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Abstract The numerous secondary metabolites in Strep-

tomyces spp. are crucial for various applications. For

example, cephamycin C is used as an antibiotic, and

avermectin is used as an insecticide. Specifically, antibiotic

yield is closely related to many factors, such as the external

environment, nutrition (including nitrogen and carbon

sources), biosynthetic efficiency and the regulatory mech-

anisms in producing strains. There are various types of

regulatory genes that work in different ways, such as

pleiotropic (or global) regulatory genes, cluster-situated

regulators, which are also called pathway-specific regula-

tory genes, and many other regulators. The study of regu-

latory genes that influence antibiotic biosynthesis in

Streptomyces spp. not only provides a theoretical basis for

antibiotic biosynthesis in Streptomyces but also helps to

increase the yield of antibiotics via molecular manipulation

of these regulatory genes. Currently, more and more

emphasis is being placed on the regulatory genes of

antibiotic biosynthetic gene clusters in Streptomyces spp.,

and many studies on these genes have been performed to

improve the yield of antibiotics in Streptomyces. This paper

lists many antibiotic biosynthesis regulatory genes in

Streptomyces spp. and focuses on frequently investigated

regulatory genes that are involved in pathway-specific

regulation and pleiotropic regulation and their applications

in genetic engineering.

Keywords Antibiotic biosynthetic gene cluster �
Regulatory gene � Regulatory mechanism � Streptomyces �
Secondary metabolites

Introduction

Secondary metabolites of Streptomyces, including antibi-

otics, immunomodulators, enzyme inhibitors and other

bioactive substances, often have significant medicinal

value. However, wild strains usually produce low levels of

antibiotics. There is a large and complicated regulatory

network in many Streptomyces strains, and the biosynthesis

of one antibiotic in one strain may be controlled by more

than one regulatory mechanism. For example, the produc-

tion of actinorhodin (ACT) in Streptomyces coelicolor is

regulated by both the cluster-situated regulator (CSR)

actII-ORF4 (Fernández-Moreno et al. 1991) and the

pleiotropic regulatory gene cprB (Onaka et al. 1998).

Further, there is also more than one regulatory gene that

affects the biosynthesis of a single antibiotic. For example,

dnrI, dnrO and dnrN (Kitani et al. 2008; Parajuli et al.

2005) all regulate the production of daunorubicin (DNR) in

Streptomyces peucetius.

To better and more comprehensively understand the

mechanisms of antibiotic biosynthesis regulation, in this

paper, we classify the antibiotic biosynthetic regulators in

various Streptomyces strains that are associated with

antibiotic production into three types. This work will pro-

vide a theoretical basis for the molecular perturbation of

regulatory genes and will help with manipulating the
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antibiotic biosynthetic pathways and accordingly improv-

ing antibiotic production.

Regulatory genes involved in pathway-specific

regulation

The CSRs, located within the antibiotic biosynthetic clus-

ters, can modulate the antibiotic biosynthetic genes of the

clusters in which they are included (Martı́n and Liras 2010;

Rodrı́guez et al. 2013). The CSRs can only affect the

biosynthetic pathway of a single, specific antibiotic and act

as a master switch for biosynthesis of that individual

antibiotic; this regulation is called pathway-specific regu-

lation (Bibb 1996; Novakova et al. 2011). Some CSRs

encode proteins that belong to a family known as the

Streptomyces antibiotic regulatory proteins (SARPs).

SARPs contain two characteristic structural domains: an

OmpR DNA-binding domain and a bacterial transcription

activation domain (BTAD) (Tanaka et al. 2007). The

SARPs include the positive regulators ActII-ORF4 (Fer-

nández-Moreno et al. 1991) and RedD (Wilson et al. 2001)

in S. coelicolor and DnrI (Parajuli et al. 2005) in S. peu-

cetius. In addition, some CSRs encode proteins belonging

to another family, called the LuxR family, which is often

found in Gram-negative bacteria (Lei et al. 2007). LuxR-

type regulators contain a nucleotide triphosphate (NTP)

binding motif at the N-terminus and a helix-turn-helix

(HTH) motif at the C-terminus; examples include the

positive regulators PimR (Antón et al. 2004) in Strepto-

myces natalensis and PikD (Xue et al. 1998) in Strepto-

myces venezuelae. There are many additional families of

regulatory proteins, including the LysR and TetR families.

The CSRs are shown in Table 1. Huang et al. (2005)

reported that some CSRs can also control the expression of

pleiotropic genes, and some pleiotropic regulators can

affect the expression of CSRs. In this paper, we will not

describe the cross-regulation between various types of

regulators.

tylR, tylP, tylQ, tylS and tylT

Eli Lilly and Company obtained the tylosin biosynthetic

gene cluster from Streptomyces fradiae. Five regulators of

this cluster are all CSRs. Sequence analysis identified TylP

as a c-butyrolactone (GBL) signal receptor (Bate et al.

1999; Wilson et al. 2001), and there were several indica-

tions that TylP is an effector-binding regulator and a reg-

ulator of tylosin biosynthesis (Bignell et al. 2007). The

protein TylQ was reported to be a transcriptional repressor

that blocked tylosin biosynthesis by controlling the

expression of tylR (Stratigopoulos and Cundliffe 2002).

