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ABSTRACT It is shown that the Hopf algebra dual of a
supersymmetric Hopf algebra admits two presentations, and a
natural isomorphism between them is described.

Section 1. Introduction

We shall follow Sweedler's notation as well as the notation
introduced in refs. 1-4, with the following provisos: (i) in
dealing with supersymmetric algebras, special conventions
will be introduced relative to signs (much as in our previous
work) and (ii) the superscript * to designate dual modules will
not be used, since it clashes with our use of the same
superscript to designate adjoint signed sets, introduced in
section 3 of ref. 1 and used again below. All modules will be
taken over the integers Z.

All Hopf algebras will be assumed to be supersymmetric
algebras, namely, Hopf algebras of the form Super [A],
where A is a signed alphabet.
We define a generalization ofthe notion ofmeasuring in the

sense of Sweedler. Let Super[A], Super[B], and Super[C] be
supersymmetric algebras over signed alphabets A, B, and C,
respectively. Let 21 be a bilinear form from Super[A] x
Super[B] to Super[C], and let v, be the corresponding linear
form from the product Hopf algebra Super[A] 0 Super[B] to
Super[C]. We say that q is a Laplace pairing from Super[A]
0 Super[B] to Super[C] when q satisfies the following
identities:

1. v(101)=1;

2. g(W 0 w' w") = X ±Tg(w(l) 0 W')Q(W(2) 0 w")

for w in Super[A] and for w', wi' in Super[B];

3. ij(w w' O w") = Y ±?p(w 0 wi))(w' 0 w))
for w, w' in Super[A] and for w" in Super[B]; and

4. X(W0 w')(1) 0 r(W0 w')(2)

= +"(W(l) 0 W(1)) 0 1 (W(2) 0 W(2)).

The sign ± in identity 2 is determined by the following sign
convention: count the transpositions of pairs of negative
letters that are required to transform the word w w' w" in
Div(A U B) into the word W(l) w' W(2) w"-
The most important example of a Laplace pairing is given

by the linear map Q from Super[L] 0 Super[P] to Super[LIP]
that is obtained from the bilinear form Qi defined in section 2
of ref. 1 for proper signed alphabets L and P. Only identity
4 remains to be verified, namely,

l(wlw')(l) 0 (wlw')(2) = Y ±(W(j)IW(l)) 0 (W(2)1W(2)).

The proof of this identity follows familiar lines, by first
establishing the identity for w = x(k) and w' - a(k) and then
applying polarization operators.
Let f be a bilinear form on Super[A] x Super[B], with

values in Z. We say that g is a pairing of Super[A] x Super[B]
when it satisfies the following conditions:

1. V(1, 1) = 1;

2. {(W, W' W") = O±W(W(1), W') (W(2), W")

for w in Super[A] and for w', w" in Super[B]; and

3. f(w w', w") = L ±e(w, WI' ))(w, W('2))
for w, w' in Super[A] and for w" in Super[B].
Suppose 4 is a pairing of Super[A] x Super[B] and f' is a

pairing of Super[A'] x Super[B'], and supposef: Super[B'] -*
Super[B] and g: Super[A] -+ Super[A'] are linear maps of
modules. We say thatf is the right adjoint of g and that g is
the left adjoint off, relative to the pair f, f', when for all p
in Super[A] and for all q in Super[B'] the following identity
holds:

f(p,f(q)) = f '(g(p), q).
Let A be a signed set. We denote by (A#, t1) the pair

consisting of a signed set A# and a bijection qi: A -* A# that
maps A' to (A#)O, A- to (A#)-, and AO to (A#)+. We shall call
the signed set A# the dual signed set; ordinarily, the bijection
4, will be passed over in silence. If a is a letter of the signed
set A, we denote the letter 4i(a) of A# by a#. We have (A U
B)* = A# U B# for disjoint sets A and B. The dual signed set
A# must be distinguished from the adjoint signed set A*,
which is defined in section 3 of ref. 1, when A is a proper
signed set, as follows: the adjoint signed set A* is a proper
signed set A* together with a bijection 4: A -- A* such that
O(A+) = (A*)- and O(A-) = (A*)+.
We now define some of the pairings to be considered in the

present work. First, the pairing f# of Super[A#] x Super[A]
is defined to be the unique pairing satisfying the following
condition: if a is a letter of A and b is a letter of A#, we set
f#(b, a) = 1 if b = a# = fi(a), and we set 4#(b, a) = 0
otherwise. Second, we denote by f* the pairing of
Super[L*IP*] x Super[LIP] defined in proposition 5 of ref. 1
and there denoted by (p, q):

