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Abstract

Introduction—Lymphomas are classified based on the normal counterpart, or cell of origin, from 

which they arise. Because lymphocytes have physiologic immune functions that vary both by 

lineage and by stage of differentiation, the classification of lymphomas arising from these normal 

lymphoid populations is complex. Recent genomic data have contributed additional depth to this 

complexity.

Areas covered—Lymphoma classification follows the World Health Organization (WHO) 

system, which reflects international consensus and is based on pathological, genetic, and clinical 

factors. The present review focuses on the classification of T-cell lymphomas, Hodgkin 

lymphomas, and histiocytic and dendritic cell neoplasms, summarizing changes reflected in the 

2016 revision to the WHO classification. These changes are critical to hematologists and other 

clinicians who care for patients with these disorders.

Expert commentary—Lymphoma classification is a continually evolving field that needs to be 

responsive to new clinical, pathological, and molecular understanding of lymphoid neoplasia. 

Among the entities covered in this review, the 2016 revisions in the WHO classification 

particularly impact T-cell lymphomas, including a new umbrella category of T-follicular helper 

cell-derived lymphomas and evolving recognition of indolent T-cell lymphomas and 

lymphoproliferative disorders.
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1. Introduction

Lymphomas represent a heterogeneous group of lymphoid malignancies with varied patterns 

of clinical behavior and responses to treatment. The prognosis depends on the histologic 

type, clinical factors, and, more recently, molecular characteristics. Lymphomas are 

classified according to a system established by the World Health Organization (WHO), with 

the most recent fourth edition published in 2008 [1]. The WHO classification distinguishes 

lymphoid neoplasms derived from precursor lymphoid cells from those derived from mature 

lymphoid cells and further separates each group into neoplasms of B-cell or T-cell origin. 

For the most part, mature lymphoid neoplasms comprise the non-Hodgkin lymphomas 

(NHLs); Hodgkin lymphomas are considered separately. Tumors of mature histiocytic and 

dendritic cell (HDC) origin are not derived from lymphoid cells but often involve lymphoid 

tissue and historically have been discussed along with mature lymphoid neoplasms.

While the fourth edition of the WHO tumor monograph series is not yet completed for all 

tumor types, it was recognized that a revision of the lymphoid and other hematologic 

neoplasms was necessary, in part to reflect the rapidly accumulating wealth of genetic data 

that impact lymphoma biology, pathology, and clinical behavior. Although this ‘2016 

revision’ has not been released in book form as of this writing, an overview was recently 

published [2]. The current review aims to summarize those facets of the revised 

classification that are anticipated to be most relevant to clinicians caring for lymphoma 

patients, here focusing on mature T-cell neoplasms, Hodgkin lymphoma, and HDC 

neoplasms.

2. Mature T-cell neoplasms

Approximately 10–15% of NHLs are of T-cell or natural killer (NK)-cell origin [3]. Tumors 

of mature (post-thymic or peripheral) T-cell origin are often referred to collectively as 

peripheral T-cell lymphomas (PTCLs) and are broadly separated into those with 

predominantly leukemic, extranodal, or nodal presentation. Studies in recent years have 

confirmed that most PTCL subtypes have a poorer prognosis than most B-cell NHL subtypes 

[4]. To date, cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-

like combination chemotherapy still represents the standard approach to the treatment of 

most PTCLs [5]. However, except for anaplastic lymphoma kinase (ALK)-positive 

anaplastic large cell lymphoma (ALCL), outcomes for most patients remain poor, with low 

response rates and short durations of response. Recent molecular advances have allowed 

further distinction of new subgroups that have both diagnostic and prognostic value. The 

WHO classification lists over 25 definite or provisional entities under the heading of mature 

T- and NK-cell neoplasms; however, as outlined above, this review summarizes those for 

which changes in the 2016 revision of the WHO classification are most important to 

clinicians (Tables 1 and 2).

2.1. Anaplastic large-cell lymphoma

ALCLs represent a group of neoplasms of mature T-cell origin that express the lymphocyte 

activation marker, CD30 [6]. Broadly, ALCLs can be grouped based on the expression of the 

ALK (positive or negative) and by clinical presentation (systemic or localized). Localized 
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forms of ALCL include primary cutaneous (pc) ALCL and breast implant-associated ALCL 

(BIA-ALCL).

ALK-positive ALCL is a systemic lymphoma characterized by recurrent chromosomal 

rearrangements involving the ALK gene on 2p23. These can be identified by genetic studies 

or, more commonly, by detecting the resultant ALK fusion protein by 

immunohistochemistry [7]. Most carry t(2;5)(p23;q25) translocations and express 

nucleophosmin (NPM)–ALK fusion proteins, leading to constitutive activation of ALK and 

downstream signaling pathways that regulate cell growth and survival [6–9]. Other ALK 
rearrangement partners have been identified in ALK-positive ALCL, including ATIC 
associated with the inv(2)(p23q35) inversion [10] and TRAF1 [11]. ALK-positive ALCL 

occurs mainly in children and young adults, has a male predominance (male to female ratio 

of 3), and typically presents with stage III to IV disease and systemic symptoms [4,12]. 