Studies revealed that tylT and tylS encode proteins

belonging to the SARPs family (Bate et al. 1999). Bate

et al. (2006) identified a new regulatory gene, tylU, in the

tylosin biosynthetic gene cluster. Targeted disruption of

tylU decreased tylosin yield by approximately 80%,

demonstrating that tylU is a positive regulatory gene for

tylosin biosynthesis. TylR, a CSR, was able to regulate the

core polyketide genes, but it primarily affected tylosin

biosynthesis (Bate et al. 1999). The tylosin biosynthetic

gene cluster is shown in Fig. 1.

dnrI, dnrO and dnrN

A previous report (Parajuli and Moon 2002) has demon-

strated that the DNR producer S. peucetius possesses two

DNA segments, dnrR1 and dnrR2. Sequence analysis of

dnrR1 and the subsequent inactivation of dnrI, which is

contained within dnrR1, suggested the involvement of dnrI

in the transcription of the biosynthetic genes of DNR. The

disruption of dnrI resulted in the absence of DNR pro-

duction (Madduri and Hutchinson 1995), and the overex-

pression of dnrI under the control of the strong ermE*

promoter increased the production of DNR (Malla et al.

2010). These results indicated that dnrI positively regulates

DNR biosynthesis. dnrN encodes a response regulator (RR)

of UhpA-LuxR superfamily of regulatory proteins and has

a motif that is highly similar to the HTH DNA-binding

motif. An earlier study showed that reintroduction of dnrN

into a dnrI:aphII mutant failed to restore DNR production.

This suggested that DnrN activates the transcription of dnrI

in the regulatory cascade; dnrI, in turn, positively triggers

the transcription of DNR biosynthetic genes (Otten et al.

1995). dnrO, which is a negative regulatory gene, encodes

a DNA-binding protein. DnrO has been shown to regulate

antibiotic yield in S. peucetius by positively controlling

dnrN (Otten et al. 2000; Parajuli and Moon 2002).

rapH, rapG and rapY

DNA sequence analysis of rapH and rapG in Streptomyces

hygroscopicus revealed that RapH and RapG share sig-

nificant similarity with two positive transcriptional fami-

lies, the LAL and AraC families, respectively (Kuščer et al.

2007). RapH contained a DNA-binding motif and an ATP-

binding site, while RapG contained a HTH DNA-binding

motif (Yoo et al. 2015). In one study, antibiotic production

was increased by 50% only if copies of both rapH and

rapG under the control of their native promoter regions

were introduced. Further, the complementation of rapH

and rapG deletion mutants under the control of their native

promoters led to a restoration of rapamycin production to

parental levels (Yoo et al. 2015). The overexpression of

both genes led to an abundant rapamycin synthesis, while

the deletion of rapG and rapH caused a total shutdown of

antibiotic production, suggesting that rapG and rapH play
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Table 1 Regulatory genes involved in pathway-specific regulation

Regulatory
gene(s)

Gene(s) from Product(s) of
regulation

Function Notes References

actII-ORF4 S. coelicolor ACT ? Encodes a SARP Fernández-Moreno
et al. (1991)

mmyR S. coelicolor Methylenomycin - A gene adjacent to mmyR provides
positive regulation

Arias et al. (1999)

cdaR S. coelicolor Mmy and CDA ? Encodes a SARP Bibb (2005)

redD and redX S. coelicolor RED ? Encode SARPs, and the transcription
of redX regulates the transcription of
redD

Romero-Rodrı́guez
et al. (2015),
Takano et al.
(1992) and Wilson
et al. (2001)

gdmRI and
gdmRII

S. hygroscopicus 179977 Geldanamycin ? Regulate the transcription of pks, gdmF
and gdnA, which are involved in
biosynthesis of geldanamycin

(He et al. 2008)

tylR, tylS,
tylP, tylQ
tylT and
tylU

S. fradiae Tylosin tylR, tylS, tyl T
and tylU: ?

tylQ: -

tylT and tylS encode SARPs, and TylP is
similar to c-butyrolactone receptor
proteins

Bate et al.
(1999, 2006) and
Stratigopoulos and
Cundliffe (2002)

aveR, aveR1,
aveR2 and
aveT

S. avermitilis Avermectin ? aveR contains a HTH motif; AveT
belongs to the TetR family and
activates transcription of aveR

Ikeda et al. (2003)

alpT, alpU,
alpV, alpW
and alpZ

S. ambofaciens Alpomycin alpT, alpU, and
alpV: ?; alpW: -

alpT, alpU and alpV encode SARPs,
alpW encodes a transcriptional
repressor protein, and alpZ encodes a
c-butyrolactone receptor protein

Aigle et al. (2005)

ccaR S. clavuligerus Cephamycin C
and clavulanic
acid

? Encodes a SARP Pérez-Llarena et al.
(1997)

pimR S. natalensis Pimaricin ? Encodes a LuxR family protein, does
not regulate its own transcription

Antón et al. (2004)

pikD S. venezuelae Pikromycin ? Encodes a LuxR family protein Xue et al. (1998)

monH,
monRI and
monRII

S. cinnamonensis Monensin ? MonH is similar to PikD, and monRI
encodes a SARP

Oliynyk et al. (2003)

spbR S. pristinaespiralis Pristinamycin ? SpbR is a c-butyrolactone receptor Mast et al. (2015)

papR1-R5 S. pristinaespiralis Pritinamycin papR1, papR2 and
papR4: ?; papR3 and
papR5: -

