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Abstract

Most fetal brain MRI reconstruction algorithms rely only on brain tissue-relevant voxels of low-

resolution (LR) images to enhance the quality of inter-slice motion correction and image 

reconstruction. Consequently the fetal brain needs to be localized and extracted as a first step, 

which is usually a laborious and time consuming manual or semi-automatic task. We have 

proposed in this work to use age-matched template images as prior knowledge to automatize brain 

localization and extraction. This has been achieved through a novel automatic brain localization 

and extraction method based on robust template-to-slice block matching and deformable slice-to-

template registration. Our template-based approach has also enabled the reconstruction of fetal 

brain images in standard radiological anatomical planes in a common coordinate space. We have 

integrated this approach into our new reconstruction pipeline that involves intensity normalization, 

inter-slice motion correction, and super-resolution (SR) reconstruction. To this end we have 

adopted a novel approach based on projection of every slice of the LR brain masks into the 

template space using a fusion strategy. This has enabled the refinement of brain masks in the LR 

images at each motion correction iteration. The overall brain localization and extraction algorithm 

has shown to produce brain masks that are very close to manually drawn brain masks, showing an 

average Dice overlap measure of 94.5%. We have also demonstrated that adopting a slice-to-

template registration and propagation of the brain mask slice-by-slice leads to a significant 

improvement in brain extraction performance compared to global rigid brain extraction and 

consequently in the quality of the final reconstructed images. Ratings performed by two expert 

observers show that the proposed pipeline can achieve similar reconstruction quality to reference 

reconstruction based on manual slice-by-slice brain extraction. The proposed brain mask 

refinement and reconstruction method has shown to provide promising results in automatic fetal 

brain MRI segmentation and volumetry in 26 fetuses with gestational age range of 23 to 38 weeks.

*Authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2018 July 15.

Published in final edited form as:
Neuroimage. 2017 July 15; 155: 460–472. doi:10.1016/j.neuroimage.2017.04.004.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Fetal brain MRI; brain localization; slice-by-slice brain extraction; slice-to-template registration; 
B-Spline deformation; block matching; super-resolution reconstruction

1. Introduction

Fetal MRI has attracted a lot of attention and is being incrementally used as a 

complementary diagnostic tool to prenatal ultrasound imaging as it provides a better soft 

tissue contrast. Fast single shot multi-slice MRI sequences are used to freeze maternal and 

fetal motion; but the acquisition of thick slices (about 2 to 4mm) is necessary to obtain 

acceptable Signal-to-Noise Ratio (SNR) given the short acquisition time used to avoid 

motion at each slice acquisition. Thick slices and interslice motion artifacts limit the 

accuracy of volumetric analysis for clinical diagnosis and neuroscience studies [1].

In the last years, interest in finding a high-resolution (HR) volumetric image given a set of 

low-resolution stacks composed of thick slices with inter-slice motion artifacts has grown 

considerably. In [2, 3], the first reconstruction techniques based on slice-to-volume 

registration and scattered data interpolation were introduced. Later, super-resolution (SR) 

techniques [4– 10] have boosted the quality of the reconstructed image by modeling an 

inverse problem for fetal image reconstruction. By providing finer details of the fetal brain, 

such techniques have enabled the neuroscience community to perform new research on early 

human brain development [11–18].

The fetal MRI reconstruction pipeline consists of various image processing steps (intensity 

standardization, motion estimation, and SR reconstruction). In general, algorithms [2–10, 

19] rely only on brain tissue-relevant voxels of low-resolution (LR) images to warrant the 

assumption of motion rigidity used in rigid motion correction. This is a crucial step of the 

reconstruction algorithms. Consequently, the fetal brain (or brain region) needs to be first 

localized and then extracted prior to motion estimation and SR reconstruction. These two 

successive processes are known as (1) brain localization and (2) brain extraction. Brain 

localization typically aims to detect a bounding box containing the brain in the acquired 

images. Fetal brain extraction, on the other hand, aims to delineate (mask) the brain in the 

acquired images.

Fetal brain localization and extraction is typically done manually or semi-automatically, thus 

corresponds to the most time-consuming, non-automatic step of the entire image 

reconstruction pipeline. It is therefore not a realistic solution for large-scale studies. In the 

literature, even though accurate brain extraction tools have been developed for adult and 

infant brain MRI [20, 21], those tools are not readily applicable to fetal MRI. Fetal brain 

MRI differs in many ways from neonatal or adult brain MRI in terms of image content (with 

maternal tissues surrounding the fetal brain), image contrast, brain size, and especially the 

arbitrary (non-standard) fetal position and orientation which also changes due to motion. 

Recent studies have addressed the problem of brain localization and/or extraction in fetal 

MRI by adopting either template-based segmentation [18, 22–25] or machine learning [26–

29] techniques.
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In this work, we present a template-based brain localization, extraction and segmentation in 

a standard orientation and common coordinate space for in-utero fetal brain MRI. 

Specifically, our contributions are:

• An automated slice-by-slice brain extraction method in every stack of thick slices 

(LR image). It couples robust template-to-slice block matching based on L1 norm 

optimization for automatic brain localization with a novel deformable slice-to-

template brain extraction method.

• The combination of the masking process with intensity standardization, motion 

correction, and super-resolution reconstruction: brain masks are refined in the 

spatial space of the template using a consensus fusion voting process and are re-

applied to the LR images as the reconstruction proceeds.

• An extensive validation of our brain extraction and localization methods on 

clinical data including healthy and pathological cases where:

– we show the influence of the rotation sampling step parameter of our 

brain localization algorithm on brain detection success rate.

– we compare the success rate and average run time of our brain 

localization technique against one of the state-of-the-art machine-

learning techniques.

– we evaluate the brain extraction performance in terms of overlap 

measures with manual delineations,

– we study the impact of automatic brain extraction performance on the 

final reconstruction quality,

– we conduct a perceptual evaluation by expert observers to compare the 

quality of the final reconstruction using brain masks obtained manually 

and automatically with the proposed technique, and

• We perform brain volumetry based on the reconstructed images: intra-cranial 

fetal brain volume is computed directly from our brain extraction and we exploit 

our common reference space to perform brain segmentation.

The paper is organized as follows. Section 2 gives an overview of existing brain localization 

and extraction techniques for fetal MRI. Section 3 presents the details of the proposed 

template-based brain extraction and reconstruction approach. Section 4 presents the clinical 

fetal dataset used for evaluation. Section 5 includes the results of extensive validation of the 

proposed brain localization and extraction methods in terms of brain localization success 

rate, brain extraction performance as well as their impact on reconstruction quality and brain 

volumetry. Finally, Section 6 involves the discussion and Section 7 draws a conclusion.

