 1954 Declaration of Helsinki in its currently 

applicable version and applicable German laws. All study participants gave written informed 

consent.

Corneal in vivo Confocal Microscopy

Corneal laser IVCM to analyse SNP nerve density and immune DCs was performed using 

the Rostock Cornea Module as add-on to the Heidelberg Retina Tomograph 3 (Heidelberg 

Engineering, Germany). Prior to examination, topical anaesthesia with 

oxybuprocainhydrochloride 4.0 g (Conjuncain® EDO®; Dr. Gerhard Mann, Chem.pharm. 

Fabrik GmbH, Germany) as active ingredient was applied to both eyes, followed by a drop 

of lubricant 2 mg/g carbomer-containing gel (Vidisic gel®; Bausch & Lomb, Heidelberg, 

Germany). The IVCM imaging using “composite” mode was then performed as previously 

described in detail 20–22. The maximum possible corneal scan area in composite mode (3.2 

mm × 3.2 mm) was acquired wherever possible (Figure 1). DCs were identified by the 

morphology of cell bodies surrounded by dendritiform structures, which were clearly 
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distinguishable from the linear structures of corneal nerve fibres. To calculate the density of 

DCs, ImageJ (National Institutes of Health, USA) was used. For the composite IVCM 

images, the surface area of the image was first measured using ImageJ in mm2. The cell 

number of DCs in the entire image was counted using ImageJ’s Cell Counter plug-in. The 

DC density was then expressed as cells/mm2. To measure subbasal nerve fibre density, 

nerves were traced using NeuronJ software (http://www.imagescience.org/meijering/

software/neuronj/), which is a semi-automated nerve analysis plug-in of ImageJ that traces 

all visible nerve fibres in the image and calculates their total length in millimetres. Nerve 

fibre density was then expressed in μm/mm2 in relation to the composite image’s surface 

area. All nerve measurements were performed by two independent blinded observers.

Optical coherence tomography

Retinal examination of all patients was performed using spectral domain OCT (Spectralis, 

Heidelberg Engineering, Germany). Peripapillary nerve fibre layer thickness (pRNFL) was 

determined from a ring scan around the optic nerve head using the OCT device’s standard 

protocol with a 12° circular scan, resulting in 3.4 mm diameter, and with activated eye 

tracker. Whenever possible, the maximum 100 averaging frames in the automatic-real-time 

mode (ART) were used. Macular scans were acquired using a custom protocol generating 61 

vertical slices (B-scans) focusing on the fovea at 30°×25° scanning angle with resolution of 

768 A-scans per B-scan and ART 13. All scans were evaluated for sufficient signal strength, 

correct centring and segmentation. Intraretinal segmentation was performed using the above 

OCT manufacturer’s semiautomatic beta software (Heidelberg Eye Explorer V1.8.6.0 with 

Spectralis Viewing Module V6.0.0.2). The latter software detects and verifies boundaries 

between retinal layers automatically, but necessitates manual error correction by an 

experienced grader. Based on the intraretinal segmentation, ganglion cell and inner 

plexiform layer thickness (GCIP) and inner nuclear layer thickness (INL) were determined 

as volume within the standard 6 mm ETDRS ring around the fovea. Whereas pRNFL and 

GCIP are established parameters of neuro-axonal degeneration in MS, INL has been 

suggested as a correlate of neuroinflammation 23.

Statistical analysis

Statistical analysis was performed with R version 3.1.2 and geepack 1.2-0. To account for 

within-subject inter-eye effects, generalized estimating equation models (GEE) with 

working correlation matrix “exchangeable“ were used for all group comparisons and 

correlations involving corneal, retinal, and visual function measurements. GEE Results are 

given with regression coefficient (B) and standard error (SE). In HC, higher corneal nerve 

fibre density and DC density showed a trend to an association with higher age (B=107.9, 

SE=57.2, p=0.059 and B=0.8, SE=0.4, p=0.052, respectively), which is why we included 

age as a covariate in all analyses. Demographic group differences between patients and 

healthy controls were analysed using a non-parametric Mann-Whitney-U test (MWU) for 

age and Pearson’s Chi2 test for sex. TN-related symptom frequency comparisons between 

patients with and without history of such symptoms were calculated with Pearson’s χ2 

statistics. Statistical significance was established at p<0.05. No a priori sample size 

calculation was performed and significance levels were not corrected for multiple 

comparisons. The study should therefore be considered exploratory.