PapR1, PapR2, and PapR4 are SARPs,
and PapR3 and PapR5 belong to the
TetR family

Mast et al. (2015)

jadR* and
jadR3

S. venezuelae Jadomycin B - JadR* is a TetR-like protein, and JadR3
represses jadR2 and jadR3 but
activates jadR1

Yang et al. (2001),
Zhang et al.
(2013) and Zou
et al. (2014)

nysRI-RIII S. noursei ATCC Nystatin ? Deletion of nysRI abolishes
the transcription of nysRII-III

Sekurova et al.
(2004)

amph RI- RIII S. nodosus Amphotericin ? All contain a HTH motif in C-terminal Carmody et al.
(2004)

fscRI-RIII S. pp. FR008 Candicidin ? Encodes a LuxR family protein Chen et al. (2003)

dnrI, dnrO and
dnrN

S. peucetius Daunorubicin dnrI: ?; dnrO: -;
dnrN: ?

DnrN is a RR belonging to the Uhp-
LuxR superfamily and activates
the transcription of dnrI, and DnrO
positively controls dnrN

Otten et al. (2000)
and Parajuli and
Moon (2002)

strR S. griseus Streptomycin ? Regulates streptomycin by activating
the expression of strA and strB

Distler et al. (1987)

rapH, rapG
and rapY

S. hygroscopicus Rapamycin rapH, rapG: ?

rapY: -

RapG and RapY each contain a HTH
motif, and RapH contains a DNA-
binding motif and an ATP-binding
site

Yoo et al. (2015)

srrX, srrY,
srrZ and
srrB

S. rochei Lankamycin and
lancadicin

srrX and ssrY: ? for
both

ssrZ: ? for lankamycin

srrB: - for both

srrY and srrZ encode SARPs, and ssrY
positively regulates ssrZ

Arakawa et al.
(2007) and Suzuki
et al. (2010)
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active roles in antibiotic biosynthesis. Furthermore, these

genes cannot exert regulatory effects on the rapamycin

biosynthetic gene cluster independent of each other. Yoo

et al. (2015) found that the overexpression of rapY caused a

drastic reduction in antibiotic production, while deletion of

rapY increased antibiotic production by approximately

fivefold. RapY, which contains an HTH motif near its

N-terminus, plays a negative role in rapamycin production.

The antibiotic regulatory genes in the biosynthetic gene

cluster of rapamycin are shown in Fig. 2.

Table 1 continued

Regulatory
gene(s)

Gene(s) from Product(s) of
regulation

Function Notes References

scbR and
scbR2

S. coelicolor ACT, RED, CDA
and yCPK

ACT, CDA and RED: ?

yCPK: -

ScbR is a c-butyrolactone
receptor protein, and ScbR2 is an
antibiotic receptor protein

Li et al. (2015a)

polR and polY S. cacaoi Polyoxin ? Both encode SARPs, and the
transcription of polR is
positively regulated by polY

Hwang et al. (2003)

aur1PR3 and
aur1PR4

S. aureofaciens Auricin ? Both encode SARPs, aur1PR3 is
controlled by Aur1R, and Aur1P
directly regulates the expression of
aur1PR4

Rehakova et al.
(2013)

barA, barB
and varR,

S. virginiae Virginiamycin - BarA, BarB and VarR are TetR-like
regulators, and the transcription of
barB is tightly repressed by BarA

Matsuno et al.
(2003), Nakano
et al. (2000) and
Namwat et al.
(2001)

vmsS, vmsT
and vmsR

S. virginiae Virginiamycin M
and
virginiamycin
S

vmsS and vmsR: ? for
virginiamycin M and
virginiamycin S;
vmsT: - for
virginiamycin M

VmsS and VmsR are SARPs, and VmsT
is a RR of a TCS

Pulsawat et al.
(2009)

aur1R S. aureofaciens Auricin - aur1R encodes a homolog of the TetR
family, and Aur1R represses the
expression of aur1P

Novakova et al.
(2010)

fdmR1 S. griseus Fredericamycin ? Encodes a homologue of SARPs Chen et al. (2008)

thnI S. cattleya Thienamycin ? ThnI resembles LysR-
type transcriptional activators
and contains a HTH motif

Rodrı́guez et al.
(2008)

thnU S. cattleya Cephamycin C ? Encodes a SARP Rodrı́guez et al.
(2008)

asuR1, asuR2,
asuR4 and
asuR6

S. nodosus Asukamycin ? AsuR1 and AsuR6 belong to the LuxR
family, AsuR2 belongs to the TetR
family, and asuR5 encodes a SARP

Xie et al. (2012)

farR3 and
farR4

S. lavendulae FRI-5 Indigoidine farR3: ?

farR4: -

Both encode SARPs, FarR3 positively
controls the biosynthesis of
indigoidine, and FarR4 negatively
controls the expression of farX, farA,
farR1 and farR2

Kitani et al. (2008)
and Kurniawan
et al. (2014)

papR6 S. pristinaespiralis Pritinamycin II ? PapR6 is an orphan RR Dun et al. (2015) and
Mast et al. (2015)

redZ S. coelicolor RED ? Encodes a NarL-type RR, and the
transcription of redD depends on
redZ and the translation of redZ
depends on bldA