ALK-positive ALCL is associated with a better prognosis and overall survival (OS) rate than 

ALK-negative ALCL. The diagnostic criteria for ALK-positive ALCL remain unchanged 

from the 2008 WHO classification.

ALK-negative ALCL was recognized as a provisional entity distinct from ALK-positive 

ALCL in the 2008 WHO classification and has been upgraded to a definite entity in the 2016 

classification [2]. As with ALK-positive ALCL, the term ‘ALK-negative ALCL’ refers to 

patients with systemic disease. ALK-negative ALCL mainly occurs in an older population 

with a median age of 43 years and presents with stage III to IV disease or extranodal 

involvement less frequently than ALK-positive ALCL [12]. Overall, ALK-negative ALCL 

has a prognosis inferior to that of ALK-positive ALCL, but recent data have shown that it is 

a genetically heterogeneous disease and that different genetic subgroups have distinct 

prognoses. Chromosomal rearrangements of the DUSP22-IRF4 locus on 6p25.3, most 

commonly associated with the t(6;7)(p25.3;q32.3) translocation, occur in 30% of cases and 

have a 5-year OS rate of 90%, similar to ALK-positive ALCL (Figure 1(a–c)) [13]. These 

cases have markedly downregulated the expression of DUSP22, which encodes a dual-

specificity phosphatase with tumor suppressor functions [14–16]. In contrast, 8% of ALK-

negative ALCLs have rearrangements of TP63, a TP53 homolog on 3q28, and demonstrate 

an aggressive clinical course and poor prognosis, with a 5-year OS rate of only 17% [13,17]. 

TP63 rearrangements most commonly involve the TBL1XR1 gene and form fusion proteins 

homologous to ΔNp63, a dominant-negative p63 isoform with oncogenic potential [18]. 

ALCLs that are negative for all three rearrangements (ALK, DUSP22, and TP63, or ‘triple-

negative’ ALCLs) have a 42% 5-year OS rate [13]. Clinical trials are needed to answer the 

question of whether ALK-negative ALCLs with DUSP22 rearrangements ought to be treated 

less aggressively than the remaining ALK-negative ALCLs. Clinically available 

fluorescence in situ hybridization testing can identify DUSP22 or TP63 rearrangements in 

ALCL [13]; the 2016 WHO classification recognizes the prognostic significance of these 

rearrangements, but currently does not require this testing in the diagnosis of ALK-negative 

ALCL [2].

Interestingly, activation of the Janus kinase (JAK)/Signal Transducer and Activator of 

Transcription (STAT) signaling pathway has been identified in both ALK-positive ALCL 

and ALK-negative ALCL [19]. This finding may suggest a common signaling pathway 
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underlying the pathogenesis of most or all ALCLs, provide a molecular basis for the 

morphological similarities among these entities, and represent a candidate therapeutic target 

[2,19].

BIA-ALCL has been emerged as a clinically distinct form of ALCL in recent years and now 

is included as a provisional entity. The disease was first described in 1997. A retrospective 

study of 19 BIA-ALCLs showed a median age of 61 years and a median interval of 9 years 

between the placement of the breast implants and the development of ALCL [20]. The 

neoplastic cells are CD30 positive and ALK negative [21]. Most cases have demonstrated T-

cell antigen loss and nuclear expression of phosphorylated STAT3 [20,21]. BIA-ALCL may 

be confined to the fibrous capsule (the so-called ‘in situ’ form; Figure 1(d)) or may infiltrate 

adjacent tissues [20]. The in situ form of BIA-ALCL has an indolent clinical course and is 

associated with excellent event-free survival. The infiltrative form tends to have a more 

aggressive clinical course [20]. Complete surgical excision is critical to achieve optimal 

outcomes in patients with BIA-ALCL [22]. To date, it remains unclear whether additional 

treatment modalities beyond capsulectomy are of benefit; in one of the largest retrospective 

studies [23], the addition of chemotherapy was not associated with a statistically significant 

improvement in progression-free survival (PFS) or OS. However, patients with masses had 

PFS and OS rates inferior to patients without masses (e.g. 5-year OS rates of 75% versus 

100%).

pcALCL is a distinct entity classified under the primary cutaneous CD30-positive T-cell 

lymphoproliferative disorders (TLPDs), which also include lymphomatoid papulosis (LyP) 

and cases borderline between LyP and pcALCL. pcALCL initially presents in the skin and 

must be distinguished from systemic ALK-negative ALCL that involves the skin secondarily 

by history, physical examination, and staging procedures. Diagnostic criteria for pcALCL 

remain unchanged from the 2008 WHO classification. Clinically, pcALCL behaves 

indolently, with a 5-year cumulative risk of progression to systemic ALCL of 14% based on 

the British Columbia Cancer Agency experience [24]. In this retrospective study, the 5-year 

disease-specific survival and OS were 86% and 75%, respectively. Patients with limited 

stage disease had excellent outcomes following treatment with radiation therapy alone.

