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The real-time detection of changes in a noisily
observed signal is an important problem in
applied science and engineering. The study of
parametric optimal detection theory began in the
1930s, motivated by applications in production
and defence. Today this theory, which aims to
minimize a given measure of detection delay under
accuracy constraints, finds applications in domains
including radar, sonar, seismic activity, global
positioning, psychological testing, quality control,
communications and power systems engineering.
This paper reviews developments in optimal detection
theory and sequential analysis, including sequential
hypothesis testing and change-point detection, in
both Bayesian and classical (non-Bayesian) settings.
For clarity of exposition, we work in discrete time
and provide a brief discussion of the continuous
time setting, including recent developments using
stochastic calculus. Different measures of detection
delay are presented, together with the corresponding
optimal solutions. We emphasize the important
role of the signal-to-noise ratio and discuss both
the underlying assumptions and some typical
applications for each formulation.

This article is part of the themed issue ‘Energy
management: flexibility, risk and optimization’.

1. Introduction
Methods for detecting changes as quickly as possible
in a noisily observed signal have a wide array of
applications including finance [1], cyber security [2],
epidemiology [3], metrology [4], statistical diagnosis
[5] and, recently, the detection of instability in power
systems [6]. These problems have been studied since
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the 1930s. Motivated by applications in production and defence, they were cast as parametric
constrained optimization problems. To date a wide variety of formulations have been posed and
solved, including both Bayesian and classical (non-Bayesian) settings, and in both continuous
and discrete time. This theory now finds applications in domains including radar, sonar, seismic
activity, global positioning, psychological testing, quality control, communications and power
systems engineering.

The most basic detection problem is that of hypothesis testing. In the simplest problem, a fixed
dataset is given and the goal is to detect which of two distinct hypotheses has better statistical
support. An optimal solution was provided in 1933 by Neyman & Pearson [7]. In the 1940s
the field of sequential analysis emerged in which the dataset is not fixed but is assumed to be
observed sequentially. The goal is to decide between the two hypotheses as quickly as possible,
while respecting constraints on detection accuracy. Wald and co-authors proposed the sequential
probability ratio test (SPRT) in 1940s [8]. In this approach, a test statistic is calculated at each step in
the sequence. Depending on the value of this statistic, it is decided to either accept one hypothesis
or the other, or to seek more data by continuing to the next observation in the sequence. The
optimality of this approach was proved in 1948 [9].

A natural extension is the sequential change-point detection problem, in which the process
generating the data is assumed to change its probabilistic characteristics at an unknown change-
point in the sequence. In this problem, the challenge is to detect the change-point with minimal
average delay under constraints on premature detections (known as false alarms). Such problems
were considered in a classical setting by Shewhart in 1931 [10] then later by Girshick &
Rubin in 1952 [11] and Page in 1954 [12]. In the classical approach, the change is assumed to
occur at a deterministic unknown time. This contrasts with the Bayesian approach, in which
a prior probabilistic distribution is assigned to the change-point and then used to inform the
constrained optimization procedure. In 1963, Shiryaev studied this Bayesian formulation of the
change-point detection problem [13]. The optimality of Page’s approach was later established by
Moustakides [14] (see also [15]) in the context of a formulation due to Lorden [16] in 1971.

In this paper, we review techniques which can be shown to be optimal in the above problems,
in the sense that they solve the constrained optimization problem exactly. We also wish to
emphasize the important role that the signal-to-noise ratio (SNR) plays throughout these problems.
For a clearer exposition, we formulate the problems in discrete time and provide a separate
discussion of the continuous time setting. While technically more demanding, the latter setting
has the advantage that solutions may be obtained using stochastic calculus.

In line with the canonical work of Neyman and Pearson and the first algorithms for change-
point detection in 1931 by Shewhart [10], our running example is that of normally distributed
data whose mean takes one of two possible values. We use this example to connect the problems
and their solutions. Since both classical and Bayesian settings are presented, random variables
will be denoted using bold font throughout this review. We do not assume prior knowledge of
the material.

The paper is organized as follows. Section 2 considers the hypothesis testing problem and the
SPRT. Section 3 presents the change-point detection problem in various formulations, including
possible formulations of average delay and constraints on false alarms. Discussion of the
continuous time setting is provided in §4.

2. Hypothesis testing
A main distinction in detection theory is between online and offline testing. In offline testing, the
dataset is fixed and detection accuracy is the only concern. In online testing, the data arrive in
sequence to form a running (i.e. increasing) dataset and the average detection delay is also of
primary importance.