Guthrie et al. (1998)
and Wang et al.
(2009)

ssaA Streptomyces sp. strain
SS

Sansanmycin ? SsaA has a N-terminal fork head-
associated (FHA) domain and a
C-terminal LuxR-type HTH motif

Li et al. (2013)

vlmI S. viridifaciens Valanimycin ? vlmI encodes a SARP and can
complement a redD mutation;

Garg and Parry
(2010)

nanR1, nanR2
and nanR4

S. nanchangensis Nanchangmycin nanR1, nanR2: ?

nanR4: -

nanR1 and nanR2 encode SARPs, and
nanR4 is an AraC-family
transcriptional regulator and
represses the transcription of nanR1
and nanR2

Yu et al. (2012)

? Represents positive regulation, - represents negative regulation
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polY and polR

Li et al. (2009) found that the deletion of polR completely

blocked polyoxin (POL) biosynthesis, which was comple-

mented by introducing a copy of polR into the mutant.

Similarly, the yield of POL was found to increase with the

presence of an additional copy of polR in the mutant. PolR

is necessary for the transcription of many structural genes

in the POL biosynthetic gene cluster. Another CSR, polY in

S. cacaoi, positively controls the production of this

antibiotic. Both polR and polY encode proteins belonging

to the SARPs family, and the expression of polR depends

on the activity of PolY (Kitani et al. 2001).

aur1R, aur1P, aur1PR3 and aur1PR4

Some studies (Novakova et al. 2010, 2011; Rehakova et al.

2013) described four genes regulating auricin production in

Streptomyces aureofaciens. aur1R encodes a homologue

similar to the members of the TetR family. Antibiotic

production was much higher in the disrupted strain than in

the parental strain, which suggested a negative regulatory

effect of aur1R on auricin production (Novakova et al.

2010). Aur1R can specifically negatively control the

expression of aur1P, and this repression is released by

auricin or its intermediates. In another experiment (Re-

hakova et al. 2013), aur1P was deleted from the chromo-

some, and no auricin was produced in the mutant, which

suggested that aur1P is critical for the biosynthesis of

auricin and exerts a positive effect on the expression of the

biosynthetic genes of auricin. Aur1P belongs to the OmpR

subfamily, which is similar to the RRs of two-component

systems (TCSs). aur1PR3 and aur1PR4 encode proteins

that are highly similar to those belonging to SARP family.

The disruption of aur1PR3, an activator of auricin, resulted

in a dramatic decrease in antibiotic production compared to

the wild-type parent. Additionally, the expression of au-

r1PR3 was controlled by Aur1R (Novakova et al. 2011).

Aur1P directly regulated the expression of aur1PR4

because its promoter was dependent on Aur1P (Rehakova

et al. 2013).

thnI and thnU

There are two regulators, thnI and thnU, located in the

thienamycin gene cluster of Streptomyces cattleya. ThnI is

similar to the members of LysR family, and they all have a

highly conserved HTH DNA-binding domain. A deletion

mutant constructed by gene replacement failed to produce

thienamycin, thereby revealing the importance of thnI in

tylP tylQ tylS tylRtylT

…… …… …… ……
tylU 

(-)

(+)(+) (+)(-) (+)

(+): positive regulation   
(-) : negative regulation

Fig. 1 Tylosin biosynthetic gene cluster of S. fradiae. Five regula-

tory genes are shown: TylP is a GBL signal receptor. TylQ is a

transcriptional repressor and blocks tylosin biosynthesis by

controlling the expression of tylR. tylT and tylS encode cluster-

situated regulatory proteins of the SARPs family. tylU is a positive

regulatory gene of tylosin biosynthesis. TylR is also a CSR

……
rapY (-) rapX rapR (-) rapS (-) rapH

…………
rapG

……

: regulatory genes  involved in global regulation 

: regulatory genes  involved in pathway-specific regulation

: other genes of rapamycin biosynthetic gene cluster

(+) (+)

(-)

(+)

(+): positive regulation   
(-) : negative regulation

Fig. 2 The location of

regulatory genes in rapamycin

biosynthetic gene cluster of S.

hygroscopicus. RapY inhibits

the transcription of rapX which

is an ABC-transporter gene.

Together, rapS and rapR

negatively regulate most of the

rapamycin biosynthetic genes.

RapS also represses the

expression of rapY. RapH and

RapG positively regulate

rapamycin biosynthesis
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thienamycin synthesis. Gene expression analysis of the

thienamycin gene cluster demonstrated that ThnI is a

positive regulator and that it can control the expression of

several genes involved in the assembly and export of

thienamycin (Rodrı́guez et al. 2008). thnU encodes a pos-

itive regulator that belongs to the SARPs family. HPLC–

MS analysis of a thnU mutant constructed using the same

method that was used for thnI indicated that inactivation of

thnU resulted in a loss of the production of Cephamycin C,

whereas thienamycin synthesis was not affected. These

results revealed the positive role of ThnI in thienamycin

biosynthesis and the relevance of ThnU in cephamycin C

biosynthesis (Rodrı́guez et al. 2008).