2. Overview of fetal brain localization and extraction

Several, relatively recent, studies have addressed the automatic localization and/or extraction 

of fetal brain in MRI through either template-based segmentation [18, 22–25] or machine 

learning [26–29] techniques. The first attempt [22] of fetal brain extraction proposed to 
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estimate the location of the eyes (based on rigid template registration) in order to segment 

the fetal brain using contrast, morphological and biometrical prior information. This method 

gave precise brain delineations in 22 out of 24 MRI stacks of fetuses aged between 30 and 

35 gestational weeks; however, they relied on the assumption of minor motion between 

slices, which limits the robustness of the method to clinical databases. A supervised 

approach, based on a two-phase random forest classifier, was adopted in [26] in order to 

obtain a method applicable to all fetal ages and more robust with respect to (w.r.t) motion 

between slices. This method has shown comparable results to the method in [22] but the 

whole brain was contained inside the final bounding box in only 28% (coronal) to 58% 

(transversal, sagittal) of the cases. Later, localization accuracy of the brain was drastically 

improved by combining prior knowledge of the fetal head size with maximally stable 

extremal regions detection, bundled Scale-Invariant Feature Transform (SIFT) features and a 

bag-of-words model: the whole brain was contained inside the final bounding box in 85% of 

the cases [27]. The method, limited to the localization of the fetal brain (bounding box), was 

further improved with the use of spherical Gabor descriptors and 2D level-sets to provide an 

accurate final segmentation of the fetal brain with a Dice overlap metric above 90% [28].

More recently, those techniques have been integrated in the reconstruction pipeline. Brain 

localization, done manually by reorienting and cropping the LR images as a first step, and 

automatic multi-atlas based brain extraction have been combined with motion correction and 

SR reconstruction in [24]. However, such manual localization prevents a completely 

automated image reconstruction pipeline. The authors in [29] have proposed to localize the 

fetal brain using a Bag-of-Words model using SIFT features plus the RANdom SAmple 

Consensus (RANSAC) method for robust fitting and to provide a segmentation of the brain 

using a combination of a random forest classifier and a 3D conditional random field. Brain 

extraction is then refined as the reconstruction progresses, generating a final segmentation of 

the reconstructed fetal brain with a mean Dice value of 93%. Finally, a patch-based 

alternative to brain localization and extraction with GPU implementation has been proposed 

in [30]. Its principles rely on separating the whole stack in patches, where assumption on 

robust motion can be made, in order to adopt a patch-to-volume registration and final super-

resolution, allowing the reconstruction of the full field-of-view of fetal MRI and not only the 

fetal brain. However, this approach is very computationally expensive and would be 

unrealistic to run it only on CPUs.

While prior knowledge is learnt and used as feature and scale based on gestational age in 

previous works [28, 29], we propose in this work to use age matched templates [31, 32] as 

priors to automatize brain localization and extraction in the fetal brain MRI reconstruction 

pipeline. Our approach only requires approximate gestational age of the query subject and is 

training-free in contrast to machine-learning approaches. It localizes the brain in each slice 

and extracts it using a template-to-slice block matching approach and using label 

propagation through deformable registration, therefore effectively estimates a brain mask 

through the reconstruction process. We combine brain localization and extraction with 

intensity standardization, motion estimation, and SR reconstruction. The integration of this 

approach into the reconstruction pipeline provides automatic image reconstruction of 

conventionally oriented fetal brain images in a common space, in contrast to existing 

methods that (1) reconstruct images in the space of the clinical stack used as reference for 
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motion correction, and (2) reorient afterwards the reconstructed image to radiological 
conventions.

3. Novel template-based brain localization and extraction for fetal MRI

The whole reconstruction pipeline is illustrated by Figure 1. Firstly, brain localization is 

performed in each of the original acquired stacks (Box I in Figure 1) using the technique 

described in Section 3.1. It generates an initial alignment of the stack and position of the 

brain that crops and reorients the image to the template space. Secondly, all stacks are 

automatically masked using the proposed brain extraction method (Box II in Figure 1 and 

Section 3.2) and stack intensities are made consistent through intensity standardization as 

described in Section 3.3. Thirdly, 6-degrees-of-freedom (DOF) rigid slice-to-volume 

registration is performed for motion estimation where the NCC (normalized cross 

correlation) is used as the optimization metric. This step includes firstly global stack 

registration to initialize the transformations followed by 6-DOF rigid slice-to-volume 

registration. To reduce the chance of the registration process to fall into local minima, LR 

images are first denoised. Once motion parameters of all slices are estimated, we refine the 

brain mask in the thick slices. Intensity standardization (Box III in Figure 1) and brain mask 

refinement (Box V in Figure 1) are repeated at each iteration of slice-to-volume registration 

for motion estimation (Box IV in Figure 1). Finally, an HR image is reconstructed by 

solving the super-resolution inverse problem (Box VI in Figure 1) that follows the Total-

Variation (TV) regularized SR algorithm developed in [8, 10]. All the code was implemented 

in C++ with Insight Toolkit [33] and Python.

3.1. Template-to-slice block matching brain localization

We aim to localize the brain in every stack of slices based on an extension of the preliminary 

technique presented in [25], where robustness to outlier slices has been improved. In contrast 

to the approach presented in [29], we use an age-matched template [31, 32] as prior and 

match it directly to each slice through an accelerated block matching approach. The main 

benefit of this approach is not only it can retrieve the location of the brain in each image but 

it can also retrieve their global alignment in a common 3D template space. The localization 

problem is formulated as a block matching algorithm in which the similarity between each 

block, i.e. a whole 2D slice, extracted from the template and a query image (a fetal MRI 

slice) is maximized (Figure 2). However, the search space is large and the problem is 

computationally expensive as we do not know a priori the position of the fetal head. We 

reduce the search space by breaking the transformation model to rotation (θ) and translation 

(Tθ) parts for which parameters are estimated separately. Then we estimate the translation 

parameters for each rotation angle through the proposed block matching technique. The 

algorithm involves three steps: 1) block extraction and dimension reduction, 2) block 

matching using expectation maximization (EM), and 3) calculation of final transformation 

by maximizing similarity.

Block extraction and dimension reduction—A similarity matrix SM is generated by 

computing the Sum of Square Distances (SSD) between a slice i in a template image and a 

slice j in the query image. SMij is defined as:
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(1)

Since SSD is not rotation invariant, the template image needs to be initially rotated using a 

3D rotation matrix (θ). The 3D rotational space is sampled using a Δθ sampling step. Slices 

are then extracted from the template and the similarity matrix SMθ is computed for each 

rotation matrix. In addition, computation of SMθ is accelerated by projection of each slice to 

a lower dimensional space though a random matrix based on Johnson-Lindenstrauss Lemma 

[34].