The observed data are assumed to be generated by a particular stochastic process. The
probabilistic properties of this process are known, conditional on the value of an unknown
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Figure 1. Observedprocesses fromtwopossiblehypotheses, onewithameanof zero (H0) and theotherwith ameanμdifferent
fromzero (H1). In this scenario, the underlying hypotheses are easily recognized in the datasets; however asμdecreases towards
zero (or the variance increases) the underlying hypothesis becomes more difficult to determine and so sequential analysis
is required.

test statistics

H0

H1

time

Figure 2. Anexample of possible test statisticswhich can be compared to defineboundaries in order to detectwhich hypothesis
the data are deemed to be derived from. In this case, hitting the upper boundary would provide the decision that the data
are derived from the alternative hypothesis H1, while on hitting the lower boundary we accept H0.

parameter. In both the offline and online formulations, we must decide which of two or more
hypotheses about this parameter are best supported by the data. Figure 1 shows examples
of observed stochastic processes generated with two different parameter values. They are
simulations from a Gaussian white noise process with differing mean values, and this model
will be used in a running example below.

The general methodological approach is to create a sufficient statistic (a test statistic) from the
data which contains all information necessary to make a decision optimally. In online testing, we
therefore seek a process of sufficient statistics, updated with each new observation. This process of
sufficient statistics is a stochastic process itself (see figure 2).

In the canonical setting, we consider two hypotheses, the null hypothesis H0 and the
alternative hypothesis H1. It is apparent that there are two errors to be avoided in this setting.
A type 1 error is to accept H1 when H0 is true. This is also known as a false alarm and in the
following we shall denote the probability of false alarm by PFA. Conversely, a type 2 error occurs
upon accepting H0 when H1 is true. This is a missed detection or a false serenity, the probability of
which will be denoted PFS. Hence the probability of detection is given by PD = 1 − PFS.

The offline case was solved by Neyman and Pearson in 1933, resulting in the classical Neyman–
Pearson (NP) test [7]. For a fixed dataset that has a known distribution under each hypothesis, the
NP test was proven to be optimal in terms of maximizing the probability of detection for a given
probability of false alarm. When the distribution of the fixed or sequential data is known under
each hypothesis, this is known as a simple hypothesis test.

The NP test has been adapted to the online setting in the form of a sliding NP test. However,
the former is fundamentally designed to maximize the detection probability rather than to
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address detection delay. Indeed the sliding NP test has not been shown to be optimal in terms
of minimizing any useful notion of detection delay, such as those discussed in §3, under fixed
false alarm constraints. We therefore begin consideration of online detection with the pioneering
work of Wald on sequential analysis and the SPRT in the 1940s.

(a) Sequential probability ratio testing
The SPRT originated in Abraham Wald’s canonical work on sequential analysis in the 1940s.
Building on the NP test, he derived a sequential hypothesis test which is designed to gather data
until a desired level of confidence has been reached in one of the hypotheses.

The following example will be used throughout this paper. Consider a probability space
(Ω ,F , P) on which a stochastic process

x[i] = σw[i] + θμ, i = 1, 2, . . . (2.1)

is defined where it is assumed that σ > 0 and μ �= 0. The discrete-time Gaussian white noise w[i]
(for i = 1, 2, . . .) is defined to be independent and identically distributed (i.i.d.) N(0, 1) random
variables. We set the task of choosing between the hypotheses

H0 : θ = 0 (2.2)

H1 : θ = 1 (2.3)

so that the generating processes under the two hypotheses are

H0 : x[i] = σw[i] (2.4)

H1 : x[i] = σw[i] + μ (2.5)

for i ≥ 1. These are the two processes depicted in figure 1. In this example, we are therefore aiming
to detect the presence of a constant signal μ with additional random noise w, where under H0 only
the white Gaussian noise is observed while under H1 the signal is also present. At each time i,
Wald’s SPRT statistic makes one of three decisions: to stop and decide that θ = 0, stop and decide
that θ = 1, or to continue the observations.