Regulatory genes involved in pleiotropic regulation

Many regulatory genes, which are mostly located outside of

biosynthetic gene clusters, have pleiotropic (or global)

effects on the production of multiple secondary metabolites

or on both secondary metabolites and morphological

development. In Streptomyces, the most abundant pleio-

tropic regulators belong to the TCSs, which are the pre-

dominant signal transduction systems in bacteria (Stock

et al. 2000; Hakenbeck and Stock 1996). Other pleiotropic

regulators can regulate antibiotic production in association

with many small molecules called c-butyrolactones (GBLs).
This paper divides pleiotropic regulators into two subtypes.

One type includes TCSs, orphan response regulation [e.g.,

farR1 (Kitani et al. 2008)], orphan histidine kinase regula-

tion [e.g., ohkA (Lu and Jiang 2013)] and other special TCSs

[e.g., abrC1/C2/C3 (Yepes et al. 2011)]. This subtype of

pleiotropic regulatory genes is shown in Table 2a. The other

includes the pleiotropic regulators closely associated with

GBLs. To date, approximately 13 GBLs have been discov-

ered, including A-factor from S. griseus (Ohnishi et al.

1999), IM-2 from S. lavendulae (Sato et al. 1989), SCB1,

SCB2 and SCB3 (Hsiao et al. 2009; Takano et al. 2005),

VBs from S. virginiae (Yamada et al. 1987) and factor 1

from S. viridochromogenes (Sato et al. 1989). Moreover, a

few pleiotropic regulators contain a TPR structural domain

[such as nsdA (Yu et al. 2006)], a protein repeat sequence

consisting of 34 amino acids, which encodes an HTH sec-

ondary structural fragment. This type of pleiotropic genes is

shown in Table 2b.

For TCSs, there are two types of kinase super-families

in Streptomyces that regulate secondary metabolites. One is

the histidine kinase family. This family consists of two

proteins, a phosphate donor—HK (histidine kinase) and a

phosphate receptor—RR. Most of the HKs that belong to

membrane-spanning proteins have three functional struc-

tural domains: a sensing domain, a transmitter domain and

an ATPase domain. RRs contain two domains: a receiver

domain and an effector domain. A HK activates itself by

first phosphorylating its conserved histidine residues and

then transferring the phosphate groups to the conserved

asparagine acid residues of the RR. The phosphorylated RR

then regulates the expression of other genes (Lu and Jiang

2013). This signal transduction process is shown in Fig. 3.

Genes belonging to this family include afsQ1/afsQ2 (Ish-

izuka et al. 1992), cutR/cutS (Tanaka et al. 2007) and

ecrA1/ecrA2 (Huang et al. 2001). The other type is the

serine/threonine and tyrosine kinase family, whose mem-

bers transmit signals to regulate secondary metabolism via

a series of cascade reactions, such as phosphorylation or

dephosphorylation of proteins triggered by external envi-

ronmental changes. AfsR/AfsS (Tanaka et al. 2007)

belongs to the serine/threonine and tyrosine kinase family.

The genomic sequence analysis of S. coelicolor which is a

model strain was performed in 2002. Bioinformatic anal-

ysis revealed that S. coelicolor contains many TCSs,

encompassing 84 HKs and 80 RRs. Of these, 67 HKs have

been matched with 67 RRs and are adjacent to genes

encoding RRs, while the remaining TCSs are orphan HKs

and orphan RRs (Hutchings et al. 2004).

nsdA and nsdB

The pleiotropic negative regulatory gene nsdA can be

found in many Streptomyces spp. The nsdA genes from

various Streptomyces spp. share 77–100% similarity with

each other, and nsdA homologous genes are also present in

many Streptomyces strains (Yu et al. 2006). NsdA, which

contains a TPR structural domain, plays a negative role in

sporulation, morphological differentiation and antibiotic

synthesis. The overproduction of actinorhodin (ACT),

calcium-dependent antibiotic (CDA) and methylenomycin

was detected in a nsdA mutant, and the deletion of the nsdA

in Streptomyces lividans also resulted in the expression of

silent ACT biosynthetic genes. These results indicated that

NsdA may silence the ACT biosynthetic gene cluster by

repressing the expression of CSRs (Yu et al. 2006). There

is also a TPR-like structural domain in the nsdB gene

product whose disruption gives rise to ACT production, but

NsdB does not affect morphological differentiation. The

deletion of nsdB, which is a negative regulator of CDA,

resulted in an increase in CDA production. nsdB has been

shown to control antibiotic biosynthesis along with nsdA

but has no influence on the expression of nsdA at the RNA

level (Yu et al. 2006).

afsR2 and afsB

The protein encoded by afsR2 is 63 amino acids long (Lee

et al. 2000), and AfsR2 is a positive regulator of ACT and

undecylprodigiosin (RED). Lee et al. (2000) cloned a

regulatory gene from S. avermitilis that was homologous to
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Table 2 Regulatory genes involved in pleiotropic regulation

Regulatory

gene(s)

Gene(s) from Product(s) of

regulation

Function Notes References

a)

afsQ1/afsQ2 S. lividans ACT ? Ishizuka et al.

(1992)

afsK/afsR S. coelicolor and S.

griseus

ACT ? AfsR is the transcriptional activator of

afsS, which can activate

actII-ORF4

Atsushi et al.

(1994)

afsR-p/afsS S. peucetius Adriamycin ? Parajuli et al.

(2005)

cutR/cutS S. coelicolor and S.

lividans

ACT - Chang et al.