{*(p, q) = (p, q).
We can now state the motivation of the present work. The
supersymmetric algebra Super[LIP], like all graded Hopf
algebras, has a dual Hopf algebra. However, one cannot
work with the dual Hopf algebra unless a pairing is given, one
of whose terms is Super[LIP]. Any such pairing leads to a
representation of the dual of Super[LIP], and different pair-
ings lead to different representations. The pairing 4* between
Super[L*IP*] and Super[LIP] gives one such representation.
It is, however, a representation that is in some ways unusual.
We introduce below another pairing f##, one of whose

9250

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. Natl. Acad. Sci. USA 87 (1990) 9251

factors is Super[LIP] and the other is a Hopf algebra that we
call Symm[L#, PI]. This second pairing gives a representa-
tion of the dual Hopf algebra of Super[LIP] that is closer to
the ones previously considered. We are therefore led to
conjecture that a natural map exists that implements an
isomorphism between Super[L*IP*] and Symm[L#, Pf]. The
purpose of the present work is to describe such a map.

Section 2. The Free Supersymmetric Algebra

Let L and P be proper signed sets. Thefree supersymmetric
algebra Brace{L, P} is defined as follows: As an associative
algebra, Brace{L, P} is generated by expressions {wlw'}, where
w, w' are elements of Div(L) and Div(P), respectively. The
parity I{wlw'}I is defined to be Iwi + Iw'I, and the parity of a
product (which is indicated by juxtaposition) {wlw'}{w'"'Iw}
... is defined to be the sum I{wlw'}I + I{w"Iw"'}I + .... The
product in Brace{L, P} is subject to the following relations:

1. If Length(w) : Length(w'), {wjw'} = 0,

2. {wJw'} {w"Jw"''} = ±{w"Iw"'} {wjw'}, and

3. {1I1}= 1.

The coproduct in Brace{L, P} is defined as follows:

1. Set A{wlw'} = +{)w(i)Iw()}I0 {W(2)IW(2)};

2. If W ={wlw'}{w"Jw"'}.I ...

set AW = A{wlw'}A&{w'Iw..'} ....

Brace{L, P} is a bialgebra but not in general a Hopf algebra.
PROPOSITION 1. The map 4D: Brace{L, P} -- Super[LIP]

defined by setting .P({wlw'}) = (wlw') extends uniquely to a
bialgebra map ofBrace{L, P} onto Super[LIP].
We define BraceA{L, P} for every shape A to be the sub-

module of Brace{L, P} spanned by all elements {wlw'}f{w"Iw..'}
..., where Length(w) = Length(w') = A1, Length(w") =
Length(w") = A2.....
We remark in passing that Brace{L, P} can also be defined

by the following universal construction. Consider the under-
lying coalgebra of Super[L] 0 Super[P]; in this coalgebra
consider the coideal J generated by all pairs w 0 Wi, where
Length(w) $ Length(w'). Then Brace{L, P} is the free su-
percommutative bialgebra generated by the quotient coalge-
bra Super[L] 0 Super[P]/J.

Section 3. The Cofree Supersymmetric Algebra

We next define another bialgebra on a pair of signed sets L#
and PI, to be called Symm[L#, PI], where L and P are proper
signed sets. It is defined by the following steps.
1. If A is a shape, so that A = (A1, A2, . . .), let D = (w1, w2,
... ) be a Young diagram of shape A whose entries are words
in Mon(L#) such that Length(wl) = A1, Length(w2) = A2,
.... Similarly, let E = (v1, V2, ...) be a Young diagram
whose entries are words in Mon(P#) such that Length(vl) =
A1, Length(v2) = A2, ... We denote by SuperA[L#, P#] the
tensor product module spanned by all elements

Tens(D, E) =±(wl 0 v)0(W2 0V2) 0 ....