It is clear from (2.4) and (2.5) that the hypothesis determines the probability distribution of the
observations x[i], and hence their associated probability measure. In the following, we will write
P0(·) = P(·|H0) and P1(·) = P(·|H1). Hence P0(A) indicates the probability of an event A under the null
hypothesis H0, and P1(A) indicates its probability under the alternative hypothesis H1. Similarly,
we define the associated expectation operators E0(·) = E(·|H0) and E1(·) = E(·|H1). Letting Xn denote
the random vector of the first n observations so that Xn = (x[1], x[2], . . . , x[n]), its (joint) probability
density function under the two hypotheses will be denoted by f n

0 (Xn) and f n
1 (Xn) under H0 and

H1, respectively. For simplicity throughout the paper, the notation will be simplified by writing
fi(Xn) instead of f n

i (Xn) under Hi, for i = 0, 1. By the assumption of independence we have

fi(Xn) =
n∏

k=1

fi(x[k]) (2.6)

for i = 0, 1.
Before stating the main result of this section, we introduce the relative entropy or Kullback–Leibler

distance between the densities f0 and f1 by setting

D( f0‖f1) =
∫∞

−∞
f0(x) log

(
f0(x)
f1(x)

)
dx (2.7)

and similarly

D( f1‖f0) =
∫∞

−∞
f1(x) log

(
f1(x)
f0(x)

)
dx. (2.8)
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Theorem 2.1 (sequential probability ratio test, cf. [17, ch. 2]). Let Xn = (x[1], x[2], . . . , x[n])
where x[i] are i.i.d. random variables with density either f1 or f0. The likelihood ratio is then defined as

L(Xn) = f1(Xn)
f0(Xn)

. (2.9)

Then the first entry time τ to the stopping set D = (0, γ0] ∪ [γ1, ∞) given by

τ = inf{n ≥ 1 | L(Xn) ∈ D}, (2.10)

with

γ0 = 1 − PD

1 − PFA
and γ1 = PD

PFA
, (2.11)

minimizes the expected test length Ei[τ ] for both i = 0 and i = 1, with false alarm probability PFA and
detection probability PD. The expected test lengths are approximately given by

E0[τ ] ≈ D(f0‖f1)−1((1 − PFA) log(γ −1
0 ) − PFA log(γ1)) (2.12)

E1[τ ] ≈ D(f1||f0)−1(PD log(γ1) − (1 − PD) log(γ −1
0 )). (2.13)

(i) Signal-to-noise ratio

In the case where the observed data are normally distributed as in (2.4) and (2.5) we have that
D(f0‖f1) = D(f1‖f0) = μ2/2σ 2.

The ratio μ2/σ 2 is often referred to as the SNR and it follows from (2.12) and (2.13) that in
the Gaussian case, increasing the SNR decreases the average test length under both hypotheses.
A practical consequence of this fact is that if the SNR can be increased (e.g. using signal processing
techniques—see, for example, [18]) while preserving the Gaussian data output, then this will
increase the average speed of detection. This ratio is also important in continuous-time sequential
analysis due to the Gaussian nature of the Brownian motion (see §4).

More generally, it can be seen that the relative entropies, or Kullback–Leibler distances,
between the densities f1 and f0 are inversely proportional to the expected detection delays. This
corresponds to the intuitive idea that two distributions may be distinguished more quickly when
they are more distinct.

(ii) Example

In our running example of detecting a constant amplitude signal among Gaussian white noise,
the likelihood ratio derived from the first n observations Xn = (x[1], x[2], . . . , x[n]) is

L(Xn) =
n∏

i=1

f1(x[i])
f0(x[i])

= exp

[
− 1

2σ 2

(
−2μ

n∑
i=1

x[i] + nμ2

)]
. (2.14)

By theorem 2.1, for each n ≥ 1 it is optimal to compare the value of L(Xn) with the boundaries
given by (2.11). Equivalently, we may define

T(Xn) = 1
n

n∑
i=1

x[i] (2.15)

and

γ̃i = σ 2

nμ
log γi + μ

2
(2.16)

for i = 0, 1 and compare the running mean test statistic T(Xn)n≥1 with the thresholds γ̃0 and γ̃1 as
follows. At each time step (n = 1, 2, . . .), one of the following decisions is made:

(i) if T(Xn) ≤ γ̃0, stop observing and accept the hypothesis H0;
(ii) if T(Xn) ≥ γ̃1, stop observing and accept the hypothesis H1;

(iii) if γ̃0 < T(Xn) < γ̃1, continue to time step n + 1.
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(b) Bayesian formulation
In the Bayesian formulation of the hypothesis testing problem, the unknown value θ is assumed
to be a random variable taking the value 0 or 1 with a known distribution (and independent of
the noise process (w[i])i≥1). In this setting, we work with the prior probability measure Pπ , which
is derived from the probability measures Pi above for i = 0, 1. Writing π for the probability that θ

takes the value 1, and setting

P0(θ = 1) = 0 (2.17)

and

P1(θ = 1) = 1 (2.18)

we define the prior probability measure Pπ (·) as

Pπ (·) = πP1(·) + (1 − π )P0(·). (2.19)