Expectation maximization for match detection—Let R be the template image, S be 

the query image, and M be a binary matrix representing the match between slices in the two 

images [35], thus EM[Mij] = P(Mij = 1). Matches between slices and the translation are then 

iteratively updated within an EM framework. The expectation step corresponds to 

calculating

(2)

where Tθ is the translation transferring the template to the fetal brain in the image after 

initial rotation θ. Then, the translation T is initially set to zero, and iteratively updated to 

maximize the probability of the slice ri in R being matched to the slice sj in S

(3)

(4)

where ‖.‖p is the Lp norm. If P(sj|ri,Tθ)) follows a normal Gaussian distribution, the optimal 

solution of Eq. (4) is obtained by p = 2 as proposed in [25], i.e. by least squares 

optimization. Nonetheless, because of outliers P(sj|ri, Tθ)) does not follow a Gaussian 

distribution. Robust estimation of the conditional probabilities in Eq. (4) is thus desired. In 

contrast to the algorithm presented in [25], in this work we propose robust estimation 

through L1 norm optimization, i.e. p = 1.

Matches are iteratively updated through Eq. (2) and Eq. (4). Through iterations of the EM 

steps, weights are assigned to a set of blocks with highest similarity and are updated to find 

the best match.
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Final transformation—Once the translations T̂θ are estimated, we apply T̂θ and the 

initial rotation θ to the template, and calculate the similarity between the transformed 

template and the fetal image. Finally, since image intensities may not be the same between 

the query and template images, we select the transformation maximizing the Normalized 

Cross Correlation as the most probable transformation, that is,

(5)

where  is the optimal global rigid transformation estimated between the s-th 
query stack S and the template (see Figure 2). This corresponds to the initial 3D global 

alignment of the stack in the template space.

Parallel implementation—A high level of data independence is present in the proposed 

block matching algorithm. It is therefore well-suited to parallelization. In this work, 

parallelization has been made at the rotation level. Each parallel processing block estimates 

the optimal 3D translation for a given angle, which corresponds to the most computationally 

expensive part of the process. The parallelized version is thus expected to be very scalable 

up to the number of sampled angles and according to the number of available processing 

cores.

3.2. Deformable slice-to-template brain extraction

Propagating the template brain mask by applying the global 3D rigid transformation 

estimated by the localization method may not be sufficient to obtain an accurate brain mask 

as 1) localization may not be perfect, 2) the shape of the template may be different from the 

query image, and 3) inter-slice motion can occur inside a stack of slices. In this section we 

develop a new deformable slice-to-template brain extraction method to obtain a more 

accurate brain mask to address these issues. The proposed template-based technique differs 

in several aspects from our previous multi-atlas method [24]. First, we propose a very 

different registration scheme. As opposed to the global 3D deformable registration 

performed in [24], where a set of existing interpolation-based reconstructed images were 

used as reference volumes, in this work we perform slice-to-volume deformable registration, 

where an unbiased, deformable spatiotemporal template is used as reference volume. For 

this, we take advantage of the global alignment in the 3D template space obtained from our 

template-based localization algorithm. This was previously performed by aligning the image 

centers after manual image reorientation and cropping tasks.

Deformable transformations—Let a local coordinate system be defined for every slice 

of every query stack s. The rigid slice-to-volume transformation between the j-th slice in the 

s-th query image Ssj and the template (high resolution volume) is defined as
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(6)

where Ssj(x, y, z) is slice voxel coordinate, R(x, y, z) is the voxel coordinate in the template, 

 corresponds to a slice-to-template (2D-to-3D) transformation and  is the global 3D 

rigid transformation previously estimated by the brain localization method.  is used to 

refine the brain mask within the slice and to correct for inter-slice motion. The deformation 

between the slice in the s-th query stack and the template (high resolution volume) is defined 

as

(7)

where S˜sj(x, y, z) is the voxel coordinate of the template deformed in the j-th slice of the s-
th query image, and Dsj is a 2D free-form deformation field. Dsj is modeled using B-Splines 

[36]. We determined a B-Spline order of 3 with grid size of 6 × 7 (as fetal brain is more 

elongated in the sagittal direction) yields the best compromise between an adequate amount 

of deformation and accuracy. It addresses the local anatomical variabilities/deformation that 

may exist between the template slice and the query slice. Therefore, the proposed method 

corrects for possible brain localization inaccuracy as well as for the inter-slice motion and 

takes into account anatomical variability between the processed brain and the template brain.

Metric and optimization—Similarly to the block matching algorithm, we select NCC as 

the optimization metric for both registration steps. Each registration phase is performed 

through maximizing NCC. The rigid slice-to-volume transformation  is found through the 

following optimization

(8)

The 2D B-spline deformation field D̂sj is calculated through

(9)

Using NCC is very attractive as we can use common optimization algorithms. By 

considering this strategy in both steps, we first apply a regular-step gradient descent 

algorithm for the optimization of the slice-to-volume registration algorithm. The free-form 

deformation, however, has a much larger number of parameters as it is composed by the set 
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of all the deformations associated with the nodes of the b-spline grid. For efficient 

optimization of the free-form deformation model, we choose to employ the Limited memory 

Broyden Fletcher Goldfarb Shannon optimization algorithm with simple Bounds 

(LBFGSB). This optimization technique also gives us the opportunity to fix an upper bound, 

set to 4mm, on B-Spline control point displacements to prevent non-topology preserving 

deformations.

Brain label propagation—The brain mask in each slice is obtained by propagating the 

template brain mask to the slice using the estimated deformation field. Figure 2 illustrates 

the steps of our brain localization and extraction technique.

3.3. Intensity standardization

In fetal MRI, image intensities in the stacks may not be coherent with each other. This is due 

to inherent bias field inhomogeneity as well as possible maternal and fetal motions. To 

tackle this problem, we propose to successively correct slice-by-slice for the bias field using 

N4 [37] and standardize the intensities using 1) slice-by-slice mean intensity equalization 

and 2) global brain histogram equalization [38] (Box III in Figure 1). The rationale behind 

this approach is that the statistics and shape of the image histogram should be similar in the 

stacks as they represent the same brain anatomy.

3.4. Joint brain mask refinement and reconstruction

We propose to integrate our brain extraction method with the SR reconstruction process in 

an iterative fashion. The brain masks generated with our brain extraction method are more 

reliable for the central slices than those for the extremal slices; however, stacks are acquired 

in the three (approximately) orthogonal directions, and the masks of the extremal slices in 

one direction correspond to the masks of the central slices in the other two directions. 

Moreover, motion estimation and reconstruction is able to recover the alignment of slices in 

3D HR space which allows refinement of the brain masks. We use these properties to design 

our brain mask refinement process, which is illustrated by the pipeline in Figure 3. It 

consists of:

i. mapping slice-by-slice every brain mask in the HR space using the estimated 

motion parameters,

ii. adopting a fusion strategy to obtain a unique HR brain mask,

iii. filtering using a Markov Random Field to obtain a coherent and smooth HR 

brain mask, and finally

iv. mapping back the HR brain mask to each slice of every stack.