LyP is an indolent TLPD with a spectrum of pathologic variants. While these variants are 

recognized by the WHO and should be specified when possible, they have similar clinical 

behavior, and their major significance relates to the differential diagnosis with other, more 

aggressive entities. In one of the largest reported retrospective studies of LyP, histologic 

variant did not affect prognosis, though patients with LyP type D were less likely to be 

associated with other type of lymphoma [25]. Interestingly, subsets of both LyP and 

pcALCL carry the same DUSP22 rearrangements seen in systemic ALK-negative ALCL 

[26,27].

2.2. T-cell lymphomas of T-follicular helper origin

Angioimmunoblastic T-cell lymphoma (AITL) is the classic form of T-cell lymphoma of T-

follicular helper (TFH) origin, with diagnostic criteria that remain essentially unchanged 

from the 2008 WHO classification. AITL is one of the most common mature T-cell 

neoplasms and is an aggressive disease characterized by lymphadenopathy, systemic 
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symptoms, and often immune manifestations such as hypergammaglobulinemia [4]. 

Pathologically, there is a polymorphic immune infiltrate in lymph node specimens, 

composed not only of tumor cells but also of a rich microenvironment containing small 

reactive lymphocytes, histiocytes, eosinophils, expanded follicular den-dritic cell 

meshworks, prominent endothelial venules, and Epstein–Barr virus (EBV)-positive large B 

immunoblasts [28]. The tumor cells express TFH cell markers, which may include CD10 

and CD279 (PD-1, PDCD1), CXCL13, BCL6, CD40L, and NFATC1 [28–30].

The 2016 WHO classification includes two additional provisional entities representing 

neoplasms of TFH origin [2]. Nodal T-cell lymphomas with a TFH phenotype represent T-

cell lymphomas that have a TFH phenotype but do not meet other criteria for AITL, while 

follicular T-cell lymphoma represents a T-cell lymphoma primarily involving the follicles, 

which morphologically may resemble follicular lymphoma of B-cell origin. Cases in both of 

these provisional categories previously would have been classified as PTCL, not otherwise 

specified (PTCL, NOS; see below). While they are kept distinct from AITL, they are 

included in the umbrella category of T-cell lymphomas of TFH origin not only because of 

their phenotype but also because of common genetic findings among these entities, 

including recurrent somatic mutations of TET2, RHOA, IDH2, CD28, and DNMT3A, as 

well as fusions of ITK-SYK and CD28-CTLA4 [31,32]. In the era of individualized 

medicine, these findings will likely lead to trials of epigenetic modifiers and/or 

immunotherapy. Of note, TET2 mutations are associated with advanced-stage disease, high 

international prognostic index scores, and a shorter PFS [33]. Typically, AITLis managed 

aggressively, similar to most other PTCLs. A trial of less-aggressive therapy (e.g. 

corticosteroids or cyclosporine) can be attempted in older patients with comorbidities but is 

not standard of care.

The B cells in the microenvironment of AITL and related neoplasms may give rise to 

concurrent, abnormal B-cell pro-liferations in about one-third of cases, which may progress 

into overt EBV-positive or EBV-negative B-cell lymphomas [34,35]. In some cases, the B 

cells in the background mimic Reed–Sternberg cells and may lead to a misdiagnosis of 

Hodgkin lymphoma if the neoplastic T-cell population is not recognized [36,37].

2.3. PTCL, not otherwise specified

PTCL, NOS comprises a heterogeneous group of mature T-cell lymphomas that do not meet 

diagnostic criteria for one of the more specific mature T-cell neoplasms; as such, it is a 

diagnosis of exclusion or a so-called ‘wastebasket’ diagnosis [1]. However, PTCL, NOS 

remains the most commonly diagnosed subtype of T-cell lymphoma, underscoring the need 

for increased understanding of this group of diseases. Despite the heterogeneous nature of 

PTCL, NOS, molecular subgroups with distinct features have been identified. Gene 

expression profiling studies have stratified PTCL, NOS based on expression of GATA3, 

TBX21, and cytotoxic markers [38]. One subgroup is characterized by high expression of 

GATA3 and its target genes, including CCR4, IL18RA, CXCR7, and IK. GATA3 is a T-cell 

transcription factor that binds to the DNA sequence, GATA, to regulate T helper cell 

differentiation via transcription of interleukin 4 (IL4) and IL13 and epigenetic modulation of 

IL10 [38–42]. A second subgroup is characterized by high expression of the T-box 
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transcription factors TBX21 (Tbet) and eomesodermin (EOMES or Tbr2) and their target 

genes CXCR3, IL2RB, CCL3, and IFNG [38]. Both subgroups have generally poor clinical 

outcomes, but the GATA3 subgroup has an inferior prognosis, with a 5-year OS rate of 19% 

versus 38% for the TBX21 subgroup. However, within the TBX21 subgroup, expression of 

cytotoxic markers is associated with adverse outcomes. Whole-exome sequencing studies of 

PTCL, NOS have revealed marked heterogeneity but have identified recurrent mutations in 

genes involved in epigenetic regulation, DNA damage response, and Src signaling, including 

FYN, ATM, B2M, CD58, and RHOA [43].