Under this new measure we have

Pπ (θ = 1) = πP1(θ = 1) + (1 − π )P0(θ = 1)

= π (2.20)

and similarly Pπ (θ = 0) = 1 − π .
Then we define the posterior process to be the probability of H1 (equivalently θ = 1) given the

data we have observed

Πn = Pπ (H1 | Xn). (2.21)

This posterior process can be related to the likelihood ratio at time n. For simplicity, we indicate
the derivation in the case that the observations are drawn from a discrete distribution; the
derivation for continuous random variables is analogous. Using Bayes’ formula P(A | B) = P(A)P(B |
A)/P(B), and the law of total probability P(B) = P(A)P(B|A) + P(Ac)P(B|Ac), we have that

Πn = Pπ (H1)Pπ (Xn | H1)
Pπ (H0)Pπ (Xn | H0) + Pπ (H1)Pπ (Xn | H1)

(2.22)

= πPπ (Xn | H1)
(1 − π )Pπ (Xn | H0) + πPπ (Xn | H1)

(2.23)

= (π/(1 − π))L(Xn)
1 + (π/(1 − π))L(Xn)

, (2.24)

where the likelihood ratio at time n is defined as

L(Xn) = Pπ (Xn | H1)
Pπ (Xn | H0)

. (2.25)

Theorem 2.2 (Bayesian sequential testing, cf. [19, ch. 4]). Let Xn = (x[1], x[2], . . . , x[n]) where
x[i] are i.i.d. random variables having density f1 with probability π and density f0 with probability 1 − π .
Let

Πn = (π/(1 − π))L(Xn)
1 + (π/(1 − π))L(Xn)

, Π0 = π (2.26)

with

L(Xn) = f1(Xn)
f0(Xn)

. (2.27)

Then the first entry time τ of Πn to the stopping set D = (0, A] ∪ [B, 1) given by

τ = inf{n ≥ 0 | Πn ∈ D} (2.28)
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Figure 3. An observed process with a change in mean, from zero toμ, at an easily observable change-point. However asμ
decreases towards zero (or the variance increases), the change-point becomes more difficult to determine and so sequential
analysis is required.

minimizes the expected test length Ei[τ ] for both i = 0 and i = 1, where the constants 0 < A < B < 1 are
chosen such that the required false alarm probability PFA and detection probability PD satisfy

P0(Πτ = B) = PFA (2.29)

P1(Πτ = A) = 1 − PD. (2.30)

For further details, see [19, pp. 172–180].

This Bayesian formulation generalizes the classical formulation (2.14) by taking account of the
prior probability measure Pπ . In particular, if prior information about the value of θ is available
then the Bayesian formulation offers the advantage of including it in the analysis. It also allows
the observer to monitor a running probability Πn that the data are derived from the alternate
hypothesis H1. It may be checked that the classical formulation is recovered as a special case
upon taking the uninformed prior π = 1

2 , which favours both hypotheses equally.
Recent work has also used neural network techniques to estimate this posterior process and

hence test hypotheses for observed data with complicated dynamics [6].

3. Change-point detection
In this paper, we have real-time engineering applications in mind. Therefore, although detection
problems may be formulated either online or offline (as for hypothesis testing), we consider only
the online setting. In this setting, we wish to find a stopping time τ at which point we declare that
there is sufficient evidence that a change-point has occurred. An optimal stopping time is then one
which minimizes a given measure of delay under certain false alarm constraints. This means
that, given this performance criterion and the modelling assumptions, the method cannot be
outperformed by any other method. In this section, we will consider which procedures provide
optimal stopping times for different measures of the delay and false alarm constraints.

In the change-point detection problem, the observed data (x[1], x[2], . . . , x[i], . . .) are generated
by the following variation on the process (2.1). There is now an unobservable change-point at time
ν such that for times i = 1, 2, . . . . , ν we have θ = 0 while for times i = ν + 1, ν + 2, . . . we have
θ = 1. This construction is illustrated in figure 3. It is interesting to note that in the sequential
hypothesis testing problem of the previous section there are just two hypotheses in total (H0
and H1). However in change-point detection, while only two hypotheses are considered at each
time step i, there are effectively as many hypotheses as there are possible change-points: an
interesting explanation of this is provided in [17, §2.6]. Detection algorithms then convert all the
required information from the observed process into a test statistic. When this test statistic hits
a corresponding boundary B, then it is declared that a change has occurred. If this hitting time
τ occurs before a change has occurred, then this is called a false alarm while if this happens after
the change-point then the distance between these times is called the detection delay (see figure 4).
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test statistics
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detection delay

cyclic-return process

false alarm

time

Figure 4. Three possible trajectories for test statistics in change-point detection problems. For the change-point shown, the
black test statistic results in a detection with the indicated detection delay; the dark grey test statistic results in a false alarm;
and the light grey test statistic (a cyclic-return process, see §3b) results in no detection over this time period.