Brain masks mapped in the HR space are combined ((ii) in Figure 3) using Simultaneous 

Truth And Performance Level Estimate (STAPLE) [39]. Let H be the hidden binary refined 

HR brain mask and P be the propagated brain masks. The STAPLE fusion consists of 

computing the most likely binary refined HR brain mask. STAPLE simultaneously estimates 

a probabilistic consensus brain mask and the quality of each brain mask using an 

Expectation-Maximization (EM) framework. It aims to estimate the sensitivity and 
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specificity parameters (p, q) characterizing the quality of the brain mask that maximizes the 

log likelihood function

(10)

where f (P, H | p, q) represents the probability mass function of the complete data. The 

process to identify quality parameters of the propagated brain mask and the HR brain mask 

is performed through iterations between 1) estimating the hidden HR mask given a previous 

estimate of the quality parameters of the propagated brain masks, and 2) estimating the 

quality parameters based on how accurate they are given the new estimate of the HR mask.

A binary estimate of the HR brain mask is made by thresholding the probabilistic HR brain 

mask at 0.5. However, it may result in a mask with holes due to motion-induced scattered 

nature of the acquisitions (the fetal brain might not be entirely covered by the acquired 

slices, thus the computed HR brain mask may contain gaps and holes.). To tackle this 

problem, we adopt an approach based on Markov Random Fields (MRF) ((iii) in Figure 3). 

Let C1 and C2 be a set of two classes. Let's consider Hi (i-th voxel of the HR brain mask) 

belongs to C2 with centroid of 1 if it is a brain voxel, otherwise to C1 with centroid of 0. The 

generation of the binary estimate of the HR brain mask is performed as follows. A distance 

classifier is first employed to determine the Euclidean distance between each voxel to C1 and 

C2. Then the distances of each voxel are updated by evaluating the influence of its neighbors 

based on a MRF model in a 7 × 7 × 3 neighborhood. Influence of the neighbor voxels (in the 

same slice or in neighboring slices) are assumed to be equal with a weight value of 1. We 

used the iterated conditional modes (ICM) algorithm [40] to minimize the MRF labeling 

function. Each voxel is then classified to the class for which it has the minimum distance, 

and we obtain a closed binary estimate of the HR brain mask.

Finally, the HR brain mask is mapped back to each slice of every stack using the estimated 

motion parameters. As the reconstruction progresses, the segmentation of the original slices 

is refined thanks to their recovered alignment in 3D space.

3.5. Total variation super-resolution

Fetal MRI reconstruction aims at finding a high-resolution image from a small set of low-

resolution images. We model it as an inverse problem where the regularization term plays a 

central role in the reconstruction quality. Literature has considered several regularization 

terms such as Dirichlet/Laplacian energy [4], Total Variation (TV)-based energies [6, 9, 30] 

and non-local means (NLM) [5]. Although TV energies are quite attractive because of their 

ability in edge preservation, standard explicit steepest gradient techniques have been applied 

to optimize them. Here, we use our previous work based on TV regularization [10]. 

Specifically, it relies on the introduction of a well-posed and efficient TV super-resolution 

algorithm based on recent advances in fast convex optimization. This algorithm has proven 

to be optimal with respect to the asymptotic and iterative rates of convergence, i.e. O(1/n2) 

and , whereas the previous techniques were in O(1/n) and 1/ε orders. TV 
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regularization has shown to be the most robust to motion error residuals compared to 

Tikhonov and NLM regularizes when no outlier rejection was integrated in the algorithm. 

Adaptive regularization as presented in [10] is also performed to estimate a quasi optimal 

weight regarding the quality of the reconstructed image with respect to the acquired stacks. 

All parameters of the optimization algorithm are identical to the ones adopted in [10]. Note 

that the TV SR algorithm does not include robust statistics to remove artifacts from 

inaccurate slice motion estimation and severe intensity artifacts, therefore in this work we do 

not aim at robust reconstruction in the presence of motion-corrupted slice data which 

appears as severe intensity artifacts.

The average computational time for the different steps of the pipeline (boxes I to VI in 

Figure 1) is shown in Table 1.

4. Material

Our clinical dataset is formed by 154 stacks of thick slices coming from clinical T2-

weighted MRI acquisitions of 15 fetuses with normal brain and 5 fetuses with abnormal 

brain, aged between 25 and 35 weeks GA (see Table 2), where the two first steps of the 

pipeline (Localization and extraction) have been performed.

Brain pathologies in this study were: abnormal cerebellum (P1), limited but normal gyration 

(P2), unilateral ventriculomegaly (P3), occipital meningocele (P4), and cerebellar hypoplasia 

(P5). Each fetal MRI study consists of a set of 3 to 6 stacks, where at least one stack is 

available in each anatomical direction. Cases F1-F15, P1, P3 and P4 were scanned at Boston 

Children's Hospital, Boston, USA, using three different MRI scanners, including (1) a 1.5T 

Philips Achieva (SSH-TSE sequence) with two available resolutions of 1.3 × 1.3 × 2mm3 

(TE/TR = 120/12500ms) and 1.3 × 1.3 × 4mm3 (TE/TR = ALI/ALIms), (2) a 3T Siemens 

Trio (HASTE sequence) with a resolution of 1.2×1.2×3mm3 (TE/TR = 121/1600ms), and (3) 

a 3T Siemens Skyra (HASTE sequence) with a resolution of 1.0× 1.0 × 2mm3 (TE/TR = 

116-119/1600ms). Case P2 was scanned at Centre Hospital Universitaire de Vaud (CHUV), 

Lausanne, CH, using a 1.5T Siemens Aera (HASTE sequence) with a resolution of 

1.1×1.1×4.8mm3 (TE/TR = 89/1000ms). CaseP5 was scanned at Hôpital Femme Mère 

Enfant, Lyon, France, using a 1.5T Philips Achieva and a (SSH-TSE sequence) with a 

resolution of 1.1 × 1.1 × 5.4mm3 (TE/TR = 180/7000ms). Repeated acquisitions with these 

settings provided sufficient number of stacks that were only affected by minor to moderate 

motion (see details in Table 2). Examples of stacks corrupted by different levels of motion as 

well as examples of the success and failure of our method are shown in Figure 4. We 

excluded stacks and cases with severe motion and significant motion-induced intensity 

artifacts, as clinically acquired images of comparable quality are typically unused or skipped 

by the reading radiologist in favor of higher quality images. An example of a stack with 

severe motion excluded from our study can be seen in the online Supplementary Material.

The patient information from all data used in this study was anonymized and de-identified 

prior to analysis. Retrospective analysis of this data was approved by the corresponding 

committee / institutional review board committee: USA (institutional review board 
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committee at Boston Children's Hospital), Switzerland (Cantonal Research Ethics 

Committee of Vaud) and France (Comité de Protection des Personnes).

5. Evaluation

In this section we present the results of qualitative and quantitative evaluations of the 

proposed brain localization and extraction techniques and study the influence of brain 

masking on the final reconstructed image quality.