2.4. T-cell lymphomas of the gastrointestinal tract

The nomenclature of enteropathy-associated T-cell lymphomas (EATLs) has changed in the 

2016 WHO classification. In the past, these were classified as EATL type I and EATL type 

II, but only EATL type I was truly associated with enteropathy (celiac disease). In the 2016 

classification, EATL refers only to the type I cases, whereas type II cases are renamed 

monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL). In addition to the 

association with celiac disease, distinct genetic alterations have been identified in these two 

entities that further support this reclassification [44].

EATL is an extranodal T-cell NHL primarily affecting the gastrointestinal (GI) tract with an 

intraepithelial T-cell phenotype [1]. EATL typically has a highly aggressive clinical course 

and is associated with celiac disease, typically in northern European populations [45]. EATL 

is characterized by pleomorphic, anaplastic, or immunoblastic tumor cells, most commonly 

with an αβ T-cell receptor (TCR) phenotype, though γδ TCR cases exist [45]. EATL 

patients usually carry human leukocyte antigen (HLA)-DQ2 or DQ8, and the tumors often 

show copy number gains of 1q and 5q [1].

MEITL is not associated with celiac disease and is characterized by monomorphic small- to 

medium-sized tumor cells that express CD8, CD56, and megakaryocyte-associated tyrosine 

kinase [46]. MEITL is associated with frequent gains of the 8q24 locus involving the MYC 
oncogene [47,48]. The majority of MEITLs express γδ TCR, though there are αβ TCR 

variants [49]. Recurrent mutations in STAT5B have been identified in 37% of γδ MEITLs 

[44,50]. In a recent whole-exome sequencing study of 15 MEITLs, 93% of cases displayed 

loss-of-function SETD2 alterations with defective H3K36 trimethylation [51]. These 

findings were not observed in (type I) EATL, further highlighting the genomic differences 

between the two entities. Of note, preclinical data suggest that H3K36 trimethylation-

deficient tumors may be particularly sensitive to WEE1 kinase inhibitors (e.g. AZD1775) 

[52].

Indolent TLPD of the GI tract is added as a new provisional entity in the 2016 WHO 

classification [2]. The whole GI tract is frequently involved and shows nondestructive 

infiltration by small, mature lymphoid cells [53]. The cells are commonly CD8 +/CD4−/

CD56− and express the cytotoxic marker TIA1. Some cases may express CD4 (Figure 2). 

An NK-cell variant has been described but is not addressed specifically in the WHO 

classification. Most patients have an indolent course and do not need aggressive treatment, 

though occasional cases may progress [53].
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2.5. Cutaneous T-cell lymphomas

The most common CTCLs are mycosis fungoides (MF) and Sézary syndrome, for which 

diagnostic criteria have not changed significantly in the 2016 WHO classification, and the 

CD30-positive TLPDs discussed above in the section on ALCL.

The 2016 WHO classification has changed the nomenclature of primary cutaneous CD4-

positive small/medium T-cell lymphoma to primary cutaneous CD4-positive small/medium 

TLPD to reflect the indolent clinical behavior of this entity. Clinically, patients typically 

present with a solitary cutaneous papule or nodule, especially on the upper part of the body, 

without a history of skin patches or plaques to suggest MF. The classic histopathologic 

changes include dermal infiltration by small lymphocytes with hyperchromatic nuclei, 

without significant epidermal, follicular, or adnexal involvement. Most cases have an 

indolent course and favorable outcome following excision, radiation, and/or other local 

therapies [2,54–56].

Primary cutaneous acral CD8-positive T-cell lymphoma is added as a new provisional entity 

in the 2016 WHO classification [2]. This entity is characterized by an indolent, slow-

growing nodule localized to a single site, usually the ear, and can be managed conservatively 

with excision only, topical or intralesional steroids, or local radiotherapy [57]. No 

differences in outcomes were observed among these treatment modalities. Although primary 

cutaneous acral CD8-positive T-cell lymphoma has an indolent course, the histologic 

features of a dense, diffuse monomorphic infiltrate of medium-sized T cells throughout the 

dermis and subdermis can mimic higher-grade lymphomas. The indolent nature of these 

entities must be recognized to avoid overly aggressive management.

Primary cutaneous γδ T-cell lymphoma shows an EBV-negative, cytotoxic γδ T-cell 

phenotype and clonal rearrangements of the TCR receptor genes [58]. When the disease 

involves subcutaneous tissue, the process can resemble subcutaneous panniculitis-like T-cell 

lymphoma (SCPTCL) but is classified as a distinct entity because it tends to be clinically 

more aggressive than SCPTCL, which typically presents as cutaneous nodules in the trunk 

or extremities and has an αβ cytotoxic T-cell phenotype [2,59–61]. It should be noted that a 

γδ T-cell phenotype may be seen in cases meeting criteria for other WHO entities, including 

MF and LyP.

2.6. EBV-associated neoplasms of T and NK cells

The most common of these disorders is extranodal NK-/T-cell lymphoma, nasal type, though 

still relatively infrequent in western countries. Diagnostic criteria remain unchanged from 

the 2008 WHO classification.