In the classical approach, ν is assumed deterministic and unknown, while the Bayesian approach
assumes ν to be a random variable which is assigned a prior distribution.

We define the following probability measures. Let Pν (A) denote the probability of the event A
given that the change-point takes the value ν, with Eν the associated expectation and f ν,n the (joint)
probability density function of Xn = (x[1], x[2], . . . , x[n]) under Pν . Hence P0 is the measure under
which the change occurs at time zero (effectively before the first observation) and under P∞ the
change never occurs. Similar to the previous sequential testing problems, we will simplify the
notation of the joint densities f 0,n, f ∞,n and f ν,n which in the following will be denoted f 0, f ∞ and
f ν , respectively. It can be noted that the sequential testing problem may be interpreted as a special
case of this set-up, with just two possible change-points: namely, ν = 0 and ν = ∞. As such it is
possible to see that f0 = f ∞ and f1 = f 0 and the likelihood ratio process from the sequential testing
problem may be written

L(Xn) = f 0(Xn)
f ∞(Xn)

. (3.1)

In change-point detection, the problem is to minimize the average delay in detecting the
change given defined constraints on the false alarms. We now make these terms precise.

(i) Constraints on false alarms

In the Bayesian setting, we may simply restrict the probability of false alarm (PFA) to lie below a
prescribed level α. Then, we consider only those stopping times τ that satisfy

P(τ < ν) ≤ α. (3.2)

In the classical setting, this false alarm probability depends on the deterministic unknown value of
ν, and so an alternative formulation must be used. Lorden [16] suggested bounding the frequency
of false alarms by considering only those stopping times τ which are on average greater than a
parameter T if the change never occurs, i.e. requiring

E∞[τ ] ≥ T. (3.3)

There has also been some work which limits a certain conditional probability of false alarm
during time intervals of a given length l [20,21], specifying for any k > 0 that

P∞(k < τ < k + l | τ > k) ≤ α. (3.4)

However, this is a much more complicated problem.
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(ii) Measures of delay

Having specified the set of admissible stopping times τ in the previous section, it remains to
specify the concept of optimality. In general, if a false alarm does not occur then we define
the detection delay as τ − ν and the goal is to minimize the average detection delay, which we
will abbreviate ADD. That is, we seek to find a stopping time τ∗ such that J (τ∗) = infτ J (τ )
given the relevant constraint from §3(i), where J (τ ) is one of the ADD formulations defined
below.

(1) In the Bayesian formulation the ADD may be defined simply as the average of τ − ν given
that the change-point has occurred

Jπ (τ ) = Eπ [τ − ν | τ ≥ ν] (3.5)

= Eπ [(τ − ν)+]
Pπ (τ ≥ ν)

, (3.6)

where the second equality follows from Bayes’ formula. A version of this constrained
minimization problem was solved in [13] when the prior distribution of the change-point ν is
geometric with the possible addition of a weight at zero (see §3b). The key points about the
Bayesian formulation are

(i) Provides a means to include useful information known about the change-point.
(ii) Provides a running probability of a change-point having occurred.

(iii) Can constrain the probability of false alarm as described in (3.2).

There are also a number of proposed classical (non-Bayesian) measures of delay where the
change-point is seen as a deterministic unknown. In this classical setting, it is not possible to
minimize the probability of false alarm constraint (3.2) so often the frequency of false alarms are
bounded as in (3.3).

(2) One classical ADD proposed is the relative integral average detection delay (RIADD)

JRI(τ ) =
∑∞

ν=0 E
ν [(τ − ν)+]
E∞[τ ]

. (3.7)

The RIADD formulation may also be obtained theoretically as a certain limit of the formulation
(3.6), as the prior distribution of the change-point tends to the (improper) uniform distribution
between zero and infinity. This means that in most cases a false alarm will be expected before
the change-point occurs and so it may be preferable to allow a string of false alarms before
the successful detection [22]. This makes the RIADD very suitable to situations where the cost of
false alarms is low but long delays are costly. When the data are i.i.d. the RIADD is also equivalent
to the stationary average detection delay (STADD) defined in [22, thm 2]. The key points about
the RIADD formulation are

(i) Good delay measure if the first change-point is as likely in the very distant future as it is
now.

