Skip to main content
. 2017 Jul 18;8:472. doi: 10.3389/fphar.2017.00472

Table 1.

Summary of cellular and molecular effects of menthol.

Target protein or cellular event End-point measured Effect Concentration and ligand Preparation References
Na+ channels Ion current Inhibition IC50 = 376 μM (In neuronal Na+ channels) HEK293 cells Haeseler et al., 2002
IC50 = 571 μM (In skeletal muscle Na+ channels)
Na+ channels Ion current Inhibition IC50 = 297 μM Cultured dorsal horn neurons Pan et al., 2012
TTX-resistant Na+ channels Ion current Inhibition IC50 = 299–500 μM DRG neurons and immortalized
DRG neuron-derived F11 cells
Gaudioso et al., 2012
Nav1.8 channel subtype >300 μM
540–807 μM
Nav1.9 channel subtype
TTX-sensitive Na+ channels
Na+ channels Compound action potential Inhibition IC50 = 1.1 mM (−)-menthol Frog sciatic nerve fibers Kawasaki et al., 2013
IC50 = 0.9 mM (+)-Menthol
Na+ channels Number and duration of action potential bursts Inhibition 250 μM Mouse cortical neurons Pezzoli et al., 2014
DHP-sensitive and DHP-insensitive Ca2+ channels Ion current Inhibition IC50 = 0.25 mM LA-N-5 cells Sidell et al., 1990
Ca2+ channels High K+-induced intracellular Ca2+ increase Inhibition 2 mM Leech neurons Dierkes et al., 1997
Ca2+ channels Ca2+ uptake and contractile response Inhibition IC50 = 8–28 μg/ml Ilium Hawthorn et al., 1988
IC50 = 10–69 μg/ml Cardiac tissue synaptosomes and chick retinal neurons
Ca2+ channels KCl-preconstricted smooth muscle contraction Inhibition IC50 = 58 μM Bronchial smooth muscle fibers Wright et al., 1997
IC50 = 120 μM
ACh-preconstricted smooth muscle contraction
Ca2+ channels Intracellular Ca2+ Inhibition 0.01–1 mM Tracheal smooth muscle fibers Ito et al., 2008; Wang et al., 2016
Ca2+ channels Intracellular Ca2+ Inhibition 300 μM Detrusor muscle Ramos-Filho et al., 2014
Ca2+ channels Intracellular Ca2+ Inhibition 0.1–1 mM Vas deference Filippov et al., 2009; Vladymyrova et al., 2011
Ca2+ channels Ca2+ influx and smooth muscle relaxation Inhibition 0.1–1 mM Rat aorta, mesenteric and coronary arteries Cheang et al., 2013
Ca2+ channels Ca2+ influx and contraction Inhibition 0.1–30 mM Gastrointestinal smooth muscle and human colon circular muscle Amato et al., 2014a
Ca2+ channels High K+ and Ca2+ evoked contractions Inhibition IC50 = 22.1 μg/mL Guinea pig taenia coli Hills and Aaronson, 1991
IC50 = 25.9 μg /mL Guinea pig colon
IC50 = 15.2 μg /mL Rabbit jejunum
Ca2+ channel Ca2+ current Inhibition 0.1–0.5 mM Helix neurons Swandulla et al., 1986
Low voltage-activated Ca2+ channel (T-type like) and high voltage activated Ca2+ channel (L-type like) Ca2+ current Inhibition 0.1–1 mM Cultured DRG neurons Swandulla et al., 1987
L-type VGCCs Ca2+ current Inhibition IC50 = 74.6 Rabbit ventricular myocyte Baylie et al., 2010
TRPM8 Ca2+ current Activation 300 μM Rat tail artery myocytes Melanaphy et al., 2016
L-type VGCCs Inhibition
IP3 receptors Activation
Ryanodine receptors Ca2+ efflux Activation EC50 =1 mM Isolated sarcoplasmic reticulum Palade, 1987; Mahieu et al., 2007; Neumann and Copello, 2011
HEK239 cells
Ca2+-activated K+ channels Ion current Activation 100 μM Human glioblastoma cells Wondergem and Bartley, 2009
Kv7.2/3 channel Ion current Suppression IC50 = 289 μM Cultured sensory neurons Vetter et al., 2013
TRPM8 channels Intracellular Ca2+ Activation 10 μM and 100 μM CHO cells McKemy et al., 2002; Peier et al., 2002
EC50 = 66.7 μM Xenopus laevis oocytes
TRPM8 channels Menthol sensitivity of TRPM8 channel Altered 10, 100, and 1000 μM Mutant voltage sensor residues (TM4 and TM4-TM5 linker) of human TRPM8 channel expressed in HEK 293 cells Voets et al., 2007
TRPM8 channels Menthol sensitivity to TRPM8 channel Reduction 300 μM Mutant tyrosine 745 residue in TM2 of mouse TRPM8 Bandell et al., 2006
TRPM8 channels Ion current Activation EC50 = 4–80 μM Trigeminal ganglia neuronal cells McKemy et al., 2002; Peier et al., 2002; Behrendt et al., 2004