Systemic EBV-positive T-cell lymphoma of childhood is characterized by a monoclonal 

proliferation of EBV-infected T cells with an activated cytotoxic phenotype (TIA1 positive) 

and a fulminant and aggressive clinical course, with survival measured in weeks due to 

multiple organ failure and sepsis [62]. The disease most often arises in the context of chronic 

active EBV infection in children, though it may follow acute EBV infection. The 

nomenclature of the entity was changed in the 2016 WHO classification from 

‘lymphoproliferation’ to ‘lymphoma’ due to the aggressive clinical course [2].
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In contrast, the name of hydroa vacciniforme-like lymphoproliferative disorder (HVLLD) 

was changed from ‘lymphoma’ to ‘lymphoproliferative disorder’ due to its wide spectrum of 

clinical behavior [2]. HVLLD is characterized by skin lesions, typically vesicles or 

vesicopapular eruptions, in sun-exposed areas and is associated with fever, 

lymphadenopathy, hepatosplenomegaly, and mosquito-bite hypersensitivity in some patients 

[63]. The abnormal cells in HVLLD may demonstrate an αβ T-cell, γδ T-cell, or NK-cell 

phenotype, and occasional patients progress to systemic lymphomas [63,64].

2.7. Leukemic mature T-cell neoplasms

T-cell large granular lymphocyte leukemia (T-LGL) is a rare leukemic TLPD characterized 

by clonal expansion of cytotoxic T cells and associated with autoimmune processes and 

immune-mediated cytopenias [65–67]. Most are of αβ T-cell origin, but some have a γδ T-

cell phenotype. Koskela et al. have identified somatic STAT3 mutations in 40% of T-LGLs 

[68]. STAT3 mutations also are found in chronic lymphoproliferative disorders of NK cells, 

suggesting a possible common pathogenesis in these two clonal lymphoproliferations [69]. 

Less-frequent STAT5B mutations have also been identified in T-LGL [70]. Of note, somatic 

mutations in the STAT3 and STAT5B genes with activation of the corresponding proteins are 

also seen in a variety of γδ T-cell neoplasms, including hepatosplenic T-cell lymphomas, 

CTCLs, and MEITLs of γδ type [44,50,71]. The clinical relevance of these findings is yet to 

be established. STAT5B mutations may be associated with a more aggressive phenotype 

[66]. In a phase II study of immunosuppressive therapy with methotrexate in LGL, STAT3 
Y640F mutations were associated with therapeutic response to methotrexate [72]. These 

findings will need to be reproduced; clinical trials with STAT3 inhibitors in LGL also should 

be explored.

3. Hodgkin lymphomas

While recent data indicate that most if not all Hodgkin lymphomas are of mature B-cell 

origin, they are classified separately from B-cell NHLs [1,2]. There are two main entities, 

classical Hodgkin lymphoma (CHL) and nodular lymphocyte predominant Hodgkin 

lymphoma (NLPHL). These diseases share several important features that distinguish them 

from many NHLs. Clinically, they often present in young adults, primarily as nodal disease 

(most often with involvement of cervical lymph nodes). Pathologically, they are 

characterized by large neoplastic cells that represent the minority of the total cellular 

composition and are scattered in a rich background of non-neoplastic cells. Significant 

changes in the 2016 WHO revision that relate to Hodgkin lymphomas are summarized in 

Table 3.

3.1. Classical Hodgkin lymphoma

CHL is the more common of the two Hodgkin lymphoma entities and can be further divided 

into four histological subtypes: lymphocyte-rich CHL (LRCHL), nodular sclerosis CHL, 

mixed cellularity CHL, and lymphocyte-depleted CHL [1]. The classification and diagnostic 

criteria remain unchanged for CHL in the 2016 revision [2]. LRCHL is relatively infrequent, 

accounting for 3–5% of CHL; it typically presents with stage I or II disease and has a better 

prognosis than other CHL subtypes [1,73,74]. It shares some features with NLPHL 
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morphologically and clinically, though it has a distinct immunophenotype and a lower 

frequency of relapse [73]. A comparison of markers of B-cell lineage, transcription factors, 

nuclear factor (NF)-κB signaling, and the T-cell microenvironment has demonstrated 

similarities among LRCHL, NLPHL, and CHL and has suggested that LRCHL has features 

intermediate between those of CHL and NLPHL [75].

3.2. Nodular lymphocyte predominant Hodgkin lymphoma

NLPHL is a rare entity that accounts for 3–5% of Hodgkin lymphomas [74,76]. The 

neoplastic cells of NLPHL are derived from germinal center B cells and express CD20, 

CD79a, CD75, BCL6, CD45, and J chain [77]. NLPHL typically occurs in young and 

middle-aged males and has an indolent clinical course [78]. NLPHL can be separated into 

nodular and diffuse histological patterns [77,79]. Most cases are nodular and show a mixed 

infiltrate of small reactive B cells with only occasional large, neoplastic ‘lymphocyte 

predominant’ cells, also referred to as ‘popcorn cells’ [1]. Fan et al. identified six distinct 

immunoarchitectural patterns of NLPHL, including classic nodular B-cell-rich (pattern A), 

serpiginous nodular (pattern B), nodular with prominent extranodular tumor cells (pattern 

C), T-cell-rich nodular (pattern D), diffuse T-cell-rich (pattern E), and diffuse B-cell-rich (p 

attern F) [80]. The variant patterns C through F are associated with advanced disease and a 

higher relapse rate at 5 years than the classic patterns A and B, and thus the pattern should 

be specified if possible in the pathology report [2,81].