(ii) Assumes any change-point is equally likely.
(iii) Practically this assumption means that the change-point is likely to occur after one or

more false alarms.

(3) In the classical formulation, Pollak and Siegmund [23,24] proposed to minimize the ADD
for the worst possible change-point by setting

JPS(τ ) = sup
ν

Eν [τ − ν | τ ≥ ν]. (3.8)
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Since this approach minimizes the delay for the change-point at which the delay is the greatest
on average (maximum), this is termed a minimax formulation. The key points about the Pollack–
Siegmund formulation are

(i) Assumes that the pre-change data/noise has no effect on the change-point (i.e. these are
independent).

(ii) Takes into account the worst possible change-point.
(iii) Currently no known optimal procedure for any given constraint on the frequency of false

alarms.

(4) At a similar time, Lorden proposed another minimax formulation [16] which additionally
considered the most unfavourable pre-change data Xν so that the ADD is formulated as

JL(τ ) = sup
ν

(ess sup Eν [τ − ν | Xν ]). (3.9)

This means it is a good measure of delay to use if the pre-change data can affect the time the
change-point appears. The key points about Lorden’s formulation are

(i) Good delay measure to consider if the pre-change data/noise affects the change-point
(i.e. these are not independent).

(ii) Takes into account the worst possible change-point and pre-change data.
(iii) If pre-change data and change-point are independent, this may be too pessimistic.

The formulations (3.5), (3.8) and (3.9) are related by the inequalities Jπ (τ ) ≤JPS(τ ) ≤
JL(τ ) [25]; however, this does not mean that one delay measure outperforms the others. Rather the
Bayesian measure assumes that (a) the probability distribution of the change-point is known and
(b) the change-point is independent from the pre-change data; in contrast the Pollak–Siegmund
measure drops (a) while still retaining (b); finally Lorden’s measure drops both (a) and (b). For
further discussion, see [25].

While (3.8) is more natural if the change-point is not affected by the pre-change data, currently
there is no known optimal solution in the latter formulation under the constraint that E∞[τ ] ≥
T. In contrast, it is known that Page’s CUSUM procedure minimizes JL(τ ) given the additional
constraint E∞[τ ] ≥ T [14].

(a) CUSUM algorithm
The CUSUM (CUmulative SUM) procedure was formulated by Page [12] shortly after Wald’s
work with the SPRT. In contrast with the SPRT, there is a single boundary for the test statistic.

Theorem 3.1 (CUSUM procedure, cf. [14]). Let (x[1], . . . , x[ν], x[ν + 1], . . .) be a sequence of
observed data where the x[i] are independent random variables with probability density f ∞ for i ≤ ν and f 0

for i > ν but the change-point ν is a deterministic unknown.
Define the sufficient statistic at time n by the recursive relation

Sn = max(Sn−1, 1)
f 0(x[n])
f ∞(x[n])

, S0 = 0 (3.10)

and the stopping time
τ = inf{n ≥ 0 | Sn ≥ B} (3.11)

where B is chosen as small as possible subject to the constraint

E∞[τ ] ≥ T. (3.12)

Then the first entry time τ of Sn above the boundary B is the optimal stopping time which minimizes
Lorden’s delay measure (3.9) subject to the bounded frequency of false alarm constraint (3.12).
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It should be noted here that the optimal stopping time is not an estimate of the change-
point but the point at which there is enough evidence that a change-point has already occurred.
Offline change-point identification can then be used to estimate the exact change-point in the data.
However, the CUSUM procedure can also provide an estimate of the change-point, which is

ν ≈ sup{n < τ | Sn = 1}. (3.13)

The CUSUM procedure can be thought of in a few different ways. First, it can be thought of
as a SPRT which restarts if the sufficient statistic L(Xn) given in (2.9) falls below the level 1. This
is a type of cyclic return process, a process that is returned to a given level upon hitting/crossing
a boundary, which in this case is the level A = 1 (see figure 4).

Second, it is also sometimes viewed as

Sn = L(Xn)
min0≤i≤n L(Xi)

, (3.14)

whereby Sn is the divergence of the SPRT sufficient statistic (3.1) from its current minimum.
Finally, it can also be seen as a sliding SPRT or a reverse time SPRT starting from the latest data
point. For further discussion on the CUSUM procedure, see [17, §2.6].