The parity ITens(D, E)J of the element Tens(D, E) equals
IWiI+1w21+ - - - +Ivi+1v21+ *. - -

2. Suppose that the shape A has components A1, A2, .., Ak,
and recall that A1l A2 2.... Ak. Let Ylk be the group of
permutations of the set {1, 2, . .. , k}. We consider the

subgroup X(A) of Yk consisting of all permutations such that
(AO,1, Ac,2 ...* Aak) = (A1, A2, . . ., AD).
3. We define an action of the group Y(A) on Super[L#, P#]
by setting

aTens(D, E)

= ±(Wal 0 V41) 0 (W,2 09 Vo,2) ..* (w Vrk)

and extend to all of SuperI[L#, P#] by linearity.
4. An element p of SuperA[L#, P#] is said to be a supersym-
metric element when o-(p) = p for all oc in X(A). We stress the
fact that, in general, a supersymmetric element is a linear
combination of several elements of the form Tens(D, E). The
submodule of SuperA[L#, P#] consisting of all supersymmet-
ric elements is denoted by Symmk[L#, P#].
Example: Let x# be a negative element of L#, let y# be a

neutral element ofL#, and let a# and I# be negative elements
of P#. Then the element

(x# 0 a#) 0 (y# 013#) + (y# 013#) 0 (x# 0a#)

is supersymmetric, even though neither the element (x# 0
a#) (0 (y# 0 P#) nor the element (y# 0 f#) 0 (x# 0 a#) is
supersymmetric.
5. We are at last in a position to define the underlying module
of the yet-to-be-defined bialgebra Symm[L#, P#]. It is the
direct sum

3 SymmALI, P#],
A

where the sum ranges over all shapes A. Every element of
Symm[L#, P#] is a linear combination of elements of well-
defined parities.
6. We next define an integer-valued bilinear form 6## on
Symm[L#, P#] X Brace{L, P} as follows. Suppose W is an
element of Symm,[L#, P#] and V is an element of BraceA{L,
P}. Then, ifup A, define 6##(W, V) = 0. If A = A, suppose

W = 2(W1 0V1) 0 (W2 (0 V2) ...*. (Wr0 Vr)

is a supersymmetric element, and V = {wlvi}{wjv.}..
{w'Ivr}, with Length(w') = Length(v') = A1, Length(w') =
Length(v') = A2 .... Define f##(W, V) to be

±f#(W1, Wj) #(W2, W2) ...*#(Wr, Wr)

G#(V1, VD) G(V29 V2) .. W#Vr, Vr')

In view of the definition of supersymmetry of W, this
expression is well-defined!
7. We now define the structure of a graded bialgebra on
Symm[L#, PI] to be the adjoint bialgebra of the bialgebra
Brace{L, P} relative to the bilinear form f##. Specifically, we
define product and coproduct in Symm[L#, P#] so as to
satisfy the following identities. Let

W = Y(W10 V1) 09 (W2 09 V2) . ** (Wr. 9 Vr),

U= 1:(u, 0 tj) (U2 8 t2) ..* * U@(UStS)

be elements of Symm[L#, PI] having parities WI and IUI. Let

V = {W|IV}{W|IV'} . . . {w, vIn}

be an element of Brace{L, P} having parity MV|.
The product WU in Symm[L#, P#] is uniquely defined by

the identity

4##(WU, V) = I -+##(W, V(1))e##(U, V(2)), [1]
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where the sign ± equals sign(IUJIV(l)1). The coproduct in
Symm[L#, P*] is defined to satisfy the similar identity

G##(W, VV') = E: ±6##(W(l), V)G##(W(2), V') [2]

with a similar sign convention. Identities 1 and 2 are similar
to identities 2 and 3 of Section 1 in the definition of a pairing
of supersymmetric algebras. By an abuse of language, we
shall also refer to the bilinear form f## as a pairing of
Symm[L#, P#] X Brace{L, P}.