(1996)

ecrA1/ecrA2

and

ecrE2/

ecrE1

S. coelicolor RED ? Coordinates with the expression of redD Huang et al.

(2001)

orfX/orf41 S. avermitilis Avermectin ? orfX exerts regulation by itself or by the

collaboration of orf41 with orfX

Hwang et al.

(2003)

phoR/phoP S. coelicolor and S.

lividans

ACT and RED - PhoP belongs to the Ormp family Sola-Landa et al.

(2003)

valP/valQ S. hygroscopicus

5008

Validamycin Bai et al. (2006)

absA1/

absA2

S. coelicolor CDA, yCPK and

albaflavenone

- Sheeler et al.

(2005)

rapR/rapS S. hygroscopicus Rapamycin - RapS represses the expression of rapY Yoo et al. (2015)

rapA1/

rapA2

S. coelicolor ACT and yCPK ? The regulation of RapA1/A2 depends

on ActII-ORF4 and KasO

Lu et al. (2007)

draK/R S. coelicolor ACT, yCPK and

RED

ACT: ?

RED and yCPK: -

DraR binds to the promoter regions

of actII-ORF4 and cpkO

Rodrı́guez et al.

(2013)

abrA1/A2 S. coelicolor ACT, CDA and

RED

- Yepes et al.

(2011)

SCO0203/

0204

S. coelicolor ACT - Wang et al.

(2009b)

ohkA S. coelicolor ACT, CDA and

RED

- No identified RR matches OhkA Lu et al. (2011)

aur1P S. aureofaciens Auricin ? aur1P encodes a protein similar to the

RRs

Novakova et al.

(2005)

farR1 S. lavendulae FRI-

5

Nucleoside

antibiotics and

indigoidine

FarR1 is an orphan RR Kitani et al.

(2008)

glnR S. coelicolor RED and ACT ? GlnR belongs to the OmpR family and

indirectly regulates the production of

antibiotics in response to changes in

nitrogen availability

Pullan et al.

(2011)

SCO3818 S. coelicolor ACT - SCO0203

can phosphosphorylate SCO0204 and

SCO3818, and there is a functional

correlation between SCO0203 and

SCO3818

Wang et al.

(2009b)

jadR1/jadR2 S. venezuelae Jadomycin B jadR1: ?

jadR2: -

The jadR1 and jadR2 genes represent a

novel TCS linking antibiotic synthesis

to stress; jadR1 encodes a RR; jadR2

encodes a TetR-like protein, and JadR2

is a pseudo c-butyrolactone receptor

Yang et al.

(2001)

abrC1/C2/

C3

S. coelicolor ACT, CDA and

RED

? AbrC1 and AbrC2 are HKs, and AbrC3 is

a RR

Yepes et al.

(2011)
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Table 2 continued

Regulatory

gene(s)

Gene(s) from Product(s) of

regulation

Function Notes References

b)

nsdA and

nsdB

S. coelicolor ACT and CDA - Each encodes a protein containing a TPR

structure

Yu et al. (2006)

tcrA S. coelicolor All secondary

metabolites

- Liu and Yang

(2006)

afsR2 S. lividans

and S. coelicolor

ACT and RED ? Lee et al. (2000)

afsB S. lividans and

S. coelicolor

ACT,

methylenomycin,

CDA and RED

? Horinouchi et al.

(1989)

barX S. virginiae Virginiamycin BarX is an AfsA-like protein Bate et al.

(1999) and

Pulsawat et al.

(2007)

farA S. lavendulae Nucleoside

antibiotics

- IM-2 binds to the FarA receptor to

regulate the signal transduction of

secondary metabolism

Kitani et al.

(2001)

arpA S. griseus Streptomycin - ArpA is an A-factor receptor protein Hong et al.

(2007) and

Kato et al.

(2004)

adpA S. griseus Streptomycin ? Encodes an Arac/XylS family protein and

has two HTH motifs at the C-terminal

Higo et al.

(2012),

Ohnishi et al.

(1999, 2005)

and Zhu et al.

(2005)

bldD S. coelicolor ACT, indigoidine,

CDA and

methylenomycin

? BldD has a C-terminal domain of

unknown function and an N-terminal

domain that mediates DNA binding and

dimerization

Den Hengst et al.

(2010)

bldA S. coelicolor ACT ? BldA regulates the production of

antibiotics by controlling the activator

ActII-ORF4

Fernández-

Moreno et al.

(1991)

crp S. coelicolor ACT, RED and

CDA

? Crp is a member of the cAMP receptor

protein/fumarate-nitrate-reductase

family of regulators

Gao et al. (2012)

wblA S. coelicolor ACT, RED and

CDA

- WblA is a protein of the WhiB family Kang et al.

(2007)

atrA S. coelicolor ACT ? AtrA is a TetR-like protein, AtrA

positively controls the transcription of

actII-ORF4

Li et al. (2015b)

rrdA S. coelicolor RED and ACT RED: -

ACT: ?

RrdA belongs to the TetR family, and

RrdA negatively regulates RED by

controlling the abundance of RedD

mRNA

Ou et al. (2009)

avaR3 S. avermitilis Avermectin and

filipin

Avermectin: ?; filipin:

-

AvaR3 is a c-butyrolactone autoregulator

receptor homologue

Miyamoto et al.