Firstly, we compare its brain localization success rate and run times against a state-of-the-art 

machine learning approach. Secondly, we evaluate the performance of the proposed brain 

extraction technique compared to manual brain extraction. We also study the impact of rigid 

slice-to-template registration and 2D B-Spline deformation on the quality of the 

reconstructed image and we conduct a perceptual evaluation of the reconstructed images by 

expert observers (a clinical expert in pediatric neuro-radiology and an imaging scientist, both 

with more than 8 years of experience in evaluating fetal MRI). Finally, we investigate the 

potential of the brain mask refinement method to estimate the intra-cranial fetal brain and 

main brain tissues volume in the reconstructed images. We assessed statistical significance 

of the results using the two-tailed Wilcoxon signed-rank test. The studies were performed on 

an Intel i7-3770 @ 3.40GHz (8-cores) system with 32 GB RAM. In all experiments, a time 

step Δt = 0 has been considered in the TV-based optimization algorithm.

5.1. Influence of rotation sampling step on brain localization success rate

To evaluate the sensibility of our proposed brain localization method to the rotation 

sampling step, Δθ, we conduct a visual inspection where the brain localization success rate 

is compared for two different sampling steps, Δθ = {10°, 45°}. One expert observer was 

asked to evaluate if brain localization was a success or a failure for each of the 109 acquired 

stacks of healthy cases. Success was indicated if the final bounding box fully contained the 

brain, in which the brain orientation was close to conventions. Results are reported in Table 

3.

We observe that our brain localization method with Δθ = 10° provided the best localization 

performance, having a success rate value of 94.5%. It was expected that adopting a fine 

rotation sampling step (Δθ = 10°) would lead to significantly higher success rate in 

localization than a coarse rotation sampling step. Brain localization with a coarse rotation 

sampling step provided accurate localization in 67.9% of the stacks. This suggests that this 

approach could be made more efficient using a hierarchical supervised strategy in which 

coarse rotation sampling steps are tried first and are refined as needed.

5.2. Success rate of brain localization

We evaluated the success of brain localization based on visual inspection where we 

compared template-based brain localization against one of the most recent and publicly 

available state-of-the-art machine-learning techniques [29]. One expert observer was asked 

to indicate for each of the 154 stacks if the final bounding box fully contained the brain. 

Results are reported in Table 4.
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The results show that the detection performance of our localization algorithm, having a 

success rate of 92.9%, was comparable to the performance of the machine-learning-based 

algorithm, having a success rate of 93.5%. Nonetheless, on top of brain detection, our 

algorithm matches the brain, i.e. finds its orientation and determines a mask. The current 

machine learning algorithm was not designed to do this. The two algorithms, therefore, 

cannot be directly compared as they address different problems.

In the next sections, we compare the performance of brain extraction using three variations 

of our method. A fair comparison with the most recent machine learning approach could not 

be conducted as this technique did not aim to extract the exact intracranial region. Instead it 

only provided an approximate large area around the skull.

5.3. Performance of brain extraction

We assess the evolution of the performance of our slice-to-template brain extraction in terms 

of brain segmentation quality, as motion-estimation and brain mask refinement progress, 

using manual delineation as ground truth. Only a subset of stacks were used for 

reconstruction as our goal here was not to challenge the super-resolution with motion 

corrupted stacks but to evaluate the performance of the proposed brain localization and 

extraction methods and their impact on final reconstruction. Therefore, a subset of 87 stacks, 

which led to successful baseline reconstructions without outlier rejection, were selected and 

used for the evaluation of the whole reconstruction pipeline. Selection criteria involved 1) 

having homogeneous in-plane and slice resolution in all stacks, 2) stacks with thinner slices 

in cases where different slice thicknesses are available, 3) having at least one stack per slice-

select acquisition direction, and 4) having no spin history or significant motion-induced 

intensity distortion artifact that could corrupt the reconstruction. Manual delineations were 

performed for every stack used for reconstruction after they were reoriented and cropped 

around the fetal brain thanks to the brain localization method. Similar to [29], the 

performance is quantified by three overlap metrics: Dice, recall and precision. While Dice 

summarizes recall and precision, recall quantifies the proportion of true positive brain voxels 

included in the mask and precision quantifies the proportion of non-brain voxels excluded. 

We compare the full brain extraction method that combines global rigid block matching with 

rigid slice-to-template registration and 2D B-Spline deformation with a method that uses 

only the rigid slice-to-template registration without deformation. The experiment was 

performed by repeating the brain mask refinement loop three times.

The results of the rigid-only and the full brain extraction methods as well as results obtained 

right after brain localization are reported in Table 5. Figure 5 illustrates the evolution of the 

brain mask of one coronal stack through the developed pipeline.

It is clear that the proposed brain extraction method improves the quality of the brain masks 

obtained from brain localization, i.e., only global alignment. The results also show that the 

full pipeline helps to enhance the quality of the brain masks compared to the rigid-only 

approach. This shows it is important to take into account anatomical variability between the 

age-matched template brain and the target brain to obtain accurate brain masks. Finally, it is 

observed that the proposed iterative strategy to refine the brain masks as the motion 

estimation and reconstruction proceed, improves the quality of the brain masks particularly 
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with an increase in the proportion of true positive brain voxels (recall). This shows that brain 

masks in orthogonal stacks are complimentary to each other. Alignment in 3D HR space 

recovered by motion estimation can indeed serve as a useful feedback to refine the extremal 

slices of stacks where the slice-to-template brain extraction method may fail (See arrows in 

Fig. 5 (b) and (c)).

5.4. Influence of brain extraction on reconstruction quality

Our ultimate goal is to reconstruct high-resolution, high-quality images of the fetal brain 

while we achieve brain segmentation simultaneously. Statistically significant improvement 

of the quality of brain extraction is however not an indicator of quality improvement of the 

reconstructed image. We propose to investigate the influence of automatic brain extraction 

on the reconstruction quality, as performed in [24] for the first time. We compare the 

reconstruction quality in terms of Peak Signal-to Noise Ratio (PSNR) of the final HR image 

reconstructed using brain masks obtained by performing (i) only brain localization (no slice-
to-template registration), denoted as Localization, (ii) both brain localization and extraction 

while using rigid-only slice-to-template registration, denoted as Rigid-only, and (iii) both 

brain localization and extraction while using the full slice-to-template brain extraction 

method (rigid and B-Spline deformation), denoted as Full. The HR image reconstructed 

using manual brain masks is considered the reference for PSNR calculation. We also study 

the evolution of the image reconstruction quality as we iterate over motion-estimation and 

brain mask refinement. Figure 6 shows the boxplot analysis of the evolution of the PSNR 

values of 20 cases for 3 methods. Figure 7 gives a comparison of the reconstructed images 

with the different approaches for one case, representative of all cases.