Recall that the left adjoint map T to the map 4, relative to
the pairing 6## of Symm[L#, P#] X Brace{L, P} and the
pairing f* of Super{L*IP*] x Super[LIP], is defined to satisfy

6##(P(p), q) = e*p, 4(q)).

Thus we have that the map

I: Super[L*IP*] Symm[L#, P#]

is injective.
We remark in passing that Symm[L#, P#] can also be

defined by the following universal construction. Consider the
underlying algebra of Super[L#] 0 Super[P#]; in this algebra
consider the subalgebra A generated by all pairs w 0 w',
where Length(w) = Length(w'). Then Symm[L#, P#] is the
cofree supercocommutative bialgebra generated by A. The
universal constructions leading to Brace{L, P} and
Symm[L#, P#] are dual to each other.

Section 4. Definition of the Schur Map

We now consider the left adjoint c of the linear map Qk,
relative to the pairings f* and f##. The operator c is uniquely
defined by the identity

dps, f(w 0 w')) = G##(&o(p), w 0 w')
holding for all p in Super[L*IP*], w in Super[L], and w' in
Super[P].

Since fi is a map of coalgebras, it follows that co:
Super[L*IP*] -> Super[L#] 0 Super[P#] is a map of algebras.
It is therefore uniquely determined by the following rules:
1. If x* is positive and a* is positive, then, for k > 1,
w((x*Ia*)(k)) = 0 and w((x*Ia*)(l)) = -X# 0& a#;
2. Ifx* is positive and a* is negative, then w((x*la*)) = -x#
0 a#;
3. Ifx* is negative and a* is positive, then co((x*Ia*)) = +x#
09 a#;
4. Ifx* is negative and a* is negative, then cw((x*Ia*)) = +x#
0 a#; and
5. If p and q are elements of Super[L*IP*], then c(pq) =
w(p)w(q); and
6. cl(l) = 1.
The most important property of the map co is specified by the
following:
PROPOSITION 2. Let Length(w*) = Length(u*) > 1, where

w* E Super[L*] and u* E Super[P*]. Then

co((w*lu*)) = 0.

Proof. By proposition 6 of ref. 1 we have for all (w'Iu') in
Super[LIP] with Length(w') = Length(u') > 1 that

0 = 6*((w*lu*), (wOu')) = 6*((w*lu*), fk(w' 0 u'))

= G##(Co((W*IU*)), W' 0 u'),

as desired. Using the map cl, we can now give an explicit
computation of the map I, as follows:

PROPOSITION 3. The map T is uniquely determined by
specifying T(1) = 1 andfor biproducts ofpositive lengths that

'I((wlu))
= ± co((w(l)Iu(l)))Oco((w(2)Iu(2)))&. ..

r

where the sum ranges over all nonnegative integers r, and
with the restriction that the Length(w(l)) = Length (u(1)) .
Length(w(2)) = Length(u(2)) 2 ... > Length(w(r)) =
Length(U(r)) > 0.

Since cl maps to zero all biproducts of length greater than
one, we have the following:
PROPOSITION 4. The image of T((wlu)) lies in SymmA[L#,

P#], where A = (1, 1, 1, . . . , 1).
Let D and E be Young diagrams of the same shape A on L*

and P*, respectively. Then T(Tab(DIE)) is a linear combi-
nation of supersymmetric elements in Symm[L#, P"], whose
shapes are all c A* in the dominance order of shapes.
We are now ready to present our main definition, namely,

the definition of the Schur map.
Definition: The Schur map

Schur: Brace{L*, Pf*} Symm[L#, P#] [3]

is the map

Schur = T (D.