(2011)

cprA S. coelicolor ACT and RED ? Encodes an AprA analogue Onaka et al.

(1998)

cprB S. coelicolor ACT - CprB shows high sequence similarity to

CprA

Onaka et al.

(1998)

? Represents positive regulation, - represents negative regulation
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afsR2 from S. lividans and S. coelicolor. The integration of

multiple copies of afsR2 into the wild-type strain resulted

in approximately twofold overproduction of avermectin.

ACT and RED can be regulated by pleiotropic regulatory

genes in addition to synthetic gene clusters. afsB encodes a

DNA-binding protein and is a pleiotropic regulator that is

essential for ACT biosynthesis. An increase in copies of

afsB significantly improved the production of ACT and

RED. The introduction of afsB into S. lividans triggered the

transcription of ACT biosynthetic genes that were other-

wise silent (Horinouchi et al. 1989). afsB provides positive

regulation by stimulating its target genes and can trigger

RED biosynthesis in S. lividans.

cprA and cprB

In S. coelicolor, the gene products of cprA and cprB are

highly similar to each other. Onaka et al. (1998) found that

the deletion of cprA led to a sharp reduction of ACT and

RED. The introduction of cprA into the parental strain

resulted in increased antibiotic production. Those results

demonstrated that cprA positively regulated the biosyn-

thesis of ACT and RED (Onaka et al. 1998). The disruption

of cprB led to a precocious overproduction of ACT, but no

change was detected in the production of RED. These

results revealed that cprB only negatively regulated the

biosynthesis of ACT (Onaka et al. 1998). Another study

showed that cprA and cprB activated antibiotic biosyn-

thesis in S. coelicolor via the GBL quorum-sensing path-

way (Bhukya et al. 2014).

adpA and arpA

adpA, which is a pleiotropic regulator, encodes a

405-amino-acid protein containing a HTH DNA-binding

motif in its central region. AdpA showed high sequence

similarity to the transcriptional regulators of the AraC/

XylS family (Gallegos et al. 1997). To determine the

function of adpA in S. griseus, a disruption strain was

generated using in-frame deletion. No streptomycin was

detected in the disrupted strain, but streptomycin produc-

tion was recovered when adpA was introduced, showing

that adpA exerted a positive effect on streptomycin

biosynthesis (Higo et al. 2012; Ohnishi et al. 1999). ArpA

contains a region resembling the HTH motif that is present

in many transcriptional families. ArpA is an A-factor

receptor protein that negatively controls the production of

streptomycin in S. griseus. ArpA behaved as a repressor-

type regulator for streptomycin production (Onaka et al.

1995). adpA, arpA and A-factor form a widespread regu-

latory cascade in Streptomyces, termed the A-factor-adpA-

arpA regulatory cascade. There is a model for the A-factor

regulatory cascade that leads to streptomycin biosynthesis

(Ohnishi et al. 1999): A-factor gradually accumulates, and

when the concentration of A-factor reaches a certain point,

it binds ArpA and causes ArpA to dissociate from the

promoter, thus leading to the transcription and translation

of adpA. AdpA then activates the transcription of strR.

Therefore, the induction of StrR positively regulates the

transcription of most of the streptomycin biosynthetic

genes (Retzlaff and Distler 1995).

afsQ1/afsQ2 and cutR/cutS

afsQ1/afsQ2 is representative of the TCSs, with afsQ1

encoding an aspartic acid RR and AfsQ2 belonging to the

sensing kinases. AfsQ2, located in the membrane, is

autophosphorylated at His-294 upon sensing an environ-

mental signal, and the signal is then transferred to the Asp-

52 residue of the AfsQl protein in the cytoplasm (Ishizuka

et al. 1992). afsQ1/afsQ2 plays a pleiotropic role in the

secondary metabolism of antibiotics. cutR/cutS is the sec-

ond TCS found in Streptomyces that represses secondary

metabolism, and cutR/cutS also negatively regulates

antibiotic production. The time taken to produce ACT is

20 h shorter in the cutR/cutS mutant than in the parental

HK

Sensing 
domain

Transmitter 
domain

ATPase
domain

H D

ATP

ADP

RR

Receiver
domain

Effector
domain

Stimulus

Response

Fig. 3 The process of signal transduction in TCSs
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strain. The inactivation of cutR/cutS triggers an increase in

ACT production, and the introduction of cutR reverses this

change (Chang et al. 1996).

afsR-p/afsS

Parajuli et al. (2005) isolated the afsR-p gene from S.

peucetius ATCC 27952, and it had greater than 50%

sequence similarity to afsR from S. coelicolor. The over-

production of doxorubicin, c-actinorhodin, clavulanic acid

and streptomycin (slight), respectively, was detected in

strains of S. peucetius, S. lividans, S. clavuligerus and S.

griseus strains that carried the afsR-p gene (Parajuli et al.