Quantitative results and visual inspection confirm that a better brain extraction performance 

(as shown in Section 5.3) results in a better final reconstruction quality. We can observe a 

significant increase of the PSNR value after the first refinement loop (Loop #1 in Figure 6) 

that, in conjunction to the brain extraction performance, stabilizes after the second 

refinement (Loop #2 in Figure 6), independently of the method adopted. In addition, we can 

also clearly see that adopting a rigid-only slice-to-template registration significantly 

improves the quality of the reconstructed HR image obtained at Loop #2 with an average 

increase of 3.8dB (p-value=5.9e − 4) in the PSNR value. Using the full method allows us to 

further enhance the quality with an average increase of 4.1dB (p-value=3.9e − 4) w.r.t. using 

only brain localization and an average increase of 0.3dB (p-value=0.047) w.r.t. using the 

rigid-only method. This indicates that best brain extraction performace and best 

reconstruction quality are obtained with the proposed pipeline after repeating only two 
refinement loops. Based on these observations, for the next analyses we used images 

reconstructed by the proposed pipeline after two refinement loops.

5.5. Perceptual evaluation of final reconstruction by expert observers

Quantitative evaluation of the quality of the reconstruction and perceived visual quality may 

differ in clinical settings. We propose in this section to conduct a perceptual evaluation by 

expert observers to compare the reconstructed images using the fully automated 

reconstruction pipeline with two brain mask refinement loops (as supported by results 

presented in Sections 5.3 and 5.4) against images reconstructed using manually drawn brain 
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masks. We adopted a multi-alternative force-choice approach where we asked two expert 

observers to indicate the best HR image in terms of perceived image quality, brain 

localization and extraction accuracy. The two reconstructed images were presented in 

random order. The experts had the choice between either choosing one of the images as the 

best or judging both having similar quality.

Ratings of the two expert observers are reported in Table 6, and representative reconstructed 

images of a pathological brain (Figure 8a), diagnosed with unilateral ventriculomegaly, and 

a healthy brain (Figure 8b) are shown in Figure 8. All reconstructed images were evaluated 

in the standard orientation.

These results showed that using the proposed template-based methods allowed us to obtain 

fully automatic high-quality reconstructions, where the brain is conventionally oriented, 

with-out the need for manual brain localization or extraction.

In summary, images reconstructed by the proposed automatic pipeline were respectively 

judged in 65% of the cases as having similar or better quality to images reconstructed where 

manual brain masks were used. In the cases where the automatically estimated brain masks 

did not achieve comparable or better reconstruction quality than the manual masks, there is 

still an advantage as the expert would only need to make quick corrections on brain masks 

thus significantly saves time. We found three reasons why images reconstructed using 

manual brain masks were preferred: 1) the reconstruction quality of both images was similar 

but small regions of the brain were missing in the reconstructed image; 2) the reconstruction 

quality of both images was similar but small regions outside the brain were included in the 

images reconstructed by the proposed pipeline (Figure 8b); 3) the region reconstructed 

containing the brain was similar in both images but a few more artifacts were present in the 

images reconstructed by the proposed pipeline. It has been shown that small regions outside 

the brain do not hamper further tissue; In [41], we combined reconstructed images using the 

proposed pipeline in combination with the state-of-the-art multi-atlas multi-shape 

segmentation and cortical folding quantification tools developed for adult brains. We 

observed that small extra regions around the brain were regularized and automatically 

filtered by multi-atlas segmentation and did not affect tissue segmentation results. Finally, 

successful reconstruction of brain images with mild pathologies such as the unilateral 

ventriculomegaly (in Figure 8a) shows that the proposed pipeline may be used for fully 

automatic fetal brain MRI reconstruction for both healthy and mild pathological cases.

5.6. Application to fetal brain volumetry

In previous sections we evaluated the performance of brain localization and extraction in the 

LR space of the clinical stacks. In this section we evaluate the potential of the proposed full 

brain extraction method combined with the proposed brain mask refinement method to 

estimate in milliliters (mL) the intra-cranial fetal brain volume from the brain mask in the 

HR space of the template. The intra-cranial brain volume is considered a pertinent measure 

for evaluating normal brain development, which as a 3D extension of linear measurements 

like bi-parietal diameter, occipitofrontal diameter, and head circumference, highly correlates 

with the fetal gestational age. We compare the volumes estimated after one iteration of the 

proposed pipeline where we used the manually drawn brain masks after brain localization 
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(hence no need for mask refinement) against volumes estimated using our fully automatic 

method. The total intra-cranial volume was estimated from the refined HR brain mask. 

Figure 9 shows the results of Bland-Altman analysis.

This analysis indicates that HR volumes obtained automatically are highly correlated with 

HR volumes obtained using manual masks. This indicates that the combination of the 

proposed brain extraction and brain mask refinement methods (originally designed to update 

brain masks in the stacks of slices) can be used to estimate the intra-cranial fetal brain 

volume with an average approximate accuracy of 3.1%. But the analysis also shows the 

tendency to slightly underestimating the HR volumes with a mean difference of -8.7mL 
while using the automatically extracted brain masks. This provides an additional insight into 

the amount of HR volume underestimation.

With the developed algorithm, high-resolution volumetric images of the fetal brain are 

readily reconstructed in the atlas space. This enables automatic atlas-based tissue 

segmentation using fetal brain MRI atlases [32] and probabilistic label fusion [42] 

algorithms. Preliminary results of fetal brain structural segmentation using this approach can 

be found in the online Supplementary material, where MRI scans of 6 additional fetuses 

(Table 7) were processed to achieve fetal brain volumetry in the GA range of 23 to 38 

weeks.

6. Discussion

The proposed template-based methodology enable automatic fetal brain localization and 

segmentation, showing a final average Dice overlap measure of 94.5% with respect to 

manually-drawn brain masks. In addition, the success of motion correction is highly 

dependent on the initial alignment of all stacks. After brain localization, the orientation of 

the brain in each stack is known as the localization method aims to estimate the global rigid 

transformation between each stack and the template brain which is correctly oriented. Thus, 

after brain localization and application of the rigid transform, each stack is oriented to match 

the template orientation making the alignment of all stacks consistent. Such global 

alignment could not be retrieved with existing machine learning approaches. While the two 

approaches should not be compared side-by-side as they address different problems 

(localization vs. extraction), we note that our block matching algorithm is much slower than 

the existing machine learning algorithms. In fact, machine learning approaches are often 

very fast at the test stage for object detection once the system has been well trained. The 

search space of our template matching algorithm in the target image is relatively large, being 

proportional to the whole in-plane field-of-view and inversely proportional to the slice 

thickness. It would be possible to speed up brain localization by using a machine learning 

approach as a first step to identify an approximate region-of-interest (ROI) containing the 

brain. This would significantly reduce the search space for template matching while still 

providing the global alignment of the stacks in the common 3D template space. Another 

approach to reduce the search space would be to rely on the fact that most images are 

acquired almost orthogonal with respect to the fetal brain by the MR technologist, so a 3D 

ROI can be first defined as the intersection of the set of images. In this work, we did not 

focus on algorithm speed-up through adding such peripheral implementation components. In 
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fact, while we parallelized parts of our algorithm on multiple CPUs, the whole algorithm 

would benefit significantly from an optimized massively parallel implementation on 

Graphical Processing Units (GPUs), leading to much faster and more efficient computations.