Cases of NLPHL with diffuse architectural patterns must be distinguished from T-cell/

histiocyte-rich large B-cell lymphoma (THRLBCL), a subtype of diffuse large B-cell 

lymphoma characterized by neoplastic CD20-positive B cells that usually constitute less 

than 10% of the infiltrate and are scattered among the non-neoplastic T cells with or without 

histiocytes [1]. THRLBCL usually presents with advanced clinical stage and is associated 

with a worse prognosis than NLPHL [82]. Nevertheless, NLPHL and THRLBCL share a 

number of features, and a recent study comparing the gene expression profiles of the diffuse 

T-cell-rich NLPHL (pattern E, also known as THRLBCL-like NLPHL) and THRLBCL 

revealed no significant differences [81,83]. Furthermore, classic NLPHL, THRLBCL-like 

NLPHL, and THRLBCL share common genetic alterations, including gains of 2p16.1 and 

losses of 2p11.2 and 9p11.2 [84]. It has been suggested that the diffuse patterns of NLPHL 

represent progression from NLPHL to THRLBCL or that these entities represent a spectrum 

of a single disease [81,83,84]. Cases of NLPHL transforming into THRLBCL or occurring 

synchronously with THRLBCL at a different site have been reported [2]. The 2008 WHO 

classification recommended describing NLPHL cases that progressed to a diffuse T-cell-rich 

pattern as ‘THRLBCL-like NLPHL’ to distinguish them from primary THRLBCL and 

indicated that at least focal presence of a typical NLPHL nodule be required for the 

diagnosis of NLPHL [1,2,80]. In the 2016 revision of the WHO classification, these cases 

are designated ‘THRLBCL-like transformation of NLPHL’ and have a more aggressive 

clinical course than typical NLPHL [2,85,86].

Since CD20 is expressed by the neoplastic cells in NLPHL, studies have looked at rituximab 

use as a single agent or in combination with chemotherapy. In one study [87], rituximab was 

studied as a single agent or single agent with a maintenance schedule in either newly 
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diagnosed or relapsed cases of NLPHL. Despite an objective response rate of 100%, 

responses were not durable in most patients. Maintenance rituximab was associated with a 

trend towards longer PFS, but demonstrated no OS benefit. Choices of chemotherapy vary 

from CHL-like regimens with doxorubicin, bleomycin, vinblastine, and dacarbazine 

(ABVD) to CHOP-like chemotherapy with the addition of rituximab. However, no 

randomized trial has compared these regimens side by side, and no standard of care for 

advanced NLPHL has yet been established.

4. HDC neoplasms

HDC neoplasms are derived from the mononuclear phagocytic system comprising dendritic 

cells and mononuclear phagocytes also referred to as histiocytes. Most tumors are of 

myeloid lineage, but some tumors such as follicular dendritic cell sarcoma have a 

mesenchymal origin [2]. Though these neoplasms are not lymphomas, historically they are 

often discussed with the mature lymphoid neoplasms as they have a mature state of 

differentiation and typically present in lymph nodes and other solid tissue sites, in contrast to 

many other myeloid tumors that are precursor neoplasms and often have a leukemic 

presentation. In addition, distinction of lymphoid and histiocytic neoplasms was difficult 

prior to immunophenotyping. Interestingly, HDC tumors may develop in patients with 

underlying mature or precursor B- or T-cell neoplasms and demonstrate clonal identity to the 

lymphoid component, including the same clonal immunoglobulin and/or TCR gene 

rearrangement, a phenomenon known as transdifferentiation [2,88–95]. Significant changes 

in the 2016 WHO revision that relate to HDC neoplasms are summarized in Table 3.

4.1. Langerhans cell histiocytosis

Langerhans cell histiocytosis (LCH) is a rare, benign disorder characterized by a clonal 

proliferation of Langerhans cells expressing CD1a, langerin, and S100 [96]. The clinical 

presentation is widely variable, but the bones (>80%), skin (33%), and pituitary gland (25%) 

are frequently involved [96,97]. LCH with systemic involvement is referred to as Letterer–

Siwe disease and presents with fever, hepatosplenomegaly, liver dysfunction, hematopoietic 

failure, and visceral involvement [98]. Genetics are discussed below.