(i) Example

In our Gaussian example, we see that by letting Ln = (2σ 2/μ) log(Sn) for n > 0 we have

Ln = 2σ 2

μ
max(log Sn−1, log 1) + 2σ 2

μ
log

f 0(x[n])
f ∞(x[n])

(3.15)

= max(Ln−1, 0) + x[n] − μ

2
(3.16)

= max
(

Ln−1 + x[n] − μ

2
, x[n] − μ

2

)
. (3.17)

The first hitting time can then be seen to be equivalent for the formulation which is often used,
where

Ln = max
(

Ln−1 + x[n] − μ

2
, 0
)

, L0 = 0. (3.18)

(b) Bayesian quickest detection
In §3(ii) we referred to the work [13] on the Bayesian quickest detection problem, in which the
prior distribution on ν is the geometric distribution with a weight π at zero. This choice is typical
when one has knowledge of the average value of the change-point, but no further information.
This follows since in the set of all distributions on the positive integers with a given mean, the
geometric distribution has the greatest entropy and hence is the most uncertain. The probability
measure associated to the quickest detection problem is then

Pπ (Xn ∈ A) = πP0(Xn ∈ A) + (1 − π )
n−1∑
s=1

p(1 − p)s−1Ps(Xn ∈ A) + (1 − π )(1 − p)n−1P∞(Xn ∈ A). (3.19)

This expansion can be seen as the summation of probabilities of three scenarios: (i) the change
occurs at time zero, (ii) the change occurs at a geometrically distributed time 1 ≤ s ≤ n − 1 and
(iii) the geometrically distributed change-point has not yet happened in the observed data Xn.

Theorem 3.2 (Bayesian quickest detection, cf. [19]). Let (x[1], . . . , x[ν], x[ν + 1], . . .) be a sequence
of observed data where the x[i] are independent random variables with probability density f ∞ for i ≤ ν and
f 0 for i > ν. The change-point ν is a weighted geometrically distributed random variable with parameter p
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and a weighting of π at time zero. Define the sufficient statistic at time n by the recursive relation

Πn = Πn−1f 0(x[n]) + (1 − Πn−1)pf 0(x[n])
Πn−1f 0(x[n]) + (1 − Πn−1)pf 0(x[n]) + (1 − Πn−1)(1 − p)f ∞(x[n])

, Π0 = π , (3.20)

and the stopping time
τ = inf{n ≥ 0 : Πn ≥ B}, (3.21)

where
B = 1 − α. (3.22)

Then the first entry time τ of Πn above the boundary B is the optimal stopping time which minimizes
the Bayesian (weighted-geometric) delay measure (3.5) subject to the probability of false alarm constraint

PFA = α. (3.23)

In theorem 3.2, the process (Πn)n≥1 is the running probability that the change-point has
occurred given the information observed until time n, i.e.

Πn = Pπ (ν < n | Xn) (3.24)

which is also known as the posterior probability process. This is linked to the likelihood ratio L(Xn)
from (3.1), which has been present throughout these problems, via

Πn = ϕn

1 + ϕn
, (3.25)

where

ϕn = L(Xn)
(1 − p)n−1

(
π

1 − π
+ p

n−1∑
k=1

(1 − p)k−1

L(Xk)

)
(3.26)

and ϕ0 = π/(1 − π ) and the summation is defined to be equal to zero at n = 1. It can be seen that

ϕn = 1
(1 − p)

f 0(x[n])
f ∞(x[n])

(ϕn−1 + p), ϕ0 = π

1 − π
. (3.27)

The recursive formula (3.20) is then given by combining (3.25) and (3.27).

(c) Shiryaev–Roberts procedure
When π → 0 and p → 0, the weighted-geometric distribution used in the previous section may
be interpreted as approaching an improper (i.e. non-normalized) uniform distribution on the
positive integers. In the limit, we obtain a generalized Bayesian approach in which the change is
equally likely to occur at any time between 1 and +∞. The solution in this case is provided by the
Shiryaev–Roberts (SR) procedure.

Theorem 3.3 (SR procedure, cf. [22]). Let (x[1], . . . , x[ν], x[ν + 1], . . .) be a sequence of observed
data where the x[i] are independent random variables with density f ∞ for i ≤ ν and density f 0 for i > ν

where the change-point ν is a deterministic unknown value.
Define the sufficient statistic at time n by the recursive relation

Rn = (1 + Rn−1)
f 0(x[n])
f ∞(x[n])

, R0 = 0 (3.28)

and the stopping time
τ = inf{n ≥ 0 : Rn ≥ B}, (3.29)

where B is chosen as small as possible subject to the constraint

E∞[τ ] ≥ T. (3.30)

Then the first entry time τ of Rn above the boundary B is the optimal stopping time which minimizes
the RIADD delay measure (3.7) subject to the frequency of false alarm constraint (3.30).
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In our Gaussian running example, it is known that the optimal boundary is equal to the lower
bound on the frequency of false alarm constraint [26], i.e.