Since both (D and T are maps of bialgebras, the Schur map
is a map of bialgebras. Furthermore, since 4F is a surjective
map onto the Hopf algebra Super[L*, P*], and since T is an
infective map, the image of the Schur map is a sub-Hopf
algebra of the bialgebra Symm[L#, P#]. In this way, we
obtain two new presentations of the supersymmetric algebra
Super[L*IP*]: the first, as a quotient Hopf algebra of the
bialgebra Brace{L*, P*}, and the second, as a sub-Hopf
algebra of the bialgebra Symm[L#, Ps]. We see from defini-
tion 3 that the Schur map changes signs of all letters, from
positive to negative and from negative to neutral.
Our objective is to show that the Schur map is selfadjoint.

To this end, we make a new start, leading to the definition of
the adjoint Schur map Schur*. Starting with the identity

G*(f(w 0 w'), p) = G##(W 0 w', w*(p)), p E Super[LIP],
which defines the right adjoint c* of

fi: Super[L*] 0 Super[P*] -*Super[L*|P*].

Note that the maps w and a* can be succinctly defined by the
formulas

w((x*la*)) = (-1)la*lx# 0 a#

and

cW*((xla)) = (-1)la*I(X*)# 0 (a*)#.

Second, we replace the map T by the map

T*: Super[LIP] Symm[(L*)#, (P*)#]
defined to satisfy (*(¢(p), q) = 4##(p, t*(q)). This map is the
unique algebra map satisfying T*(1) = 1 and

P*((wlu))
= E +(O*((W(1)IU(1))) 0 &o*((W(2)IU(2))) 0 ... 0C)*((W(r)Iu(r)))

Proc. NatL Acad. Sci. USA 87 (1990)
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with Length(w(j)) = Length(u(l)) - Length(w(2)) = Length(u(2))
2- . . . 2Length(w(,)) = Length(u(r)) > 0. For'1: Brace{L*, P*}

Super[L*IP*I, we obtain a map

Schur* = T*¢

and we can state the adjointness relations

4##(Schur(p), q) = {*(¢1(p), F(q)) = f##(p, Schur*(q)).

Thus we see that the map Schur can be viewed as selfadjoint.

Section 5. Computation of the Schur Map

Since Schur maps the graded bialgebra Brace{L*, P*} to the
graded bialgebra Symm[L#, P#], and since both these alge-
bras are graded by shapes, the map Schur decomposes into
a direct sum of maps of modules

Schur(/i, A): Brace,{L*, P*}-* SymmA[L#, P#].

Our present objective is to obtain explicit formulas for
Schur(,u, A) in some special cases. We shall do this by
analyzing the identity

f##(Schur(p), q) = (##(T4?(p), q) = 4*(F(p), F(q)),

which follows from the definitions of Schur, F>, and T. Let
{w1u }{w'Ju'}.. . {w5|u'} be an element of Brace,{L*, P*}.

Since the Schur map is a map of algebras, we have that

Schur(,u, A)({wiJui}{w'Iu1} {wluD})
equals the component in degree A of the expression

(co) s . .. w)(Ay"(wilui))(co s . .. cv)

(Ay2(w2lu29))... (oO ... 0* v)AY(wsIus),
where ,u = (pul, F2, .. , ). Thus, Schur(A, A) = 0 unless
A -< ,* in the dominance order.
Example 1: Let x* E (L*)+ and a* E (P*)+. The image

under the Schur map of the element {X*(n)Ja*(n)} of Brace{L*,
P*} is the element of Symm[L#, P#] given by

Schur({x*(n)Ja*(n)}) = (-l)n(x# 0 a#) 0 (x# 0 a#).

Example 2: Let xA.,x, x* E (L*)-, and let a*,, a'l,
... ., a* E (P*)-. The image under the Schur map of the
element {x*'xJ . . . x*Ja'1aJ . . . a*} of Brace{L*, P*} is the
element of Symm[L#, PI] given by

Schur({x~xJ ... x*Jala .* a*})

= (-l)("-1)/2 (-1)(- 1)T(x#l 0 a# ) ... 0( (x,0n a#).
a,T

Example 3: Choose a shape A such that A = (p, q, . . . , r)
(a total of k nonzero components) and A* = (k, m, . . . , n) (a
total of p nonzero components). When the letters xA and ac
are all positive, we have

Schur(A, A *){(x*1)( P)|(a*)(P)} f(X*1)(q)J(a*1)(q)1 .