CHO Cells
HEK293 calls
TRPV3 channels Ion current Activation 0.5–2 mM CHO cells Macpherson et al., 2006; Vogt-Eisele et al., 2007
1 mM HEK293 cells
Primary keratinocyte culture
TRPA1 channels Ion current Activation (at low concentration) 1–30 μM CHO cells Macpherson et al., 2006; Karashima et al., 2007; Kim et al., 2016
1–10 μM Interstitial cells of Cajal
CHO cells
Inhibition (at high concentration) 0.25–1 mM
TRP-independent effects Intracellular Ca2+ Inhibition EC50 = 0.9–1 mM Skeletal muscle sarcoplasmic reticulum Palade, 1987; Takeuchi et al., 1994; Tsuzuki et al., 2004; Lu et al., 2006; Mahieu et al., 2007; Wondergem and Bartley, 2009; Neumann and Copello, 2011
100 μM–1 mM Tracheal epithelial cells
25–100 μM Human leukemia cells
100 μM Gliablastoma cells
100 μM–1 mM Cell lines and dorsal horn neurons
PCL enzyme activity P2Y purinoreceptor-mediated/histamine receptor-mediated cytosolic Ca2+ mobilization Inhibition 0.3–1 mM HEK-293 cells Kim et al., 2008
HeLa cells
Anion transport CFTR-mediated Cl transport Potentiation 0.1–1 mM Human airway Calu-3 epithelial cells Morise et al., 2010
Na+-K+-2Cl transporter Down regulation
GABAA (α1β2γ2s) receptors Ion current Potentiation EC50 = 25 μM Xenopus laevis oocytes Hall et al., 2004
Glycine (α1 homomers) receptors EC50 = 75 μM
GABAA receptors Righting reflex Inhibition EC50 = 23 μM In vivo tadpole assay Watt et al., 2008
GABAA receptors [3H]-flunitrazepam binding No effect Up to 500 μM Cultured mouse cortical neurons García et al., 2006; Corvalán et al., 2009
Stimulation EC50 = 1.55 μM Membranes from chick forebrain
GABAA receptors [3H]-TBOB binding Inhibition LD50= 128.9 μg fly−1 Housefly head membrane preparations Tong and Coats, 2012
GABAA receptors Ion current Activation 100 μM Cultured rat hippocampal neurons Zhang et al., 2008
GABAA receptors Ion current Activation 0.1–1 mM brainstem-spinal cord of newborn rats Tani et al., 2010
GABAA receptors Ion current Activation 150–750 μM Periaqueductal gray (PAG) neurons of midbrain slices Lau et al., 2014
5-HT3 receptors [14C] guanidinium influx Inhibition 10 μM–1 mM N1E-115 cells Heimes et al., 2011
Isotonic contractions Inhibition Isolated rat ileum
5-HT3A receptors Ion current inhibition IC50 = 163 μM. Xenopus laevis oocytes Ashoor et al., 2013a
Human recombinant homomeric 5-HT3A Ca2+ influx Inhibition IC50 = 4.75 mM for (−)-menthol HEK293 cells Walstab et al., 2014
Human recombinant heteromeric 5-HT3AB receptors IC50 = 4.75 mM for (+)-Menthol
IC50 = 4.46 mM for (−)-menthol
IC50 = 4.60 mM for (+)-Menthol
Nicotinic receptors Nicotine-induced irritation and sensory perception Reduction 0.3% L-menthol Tongue (human subject) Dessirier et al., 2001
Nicotinic receptors Respiratory irritation response Reduction 16 ppm Female C57BL/6J mice Willis et al., 2011
Nicotinic receptors nicotine-induced hypothermia Inhibition 100-400 mg/Kg Male adult rats Ruskin et al., 2008
Nicotinic receptors Gastric relaxation Induction 0.3-30 mM Male adult mice Amato et al., 2014b
Nicotinic receptors (α4β2 nAChRs) Ion current Inhibition IC50 = 111 μM. Trigeminal neurons in HEK tsA201 cells Hans et al., 2012
Nicotinic receptors (α4β2 nAChRs) Density of α4β2 nAChR in menthol smokers Up-regulation Menthol cigarette smokers vs nonsmokers Human subjects Brody et al., 2013
Nicotinic receptors subunits α4 and α6 nAChR subunits Up-regulation 2 mg/kg/h for in vivo upregulation assays Midbrain dopaminergic neurons from mice Henderson et al., 2016
(α4)3(β2)2 nAChR subunits Up-regulation 500 nM Neublastoma cells
Decay phase of current Acceleration 2 mg/kg/10d Mouse brain slices
Nicotinic receptors (α7 nAChRs) Ion current Inhibition IC50 = 32.6 μM Xenopus laevis oocytes Ashoor et al., 2013b
Nicotinic receptors (α3β4 nAChRs) Ion current Desensitization Up to 1 mM HEK 293 cells and mouse sensory neurons Ton et al., 2015