4.2. Erdheim–Chester disease

Erdheim–Chester disease (ECD) is a rare, multi-organ, non-Langerhans cell histiocytic 

disorder that occurs predominantly in the 40–70-year-old age range with a male to female 

ratio of about 3:1 [96,99]. Pathologic changes include osteosclerotic lesions of the long 

bones with infiltration of foamy histiocytes and fibrosis (90% of patients), central nervous 

system involvement (20–50%), infiltration of the orbits (25%), retroperitoneal involvement 

(including the so-called ‘hairy kidney’; 30%), skin lesions (xanthelasma; 30%), 

cardiovascular involvement (with a ‘coated aorta’ appearance on imaging studies), and 

pulmonary changes (50%) [96,99–104]. The abnormal cells express CD68, CD163, and 

Factor XIIIa and are negative for CD1a, langerin, and S100 [96]. Patients typically have 

elevated levels of interferon-α, IL12, and monocyte chemotactic protein-1 and decreased 

levels of IL4 and IL7 [96,105]. The cells in ECD are identical to those in juvenile 

xanthogranuloma (JXG), but JXG usually does not present with multisystem involvement 
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[96]. Positron emission tomography-computed tomography imaging is recommended for 

initial assessment of the overall disease burden in ECD due to its sensitivity for detecting 

extraosseous lesions [106]. Treatment with interferon-α has improved OS in ECD patients 

[107]. Anakinra, a recombinant IL1 receptor antagonist, also has shown efficacy [103].

Recent studies have identified a BRAF V600E mutation in over 50% of patients with ECD 

and LCH, suggesting a critical role of mitogen-activated protein (MAP) kinase signaling in 

the pathogenesis of both disorders [108,109]. Whole-exome and transcriptome sequencing 

has revealed recurrent mutations involving BRAF, ALK, and NTRK1, and in MAP2K1 and 

ARAF in non-Langerhans cell histiocytic tumors with wild-type BRAF, including ECD, 

JXG, and Rosai–Dorfman disease [96,110]. The BRAF inhibitor, vemurafenib, has resulted 

in dramatic clinical and radio-graphic responses in LCH and ECD and is recommended in 

refractory patients carrying the BRAF V600E mutation [111].

5. Expert commentary

Lymphoma classification is a continually evolving field that needs to be responsive to new 

clinical, pathological, and molecular understanding of lymphoid neoplasia. The 2016 

revisions in the WHO classification of mature T-cell neoplasms, Hodgkin lymphomas, and 

HDC neoplasms include significant changes that impact the diagnosis, prognosis, and 

management of these diseases. The 2016 revision particularly impacts PTCLs and sees a 

reorganization of current categories and distinction of new provisional entities. The grouping 

of TFH-derived PTCLs into a new umbrella category represents a general example of how 

biologic and molecular features can help group diseases with similar characteristics, and a 

specific example of how discrete entities can be dissociated from the ‘wastebasket’ diagnosis 

of PTCL, NOS. Another major advance is the evolving recognition of indolent T-cell 

lymphomas and lymphoproliferative disorders, which are particularly important to 

distinguish, given the clinically aggressive nature of most PTCLs.

6. Five-year view

We anticipate that the future of T-cell lymphoma classification lies in molecular 

characterization of subgroups that will allow selection of appropriate targeted therapies and 

inclusion into clinical trials accordingly. These molecular tools are likely to include not only 

genomics but also other high-throughput technologies such as epigenomics, proteomics, and 

metabolomics. We expect these advances will continue to identify new entities with distinct 

clinical, pathological, and molecular features that will reclassify cases out of the 

heterogeneous and relatively common PTCL, NOS category. Advances in Hodgkin 

lymphoma are likely to arise from an increasing understanding of the relationship between 

the neoplastic cells and the rich microenvironment long recognized to be a critical 

component of this group of diseases. Finally, management of HDC neoplasms will be 

facilitated by ongoing genomic studies that are uncovering a spectrum of targetable 

alterations involving kinase signaling in this group of tumors.
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Key issues

• The 2016 revision of the World Health Organization classification of 

lymphoid neoplasms includes several critical changes in the classification of 

T-cell non-Hodgkin lymphomas, Hodgkin lymphomas, and histiocytic/

dendritic cell neoplasms that have immediate impact on diagnosis, prognosis, 

management, and entry criteria for clinical research protocols.

• ALK-negative anaplastic large cell lymphoma has been upgraded to a definite 

entity, in which genetic markers may have prognostic significance; breast 

implant-associated cases are considered separately.

• T-cell lymphomas of T follicular helper cell origin share common clinical, 

pathological, and genetic features and are grouped in a new umbrella category 

containing 3 distinct entities.

• The classification of T-cell lymphomas of the gastrointestinal tract has been 

reorganized, and includes an indolent T-cell lymphoproliferative disorder as a 

new provisional entity.
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Figure 1. 
Systemic and localized ALK-negative anaplastic large cell lymphomas. (a) Systemic ALK-

negative anaplastic large cell lymphoma. H&E stain of a lymph node section shows sheets of 

neoplastic cells. (b) The tumor cells stain strongly and uniformly for CD30 by 

immunohistochemistry. (c) Fluorescence in situ hybridization showed this case to have a 

DUSP22 rearrangement, a finding that has been associated with favorable prognosis. The 

image shows a single tumor cell nucleus (blue). Hybridization with red and green breakapart 

probes flanking the DUSP22-IRF4 locus on 6p25.3 show one normal fusion signal (f) and 

abnormal separation of the red and green signals corresponding to the other allele (arrows), 

indicating a chromosomal rearrangement. (d) Breast implant-associated anaplastic large cell 

lymphoma involving the seroma cavity and fibrous capsule surrounding a breast implant. 