{(X1)(r)I(a1)(r)}) = (-1)k(k+l)/2( 1)m(m+1)/2 .

(-l)n(n+1)12(x#x ...
I

a Ia... aI)

X21X2*Xm 2 * * * m

(X#1X#2 ..x.x#
.a..a#* *.*as.).

Section 6. Polarizations

We introduce polarization operators D(b*, a*) and D(p*, a*)
on Brace{L*, P*} and polarization operators D(b#, a#) and
D(13#, a#) on Symm[L#, P#]. They will commute with the
Schur map, in the sense that

Schur D(b*, a*) = +D(b#, a#)Schur

and

Schur D(JB*, a*) = +D(fi#, a#)Schur.

The operators D(b*, a*) are defined to satisfy the following.
1. D(b*, a*) {wlw'} = {D(b*, a*) wlw'}, where D(b*, a*) is the
polarization on Super[L*] introduced in refs. 2 and 3.
2. When the letters a* and b* are of the same sign, then the
polarization D(b*, a*) is positive, as noted in ref. 3. We shall
presently need the divided powers D(k)(b*, a*) and D(k)(b*,
a*) of D(b*, a*) and D(b*, a*), which are defined to satisfy

D(k)(b*, a*){wlw'} = {D(k)(b*, a*)wjw'};
D(k)(b*, a*)(pq) = I (D(')(b*, a*)p)D(J)(b*, a*)q

i+j=k

and similarly for D(p*, at*).
The polarizations D(b#, a#) and D(b#, a#) are positive

when both letters are of the same sign, and negative other-
wise. The polarization D(b#, a#) is defined on Super[L#];
similarly, D(,8#, a#) is defined on Super[P#].
PROPOSITION 5. The polarization operators thus defined

satisfy the following commutation identities:
1. when a* and b* are of the same sign, then

Schur D(b*, a*) = D(b#, a#)Schur;

2. when a* and b* are of different signs, then

Schur D(b*, a*) = -D(b#, a#)Schur,

and similarly for D(/3*, a*) and D(13#, a#).
By judicious use of polarization operators, as in refs. 2 and

3, one can compute the Schur map in more general situations
than the ones given above. For example, to compute

Schur(A, A*)W,

where

W = {X*¶1X*.2... .. .a¶j}{x1lHxI2 ...*x. ajjaI2
* aq}***{.. X142 ... Xralla12.L.. alrb

where all letters are negative, we find that

W = T*{(x.)(P).(a.)(P)}{(Xj)(q~j(Cj)(q)}* *(xk) I(ak)(})
for a suitable operator T* that is a product of polarization
operators. Thus,

Schur(A, A*)W = Schur(A, A*)T*({(xj)(P)I(aj)(P)}
(Xj)(q)I(al)(q)} .. . *{(x%)(r)j(a%)(r)}) -

T# Schur(A, A*)({(x*j)(P)l1(a0)()pHl(XI)(q)l (a*j)(q)}
I(xl)'''l(a%)(r}),

where T# is the corresponding product of polarization oper-
ators on Symm[L#, P#].

Mathematics: Rota and Stein
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Section 7. Time-Ordering

We extend the definition of a time-ordered supersymmetric
algebra, given in section 6 of ref. 3, to the more general case
of an arbitrary proper signed alphabet, rather than positively
signed letters only, as we did in ref. 3.