The study of the evolution of brain extraction performance (Section 5.3) and its impact on 

reconstruction quality (Section 5.4) shows that it is crucial to refine the global 3D alignment 

slice-by-slice as slice acquisition is interleaved and fetal and maternal motion may result in 

the inclusion of non-brain tissue and amniotic fluid that can decrease the quality of motion 

estimation and consequently image reconstruction. In addition, the inclusion of 2D B-Spline 

deformable registration in the slice-to-template extraction method has shown to generate 1) 

superior brain extraction performance, and 2) superior-quality reconstructions compared to 

rigid alignment methods. This confirms the importance of taking into account anatomical 

variability between the age-matched template brain and the target brain in the brain 

extraction framework. In this work, selection of the best age-specific template has been done 

manually. This could be automatized by selecting the template that gave the maximal NCC 

with the target image. Although a multi-atlas strategy has shown to improve extraction 

performance in [24] as regards best single-atlas-based extraction, this was highly motivated 

by the fact that a set of multiple existing interpolation-based reconstructed images was 

employed as templates. Here we preferred to adopt a best single-atlas strategy as our brain 

localization algorithm was computationally expensive. We have selected an unbiased 

deformable spatiotemporal MRI atlas of the fetal brain which was built at all gestational 

ages between 22 and 38 weeks based on reconstructed fetal brain MRI scans of 81 normal 

fetuses. Due to the lack of age-matched templates below 22 weeks, our algorithm would fail 

to localize and extract brain in younger fetuses. Moreover, the larger range and amount of 

motion, or the small size of the brain and its features would hinder matching for localization 

and registration at these ages.

Results show the success of the integration of the proposed template-based localization and 

extraction method into our new reconstruction pipeline that iterates over intensity 

standardization, inter-slice motion estimation and brain mask refinement, statistically 

improving both brain extraction performance and image reconstruction quality. The use of 

age-specific templates, provided by an unbiased deformable spatiotemporal atlas, has 

enabled the reconstruction of images of fetal brains conventionally oriented within a 

common space. It has also shown to be a very promising way to automatically estimate at 

the same time the intra-cranial fetal brain volume in the final reconstructed image, which, as 

a direct outcome of the algorithm, provides an automatic 3D measurement beyond 2D fetal 

brain biometric measurements such as head circumference, biparietal diameter, and 

occipitofrontal diameter that are used to evaluate normal brain development or possible 

abnormalities such as microcephaly or growth restriction.

Successful brain localization, extraction, and reconstruction is highly dependent on good 

image acquisition practice and on the robustness of the automatic image processing 

algorithms [1]. Good image acquisition practice addresses the need for 1) appropriate MRI 

sequence parameters that allow motion-robust slice acquisitions at about few hundred 

milliseconds instant of k-space sampling for each slice and 2) multiple repeated stacks to 

provide the required redundancy for brain extraction refinement, motion estimation, and 
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reconstruction. Even if good acquisition practice is fulfilled, minor to severe motions can 

still occur resulting in minor to severe artifacts in the acquired slices. This justifies the need 

for automatic robust image processing algorithms that can detect and reject motion-

corrupted data and use only data with minor to moderate motion and a few or no corrupted 

slices for reconstruction. With the integration of smart motion detection algorithms and 

robust reconstruction it will be possible to handle the reconstruction of fetal MRI cases with 

severe motion artifacts with the proposed pipeline to significantly improve the efficacy of 

fetal MRI reconstruction in terms of accuracy and reliability.

7. Conclusion

We developed and evaluated a template-based approach automatizing localization, extraction 

and refinement of the fetal brain in the fetal MRI reconstruction pipeline. It combines a 

robust template-to-slice block matching algorithm to localize the brain, a novel slice-to-
template brain extraction approach to find automatically, slice-by-slice, the brain masks, and 

a novel brain mask refinement method that updates the mask as reconstruction proceeds. The 

methods have been integrated in a reconstruction pipeline to evaluate the impact of their 

quality on the quality of the final reconstructed images. We had to exclude stacks with 

severe motion artifacts from the reconstruction as the proposed pipeline was not designed to 

handle such cases. This will be possible if smart motion detection and robust reconstruction 

algorithms are integrated in the proposed pipeline. The results confirm the success of the 

method on healthy and mild pathological cases: a template-based approach adopted for 

automatic brain localization, is followed by brain extraction and brain mask refinement, to 

generate conventionally-oriented 3D reconstructed images of the fetal brain from stacks of 

slices. The proposed automatic brain extraction and reconstruction method mitigates the 

need for manual brain localization and the subjectivity of manual delineation. In addition, 

the use of templates in the brain localization and extraction processes has enabled for the 

first time the reconstruction of brain images conventionally oriented in a common template 

space. This is considered an advantage for large-scale population studies.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pipeline for fetal MRI reconstruction. The brain masks are progressively refined using the 

updated motion parameters.
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Figure 2. 
Template-based brain localization and extraction from clinical MR images. In each stack s, 

the initial global alignment and position of the fetal brain (global rigid transformation ) is 

estimated using a block matching approach: Slices of the age-matched template image are 

matched to slices in the fetal brain MRI stack. It corresponds to the brain localization step. 

The contour of the best match is indicated in red. Then, brain masks are obtained through 

the brain extraction step. It consists of (i) cropping and reorienting the stack to the template 
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space using , (ii) performing rigid slice-to-template registration to refine the brain 

localization within the slice and to correct for inter-slice motion (rigid slice-to-template 

transformation ), (iii) performing a 2D B-Spline deformable registration to take into 

account anatomical variability between the processed brain and the template brain 

(deformation field D̂sj), and (iv) propagating the template brain mask to each slice, using the 

estimated transformations and deformation field.
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Figure 3. 
Pipeline for refining LR brain masks. (i) maps slice-by-slice the brain mask of every stack 

into the HR space using the motion parameters estimated during motion estimation. (ii) 

applies a voting strategy to obtain a unique HR brain mask. (iii) applies a Markov Random 

Field filter to obtain a coherent HR brain mask. (iv) maps the refined HR brain mask back to 

each slice of the stacks. Note that this has been simplified for illustration; there are usually 

more than one stack of slices with their corresponding masks in each direction.
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Figure 4. 
Examples of localization and segmentation algorithm failure (a) and success (b) for stacks 

with motion. (a) Ax-1: Intra-slice motion artifact corrupted the image and localization failed; 