Mikolajczak et al. Page 4

Mult Scler. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.imagescience.org/meijering/software/neuronj/
http://www.imagescience.org/meijering/software/neuronj/


Results

Corneal nerve fibre density was significantly lower in MS patients than in HC (16,531.7 

± 4,426.6 vs. 19,399.1 ± 4,546.1 μm/mm2, B=3,227.1, SE=1,192.0, p=0.007). The density of 

13 of 50 MS eyes (26%) in 12 of 26 patients (46%) was below that of the 5th percentile of 

HC. In contrast, DC density was not significantly different between MS patients and HC 

(28.6 ± 24.5 vs. 37.0 ± 28.3 cells/mm2, B=12.2, SE=7.6, p=0.11) (Figure 2). As expected, 

pRNFL and GCIPL were reduced in MS patients in comparison to HC, but INL was similar 

(Table 2).

In MS patients, lower corneal total nerve fibre density was associated with worse MSFC 

scores (B=1.810.4, SE=431.8, p<0.001) and worse EDSS (B=−822.9, SE=366.2, p=0.025). 

Corneal nerve density was not associated with time since diagnosis (B=−41.29, SE=10.67, 

p=0.90) but with MSSS (B=−855.6, SE=406.2, p=0.035). Analysing the individual MSFC 

tests, reduced corneal nerve fibre density correlated with worse T25FW times (B=−77.0, 

SE=15.9, p<0.001) and reduced PASAT performance (B=123.1, SE=55.1, p=0.026), but not 

with 9-HPT results (B=−0.538, SE=0.714, p=0.451). None of the OCT and visual function 

parameters correlated significantly with corneal nerve fibre density or DC density (Table 2). 

Likewise, there was no association with a previous optic neuritis (not shown).

We then assessed if corneal nerve fibre density was associated with a history of trigeminal 

symptoms. None of the MS patients had a history of diagnosed TN, however 11 out of 25 

patients (for 1 patient this information was not available) had other TN-related symptoms in 

their medical record, i.e. facial hypaesthesia, dysaesthesia, or paraesthesia. Patients with a 

history of TN-related symptoms had similar corneal nerve density compared to patients 

without TN-related symptoms (15,731.0 ± 4,546.0 μm/mm2 vs. 17,177.0 ± 4,391.0 μm/mm2, 

B= 1,676.0, SE=1,561.0, p=0.28). Moreover, these patients did not show corneal nerve fibre 

densities below the 5th percentile of HC more frequently (p=0.74) than patients without TN-

related symptoms.

Discussion

In this study we show that a) corneal nerve fibre density is reduced in MS patients, b) this 

reduction is associated with disease severity, c) the reduction is not associated with retinal 

damage, and d) the reduction is independent of a history of clinical trigeminal-related 

symptoms. Corneal nerve fibre density is an interesting new biomarker in MS as suggested 

by the consistent correlations with clinical severity. The marker was not affected by mild 

trigeminal symptoms, which suggests little dependency on focal symptoms or lesions. This 

is in contrast to OCT derived parameters, where optic neuritis causes additional damage and 

thus frequently interferes with the use of OCT parameters as surrogates for disease 

progression 24. Recent applications of OCT as disease progression biomarker have therefore 

focused on eyes without previous optic neuritis 25,26. The high frequency of optic neuritis in 