H&E stain shows clusters of cells that have pleomorphic nuclear features (inset; high 

magnification). Full color available online.
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Figure 2. 
Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. (a) Low-power 

H&E image of fragments of mucosa from an endoscopic duodenal biopsy. (b) A higher 

power H&E image shows an infiltrate of small lymphocytes with bland cytological features 

(inset). (c) Nearly all the lymphocytes stain for CD4 by immunohistochemistry, and leave 

the intervening glands (g) relatively unaffected. (d) Staining for CD8 shows only occasional 

scattered cells. The T cells were shown to be clonal by molecular studies (not shown). This 

CD4-positive phenotype is less common than a CD8-positive phenotype in this disorder 

[53].
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Table 1

Clinical significance of major 2016 World Health Organization changes for primarily nodal mature T-cell 

neoplasms.

Disease Changes Significance

ALK-negative ALCL Upgraded from provisional to definite 
entity

• Must be distinguished both from ALK-positive ALCL 
and from localized forms of disease, including 
pcALCL and BIA-ALCL

Genetic subgroups recognized • Rearrangements involving DUSP22-IRF4 on 6p25.3 
associated with favorable outcome

BIA-ALCL • New provisional entity distinct from systemic ALK-
negative ALCL occurring around breast implants

• Infiltrative form has more aggressive clinical behavior

T-cell lymphomas of TFH 
origin

Nodal T-cell lymphoma with TFH 
phenotype

• New provisional entity for cases with TFH phenotype 
but not meeting criteria for AITL

• Previously would have been classified as PTCL, NOS

• Mutational spectrum overlapping other TFH entities

Follicular T-cell lymphoma • New provisional entity for cases with TFH phenotype 
and follicular pattern of involvement

• Previously would have been classified as PTCL, NOS

• Mutational spectrum overlapping other TFH entities

PTCL, NOS Remains a ‘wastebasket’ diagnosis for 
mature T-cell neoplasms not meeting 
criteria for other, more specific entities

• Subgroups based on GATA3 and TBX21 expression 
may have clinical significance

AITL: angioimmunoblastic T-cell lymphoma; ALCL: anaplastic large-cell lymphoma; ALK: anaplastic lymphoma kinase; BIA-ALCL: breast 
implant-associated ALCL; pcALCL: primary cutaneous ALCL; PTCL: peripheral T-cell lymphoma; NOS: not otherwise specified; TFH: T-
follicular helper.
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Table 2

Clinical significance of major 2016 World Health Organization changes for primarily extranodal and leukemic 

mature T-cell neoplasms.

Disease Changes Significance

T-cell lymphomas of the GI tract EATL • Nomenclature to be used only for cases previously 
called type I EATL (usually associated with celiac 
disease)

MEITL • New nomenclature for non-celiac disease-associated 
cases previously called type II EATL

Indolent TLPD of the GI tract • New provisional entity with indolent clinical behavior

• Occasionally may progress

Cutaneous T-cell lymphomas Primary cutaneous CD4-positive 
small/medium TLPD

• Name changed from lymphoma to TLPD to reflect 
indolent behavior

Primary cutaneous acral CD8-
positive T-cell lymphoma

• New provisional entity with indolent clinical behavior

• Most common involves ear

Primary cutaneous γδ T-cell 
lymphoma

• Excludes cases with γδ T-cell phenotype meeting 
criteria for other entities such as MF or LyP

EBV-positive NK-/T-cell neoplasms Systemic EBV-positive T-cell 
lymphoma of childhood

• Name changed from TLPD to lymphoma to reflect 
aggressive clinical behavior

Hydroa vacciniforme-like 
lymphoproliferative disorder

• Name changed from lymphoma to 
lymphoproliferative disorder to reflect wide spectrum 
of clinical behavior

EATL: enteropathy-associated T-cell lymphoma; GI: gastrointestinal; LyP: lymphomatoid papulosis; MEITL: monomorphic epitheliotropic 
intestinal T-cell lymphoma; MF: mycosis fungoides; TLPD: T-cell lymphoproliferative disorder; EBV: Epstein–Barr virus; NK: natural killer.
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Table 3

Clinical significance of major 2016 World Health Organization changes for Hodgkin lymphomas and 

histiocytic/dendritic cell neoplasms.

Disease Changes Significance

Hodgkin lymphomas LRCHL • Recognition of features intermediate between CHL and NLPHL

NLPHL • Histologic pattern (A–F) should be specified when known; variant patterns associated 
with more aggressive behavior

• Cases with THRLBCL-like features should be called THRLBCL-like transformation of 
NLPHL to distinguish from true THRLBCL

HDC neoplasms ECD • Should be distinguished from JXG based on clinical features

• Recurrent BRAF V600E mutations identified

All subtypes • Occasional clonal relationship with underlying lymphoid neoplasm

CHL: classical Hodgkin lymphoma; ECD: Erdheim–Chester disease; HDC: histiocytic/dendritic cell; LRCHL: lymphocyte-rich CHL; NLPHL: 
nodular lymphocyte-predominant Hodgkin lymphoma; THRLBCL: T-cell/histiocyte-rich large B-cell lymphoma; JXG: juvenile xanthogranuloma.
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