Let Q be a proper alphabet (that is, a linearly ordered
signed set). Proceeding as in proposition 6.1 of ref. 3, we
define an isomorphism of Tens(Super[L* U L*]) with
Super[L*IQ]. Such an isomorphism is implemented by the
Feynman entangling operator

9;: Tens(Super[L* U L#]) Super[L*IQ]
and the Feynman disentangling operator

6: Super[L*IQ] -+ Tens(Super[L* U LI]),

which we proceed to define. Let p be a monomial in Tens
(SupnrrL* U LI]) of the form

=WlXllX2. . .4k® W2XSX222 * *X2m ***

Hei , w1, w2,... are words in Super[L*I, and x'!1 are letters
in L#, xI x2 ... xk, andx#lsx#2s... sX2m, etc.
We entangle the monomial p as

9I(p) = (wjjq''))(xtijnj)(xt2jni) ...

(X~lklnl)(W21q i2)(xjijn2)(X1z2jn2) ... (xjmln2)***

where q1, q2,. . . are the first, second,. . . letters of Q+ and
n1, n2, . . . are the first, second, . .. letters of Q-.
To define the Feynman disentangling operator, let p' be a

monomial in Super[L*IQ]. Such a monomial can be uniquely
written in the form

p' = (wjjq('))(xtjjnj)(xt2jnj) ...

(xtkjn1)(W2jq(2 )(xjijn2)(x12jn2) . . . (XlmlnZ) ..xmj
with the same assumptions as to ordering of the letters, and
we set

W1X11X12. . . X lk® W2X21X22* X

Clearly, both 9;9 and 69 are identity operators.
Denote by SuperA[L] the tensor product module spanned

by all elements

Tens(D) = w1 w2 **,

whereD = (w1, w2, . . .) is a Young diagram of shape A whose
entries are works in Mon(L).

Using the Feynman entangling and disentangling opera-
tors, we now define the Buchsbaum maps (see refs. 6 and 7),

BA: SuperO[L*] Super *[L#],
as follows. LetD = (w1, w2,.. .) be a Young diagram of shape
A in Super[L*]. Let F be the diagram of shape A in Super[Q]
defined as F = (q'l), q&A),. . .), and let G be the diagram of
shape A defined as

G= (nln2 . .nk, njn2 . . . nA2*

The Buchsbaum map BA is defined as

BA(w10W2 $) ... (9Wr) = BAk 29(Wl 0 W2 0 .. .. W)

= BA 9 Tab(DIF) = 26D(nl, ql)D(n2, ql) ...

D(nj, q2)D(n2, q2) ...* D(nj, q,)D(n2, qr) . . .

D(nfAr, qr)Tab(D|F).

Thus,

BA(W10w2 0 .. .. Cwr) = +ta Tab(DIG).
Thus, we see that the Buchsbaum map BA can be defined by
the commutation identity

BAkb = 2D(nl, ql)D(n2, qj) ... D(nj, q2)D(n2, q2) . . .

D(nj, qr)D(n2, qr) . . . D(nAk, q") = )DA,

where

DA = D(n1, q1)D(n2, q1) ... D(n1, q2)D(n2, q2) . . .

D(nj, qr)D(n2, q,) ... D(nks q,).

Multiplying on the right by the operator 9;, we obtain

BA = 26DA9;.
Using a more general sum of products of polarization oper-
ators DA,. (which we shall not describe here) one can define
a more general Buchsbaum map

BA,: SuperA[L*] -* Super!I[L#]
by a similar commutation identity

BA, = 2bDAg9-
Let D = (W1, W2,.. .) be a diagram of shape A in Super[L*I
and let E = (v1, v2,. . .) be a diagram of shape A in Super[P*I.
Set

Tab{D|E} = +{WllVl}{w2lv2} .... [4]

We are now ready to state our main result.
THEOREM 1. Let A be a shape and assume that the dual

shape A* has k parts. Suppose that

BA(9Tab(DIF)) 0 BA(26Tab(EIF))

=X S1 0 S2 * ** Sk 0 tl t2 ® ... 9 tk

where s10 s2 0 . . .O Sk E= SuperA*[L#] and tj t2t . ..
tk E SuperA*[P#I. Then,

Schur(A, A*)Tab{DIE}
= -+(sl0 tl)® (S20 t2)® .. .O (Sk tk)-

The preceding result can be extended to Schur(A, ,).
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