(a) Ax-1,2,3: Inter-slice motion can be observed between adjacent slices. Localization 

partially succeeded but it failed to capture the anterior edge of the brain; (a) Co, Sa: coronal 

and sagittal out-of-plane views. (b) Ax-1,2,3: Inter-slice motion and intra-slice motion 

artifact (in Ax-3) are present yet localization succeeded; (b) Co, Sa: coronal and sagittal out-

of-plane views.
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Figure 5. 
Brain mask evolution of one coronal stack (case F10). Arrows indicate extremal slices where 

the proposed slice-to-template brain extraction method failed. The brain masks are 

progressively refined thanks to motion estimation and reconstruction that helped recovering 

the slice alignment in 3D HR space.
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Figure 6. 
Influence of brain extraction on image reconstruction quality in terms of Peak-Signal-to-

Noise Ratios (PSNR) as reconstruction progresses using (i) only brain localization 

(Localization-only), (ii) rigid-only slice-to-template registration (Rigid-only) and (iii) the 

full method (Full). We use as reference the image reconstructed with the help of brain masks 

manually drawn after brain localization. Loop #L corresponds to the Lth brain mask 

refinement loop. Loop #0 corresponds to the first image reconstructed using brain masks 

without any refinement. A two-tailed Wilcoxon test was used for statistical significance 

evaluation. A significant improvement of the PSNR values can be observed after the first 

refinement (Loop #1) that becomes not significant after the second refinement (Loop #2). 

Adopting a rigid-only slice-to-template registration significantly improves the quality of the 

reconstructed HR image obtained at Loop #2 with an average increase of 3.8dB in the PSNR 

value. Using the full method allows us to further significantly enhance the quality with an 
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average increase of 4.1dB w.r.t using only brain localization and an average increase of 

0.3dB w.r.t using the rigid-only method.
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Figure 7. 
Comparison of reconstruction results of case F10 using (i) only brain localization 

(Localization-only), (ii) rigid-only slice-to-template registration (Rigid-only) and (ii) the full 

method (Full). Arrows indicate artifacts and non-brain regions included in the reconstructed 

image. In general, we can observe a reconstructed image of poor quality when we use brain 

masks obtained right after localization (method (i)). Using the brain masks obtained by 

methods (ii) and (iii) allows us to have a reconstructed image with a quality very similar to 

the quality of the image obtained using manually drawn brain masks (Reference). Only 

small differences can be observed at the periphery of the brain.
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Figure 8. 
Brain extraction and reconstruction results of one pathological brain diagnosed with 

unilateral ventriculomegaly (Case P3) and one healthy brain (Case F12). An overlay of the 

original low-resolution image with the final brain mask automatically extracted is shown in 

the first row. The reconstruction results obtained using the brain masks manually drawn and 

the brain masks automatically extracted are shown in the second and third row respectively. 

Case P3 illustrates one case where the expert observers judged both reconstructed images 

having the same quality. Case F12 illustrates one case where the expert observers preferred 

the image reconstructed using manual brain masks as a small region outside the brain was 

included in the fully automated reconstruction. These results showed that using the proposed 

brain localization and extraction methods allowed us to obtain fully automatic high-quality 

reconstructions, where the brain is conventionally oriented, without any further effort.
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Figure 9. 
Bland-Altman plot of intra-cranial fetal brain volumetry results. It shows a good correlation 

between volumes estimated using manually drawn brain masks and volumes estimated using 

brain masks obtained by the full method. However, we can observe a tendency to slightly 

underestimate the volumes (−8.7mL on average) while using the automatic brain masks.
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Table 1

Computational time of the separate steps of the proposed pipeline on an Intel i7-3770 @ 3.40GHz (8-core) 

system with 32 GB RAM. Computing time for Localization is given for two different rotation sampling steps 

(see Section 5.2).

Step Time

Localization (Δθ = 45°) 20min-1h30 per stack

Localization (Δθ = 10°) 1h30-6h per stack

Extraction 3min per stack

Intensity standardization 3min overall

Motion estimation 10-30min

Super-resolution 1-2min
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Table 3

Influence of rotation step parameter of the proposed block matching algorithm. The best values (higher 

success rate and lower computational time) are highligted in bold.

Our template-based approach # of failures (failure rate) # of success (success rate) Average computational time

Δθ = 45° 35 (32.1%) 74 (67.9%) 1h15min

Δθ = 10° 6 (5.5%) 103 (94.5%) 5h35min
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Table 4

Brain localization: comparison between the state-of-the-art machine learning technique [29] and our template 

matching technique. Best scores are highlighted in bold.

Brain localization method # of failures (failure rate) # of success (success rate)

Machine-learning [29] 10 (6.5%) 144 (93.5%)

Proposed approach 11 (7.1%) 143 (92.9%)
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Table 5

Evolution of brain extraction performance as reconstruction progresses using (i) rigid-only slice-to-template 

registration and (II) rigid and B-Spline based deformable slice-to-template registration (full method). Loop #L 

corresponds to the Lth brain mask refinement loop. Loop #0 corresponds to the performance of brain 

extraction without any refinement. Best results (highlighted in bold), specifically in terms of the overall 

agreement with manual delineation (Dice) and in terms of the proportion of true positive brain voxels included 

in the mask (recall), can be observed using the full method after repeating two times the refinement loop.

Dice Recall Precision

Localization 92.0 ± 3.5 89.8 ± 5.3 94.6 ± 4.0

Extraction

 Loop #0

 Rigid-only 93.4 ± 2.6 92.7 ± 2.6 94.3 ± 4.3

 Full 93.5 ± 2.7 92.9 ± 2.9 94.3 ± 4.3

 Loop #1

 Rigid-only 94.2 ± 1.9 94.3 ± 2.8 94.1 ± 2.6

 Full 94.5 ± 1.6 94.6 ± 2.6 94.4 ± 2.7

 Loop #2

 Rigid-only 94.3 ± 1.6 94.8 ± 2.4 94.0 ± 2.5

 Full 94.5 ± 1.5 94.9 ± 2.4 94.2 ± 2.5

 Loop #3

 Rigid-only 94.4 ± 1.6 94.7 ± 2.4 94.1 ± 2.6

 Full 94.5 ± 1.6 94.9 ± 2.5 94.1 ± 2.6
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Table 6

Qualitative rating of final reconstruction by two expert observers. Experts were asked to indicate the best HR 

image in terms of perceived image quality between images reconstructed using the full reconstruction pipeline 

and images reconstructed using manually drawn brain masks. For each expert, we report the number of cases 

when he preferred the image reconstructed using manually drawn brain masks (Manual), the image 

reconstructed with the full reconstruction pipeline (Full), or when both images were judged having similar 

quality (Similar).

Manual Full Similar

Expert #1 7 7 6

Expert #2 8 4 8
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