B = T. (3.31)

It can also be noted that the sufficient statistic for the SR procedure can be defined in terms
of the likelihood ratio function L(Xn) as follows:

Rn =
n∑

k=1

L(Xn)
L(Xk)

. (3.32)

(i) Relationship with Bayesian setting

It can be seen that starting with the Bayesian delay measure and sufficient statistic from (3.26),
one has

ϕn

p
→ Rn (3.33)

as p → 0 and π → 0. It is also known that

Eπ [(τ − ν)+]
p

→
∞∑

ν=0

Eν [(τ − ν)+] (3.34)

and
Pπ (τ ≥ ν)

p
→ E∞[τ ] (3.35)

and hence the delay measure
Jπ (τ ) →JRI(τ ) (3.36)

as p → 0 and π → 0.

(ii) The SR-r procedure

The SR procedure with a starting point R0 = r such that

Rn = (1 + Rn−1)
f 0(x[n])
f ∞(x[n])

, R0 = r (3.37)

is also referred to as the SR-r procedure. In [24], it is shown that by letting r be a defined random
variable the SR-r procedure is asymptotically optimal in minimizing the Pollak–Siegmund delay
metric as the frequency of false alarm constraint T → ∞. However, a counter example in [27]
showed that this procedure is not strictly optimal for any given lower bound on the frequency
of false alarms.

4. Continuous time processes
The above problems have natural analogues in the continuous time setting, when time is indexed
by the non-negative real numbers. In our white noise example, the process (2.1) corresponds
naturally to Brownian motion (Bt)t≥0, the fundamental continuous time stochastic process, and
in the hypothesis testing problem we then have

H0 : Xt = σBt (4.1)

H1 : Xt = σBt + μt. (4.2)

The hypotheses therefore differ through the presence or absence of the drift term μt. In the
analogous change-point problem, we have

Xt = Bt + μ(t − ν)I(t ≥ ν). (4.3)

The optimal procedures for the Bayesian hypothesis testing problem and the constrained
quickest detection problems have also been solved in the setting of a Brownian motion with a
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possible (constant) drift. The Bayesian hypothesis testing problem was solved in [28], the Bayesian
quickest detection problem in [29], Lorden’s constrained problem in [30,31] and the relative
integral average delay formulation in [32].

The continuous time setting can serve as an approximation to the discrete time setting (or
vice versa), but has the advantage that methods of continuous-time stochastic calculus may be
applied. This has led to further progress on problems with more general observed processes in
continuous time, which we now mention briefly.

(a) General diffusion processes
Consider the continuous-time observed process

dXt = σ (Xt) dBt + (μ0(Xt) + θ (μ1(Xt) − μ0(Xt))) dt, X0 = x (4.4)

for the hypothesis testing problem, or

dXt = σ (Xt) dBt + (μ0(Xt) + I(t ≥ ν)(μ1(Xt) − μ0(Xt))) dt, X0 = x (4.5)

in the case of change-point detection.
These observation processes have been considered in the Bayesian framework [33,34]. In this

setting, the SNR is also important and is similarly defined as (μ1(x) − μ0(x))2/σ (x)2 (e.g. [33,
eqn (2.16)]). When the SNR is constant the one-dimensional theory of optimal stopping may be
applied. Non-constant SNR processes give rise to two-dimensional sufficient statistics, which
depend on both the posterior process and the current position of the observed process, making
their analysis more challenging. However, recent breakthroughs have been made for certain
processes with non-constant SNR [35,36]. For a general discussion of this problem and the causes
of increased dimensionality, see [35, §2] and [36, §3].

(b) Further results
The above problems have also been considered with a finite time horizon [37,38], exponential
time-costs [34,39,40] and in the context of multiple hypothesis testing [41,42]. Discontinuous
processes in continuous time have been studied [43–45]. The first two papers deal with a
continuous time counting process (a Poisson process), which is a natural model in the problem
of detecting nuclear material against noise from background radiation. Further extensions
include problems where the change-point depends on the observed trajectory (termed self-exciting
processes, see [46]) and problems in which the change occurs when the observed process hits an
unobservable random level in space rather than in time [47,48]. Further details may also be found
in [26,49,50] and, specifically for quickest detection problems, in [51].
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