MS patients (confirmed in our random sample) thus limits these novel OCT applications. In 

contrast, no patient reported a history of trigeminal neuralgia, which is in line with its low 

prevalence.
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The corneal SNP comprises terminal nerve endings from pseudo-unipolar sensory neurons 

originating in the trigeminal ganglion. Cell bodies from these neurons reside in the ganglion, 

connecting the cornea with peripheral axonal branches and the thalamic trigeminal nuclei 

with central axonal branches. Comparable to dorsal root ganglia in structure and function, 

these neurons are part of the PNS and are void of CNS-specific myelin from 

oligodendrocytes. Instead, Schwann cells ensheath both the peripheral and central axonal 

branches with peripheral myelin, which is composed of disparate cellular components and 

does not incorporate antigen targets thought to be relevant in MS 27. However, the trigeminal 

nerve is the 5th cranial/brain nerve and the trigeminal ganglion receives direct input from 

brainstem nuclei. As such the nerve is anatomically considered to be part of the central 

nervous system, despite belonging to the PNS from its cellular composition. The trigeminal 

ganglion and nerve thus represent an interesting target at the interface between central and 

peripheral nervous system. The trigeminal nerve is myelinated outside the cornea, but the 

terminal nerve endings in the corneal SNP are unmyelinated. The corneal SNP is highly 

dynamic and changes its fibre layout over a 6-week period 28. The neuronal regulators of 

this dynamic turnover are enigmatic in humans. Trigeminal, sympathetic or parasympathetic 

modulators have been shown in animal studies.

In our study, almost half of all investigated MS patients (42%) and 26% of all analysed eyes 

from these patients exhibited a corneal nerve fibre density below the 5th percentile of that of 

HC corneas. Few previous studies have suggested that the PNS might be affected in up to 

5% of MS patients 29–33. However, the mechanisms underlying this MS-related PNS 

involvement and the contribution to overall clinical disability in MS are yet to be 

determined. Transsynaptic neurodegeneration after CNS nerve cell damage is most likely, 

but also primary neurodegeneration of peripheral neurons, have been discussed in studies of 

PNS impairment 33.

Trigeminal neuralgia (TN), a painful affection of the trigeminal nerve, affects 2 to 6% of MS 

patients, which is a 20-fold increased risk of developing TN compared to the general 

population 34–36. Our study shows that the trigeminal nerve can be affected in MS without a 

history of clinically diagnosed TN. However, such impairment might render the nerve 

susceptible to further damage and eventually trigger TN. Our random sample of MS patients 

did not include any patients with previous TN, thus a follow-up study of patients with 

diagnosed TN is needed to investigate this notion.

MS patients had similar DC density in the corneal SNP as that of the study’s HC and that of 

previously published controls 37. Local corneal inflammation, usually caused by exogenous 

influences like microbes, pollen or desiccating stress, leads to DCs migrating into the central 

part of the cornea, where they can be found up to six weeks after an inflammatory 

response 38. Previous studies have suggested that resident corneal DCs are always present in 

the central cornea but increase rapidly in response to various exogenous factors 39. It is 

therefore likely, that influences of exogenous factors on the corneal DC presence outweigh 

effects potentially attributable to MS. Thus, dendritic cell count at one single time point 

might not be a reliable marker to draw any firm conclusion regarding differences in DC 

dynamics in MS in comparison to HC.
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This study is an exploratory pilot study, and results should be replicated in an independent 

study.

Our study shows that corneal SNP nerve fibre density is substantially reduced in MS patients 

in comparison to healthy subjects. The association of reduced corneal SNP density with 

higher clinical disability prompts further investigations on the applicability of this new 

measure as potential imaging biomarker for disease severity and progression in MS.
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Figure 1. Composite image of the corneal subbasal nerve plexus
The device’s software automatically fuses repeated section measurements in a composite 

image. A) Sample image of a healthy control subject. The dashed white box depicts the size 

of one section image. A sample corneal nerve segment is delineated in red, sample dendritic 

cells shown by a yellow circle. B) Sample image of a multiple sclerosis patient.
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Figure 2. Corneal microscopy measurements
Comparison of corneal measurements between RRMS patients and healthy controls (HC) A) 

Corneal nerve fibre density expressed as total nerve length in μm per mm2; B) Dendritic cell 

density expressed as n per mm2
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