2005). This demonstrated that AfsR-p may activate various

CSRs in antibiotic biosynthetic gene clusters in different

ways, leading to the speculation that phosphorylated AfsR-

p binds to the promoter region of afsS and that the latter

then triggers other regulators to induce the production of

certain secondary metabolites (Parajuli et al. 2005).

orfX/orf41 and phoR/phoP

Disruption of the orfX gene resulted in a significant but

incomplete loss of the production of avermectin in S.

avermitilis (Hwang et al. 2003). The increase in avermectin

may result from the role of orfX itself or from the collab-

oration of orf41 with orfX. Recently, a new TCS, phoR-

phoP, was found in S. lividans and S. coelicolor, and PhoP

was indeed a member of the OmpR family. The PhoR-

PhoP system may activate the formation of ACT and RED

via a specific repressor protein with phosphate-controlled

promoters, acting via a cascade mechanism (Sola-Landa

et al. 2003).

valP/valQ and rapR/rapS

valP and valQ, which can regulate validamycin in S.

hygroscopicus 5008, may encode a TCS regulatory protein

consisting of a HK and a Sigma B PP2C-like phosphatase

(Bai et al. 2006). RapR and RapS in Streptomyces

rapamycinicus ATCC 29253 share high sequence identities

with the RRs and HKs, respectively, of TCSs. Gene

expression analysis demonstrated that most of the rapa-

mycin biosynthetic genes were negatively controlled by

rapS (probably in collaboration with rapR) and rapY (a

CSR for the biosynthesis of rapamycin) (Yoo et al. 2015).

In addition, RapS represses the expression of rapY gene

and RapR/S is a repressor of rapamycin biosynthesis.

rapA1/A2, abrA1/A2 and abrC1/C2/C3

The rapA1 in S. coelicolor encodes a protein that belongs

to the OmpR family, while the sequence of RapA2 shows

characteristics that are typical of HKs (Lu et al. 2007). Lu

et al. (2007) found that RapA1/A2 is an activator of ACT

and a yellow cryptic polyketide (yCPK). The effect exerted

by rapA1/A2 on the biosynthesis of these antibiotics may

also depend on two CSRs, actII-ORF4 and kasO. The

disruption of rapA1/A2 and subsequent experiments with

the disrupted strain indicated that rapA1/A2 was a positive

TCS regulator of ACT [which is encoded by a type II

polyketide synthase (PKS)] and yCPK [which is encoded

by a type I PKS in S. coelicolor (Lu et al. 2007)]. abrA1/A2

is also a TCS regulator that negatively regulates ACT,

RED and CDA in S. coelicolor. However, abrC1/C2/C3 is

composed of two HKs and one RR that positively regulate

the abovementioned antibiotics. AbrC1 and AbrC2 are

HKs, while AbrC3 is a RR (Yepes et al. 2011).

ohkA

OhkA was reported to be an orphan HK in S. coelicolor

that repressed the biosynthesis of five known secondary

metabolites: ACT, RED, CDA, yCPK and albaflavenone

(Lu and Jiang 2013). The deletion of ohkA in S. coelicolor

caused a drastic increase in the biosynthesis of antibiotics,

especially of ACT and CDA (Räty et al. 2002). OhkA

negatively regulates secondary metabolites by repressing

CSRs in S. coelicolor.

Other regulatory genes

In addition to CSRs and pleiotropic regulators, there are

many other regulatory genes that deserve attention. These

include barZ in Streptomyces virginiae, which regulates

virginiamycin (Pulsawat et al. 2007); ppk from S. lividans

(Ghorbel et al. 2006); hyg1 and hyg3 (Palaniappan et al.

2006) from S. hygroscopicus NRRL 2388; and some reg-

ulatory genes whose functions remain unknown, such as

claR, which is related to cephamycin C and clavulanic

acid. Regulatory genes of this type are shown in Table 3.

Discussion

The regulation of secondary metabolite biosynthetic gene

clusters in Streptomyces spp. is currently receiving sub-

stantial attention. Many transcription units are apparently

regulated by several metabolite regulatory genes via tran-

scriptional activation or repression, and biosynthetic gene

clusters often collaborate with transcriptional regulators.

Furthermore, it is reported that many Streptomyces strains

can produce antibiotics. Analyses of the genomic sequences

of many Streptomyces spp., such as S. coelicolor and S.

avermitilis, have also been completed. These analyses pro-

vide a basis for post-genomic projects involving
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Streptomyces and will effectively promote studies of the

structure, function and expression regulation of biosynthetic

genes. In addition, many regulatory genes can also be

expressed in other strains and can influence antibiotic pro-

duction by heterologous expression combined with other

methods. For example, the integration of aveR, orfX, or afsR

in the chromosomes of S. hygroscopicus promoted rapa-

mycin production by approximately 3.8-fold, 1.2-fold or

slightly, respectively (Huang et al. 2011). Currently, we can

effectively influence antibiotic production by manipulating

regulatory genes involved in pathway-specific regulation or

pleiotropic regulation in Streptomyces. For example, as

introduced in this paper, the aveR mutants in S. avermitilis

lost the ability to synthesize avermectin, whereas the over-

expression of this gene increased the yield (Ikeda et al. 2003).

The overproduction of ACT, CDA andmethylenomycin was

detected in the nsdAmutant of S. coelicolor (Yu et al. 2006).

Hence, studying the regulatory mechanisms of secondary

metabolite biosynthesis, inactivating the transcriptional

repressors and overexpressing the transcriptional activators

in natural producing strains may allow the optimization of

antibiotic production. Further, it will provide a crucial the-

oretical basis for improving antibiotic production and using

regulators to activate silent gene clusters, thereby leading to

the discovery of new drugs.
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