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Abstract

The vision of Smart Manufacturing Systems (SMS) includes collaborative robots that can adapt to 

a range of scenarios. This vision requires a classification of multiple system behaviors, or 

sequences of movement, that can achieve the same high-level tasks. Likewise, this vision presents 

unique challenges regarding the management of environmental variables in concert with discrete, 

logic-based programming. Overcoming these challenges requires targeted performance and health 

monitoring of both the logical controller and the physical components of the robotic system. 

Prognostics and health management (PHM) defines a field of techniques and methods that enable 

condition-monitoring, diagnostics, and prognostics of physical elements, functional processes, 

overall systems, etc. PHM is warranted in this effort given that the controller is vulnerable to 

program changes, which propagate in unexpected ways, logical runtime exceptions, sensor failure, 

and even bit rot. The physical component’s health is affected by the wear and tear experienced by 

machines constantly in motion. The controller’s source of faults is inherently discrete, while the 

latter occurs in a manner that builds up continuously over time. Such a disconnect poses unique 

challenges for PHM. This paper presents a robotic monitoring system that captures and resolves 

this disconnect. This effort leverages supervisory robotic control and model checking with linear 

temporal logic (LTL), presenting them as a novel monitoring system for PHM. This methodology 

has been demonstrated in a MATLAB-based simulator for an industry inspired use-case in the 

context of PHM. Future work will use the methodology to develop adaptive, intelligent control 

strategies to evenly distribute wear on the joints of the robotic arms, maximizing the life of the 

system.

1. Introduction

Industries active in the manufacturing sector exist in a competitive landscape where 

profitability is heavily influenced by their operational directives. A manufacturer choosing to 
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implement Smart Manufacturing Systems (SMS) would likely drive down their costs, 

improve their manufacturing goals, and meet continuous improvement objectives. Robotics 

and automation are often a logical and feasible ingredient to increasing productivity, while 

also maintaining or improving product quality and operational safety goals. A recent 

national report on advanced manufacturing showed that industry use of automation 

positively impacted profitability such that manufacturers were more likely to keep their 

internal operations vertically integrated (Anderson, 2011). This report also highlights the 

important role that next-generation robotics will play in the future of manufacturing such as 

realizing improvements in flexibility, time to market, cost, quality, and human safety.

Prognostics and Health Management (PHM) is a comprehensive field that attempts to create 

the systems and methods which manufacturers employ to enhance their asset maintenance 

programs. PHM standards are developed as a better alternative to traditional reactive 

maintenance programs primarily defined by initiating action only after a breakdown or some 

lost production time event has occurred. It is through the use of condition-monitoring, 

diagnostic, and prognostic methods that PHM attempts to understand the states of the system 

and create a manufacturing environment where maintenance is carried out on a more 

preventative, predictive, and proactive basis as compared to being purely reactive. A PHM 

approach to maintenance proves beneficial by reducing manufacturer dependence on non-

value added maintenance time and capital of parts replacement. PHM strives to increase 

asset lifespan while operating at lower cost.

The emergent contributions of robots to higher efficiency and product quality in smart 

manufacturing processes have also introduced new sources of risk thereto including: (i) 

safety risks resulting from the collaborative and proximal interface between humans and 

robots; (ii) maintenance schedule and operations; and (iii) sensitivity to irregularities 

associated with out-sourced parts and raw materials, among others. In this sense, the 

centrality of PHM in smart manufacturing has necessitated expansion to embrace systems-

based risk modeling, assessment, management, and communication (Haimes, 2012, 2005). 

In particular, the interdependencies between the robotics subsystems and the human 

operators necessitate an understanding of the epistemological human behavior and responses 

under extreme events originating from either the robotics or human subsystems.

It is then necessary to think about PHM in the context of robotics as both of these fields 

(PHM and robotics) enable development of SMS. As private and public investment rises to 

implement and develop next-generation robotics, we will also need to create the high-level 

control strategies which seek to attain condition-based PHM goals. This work introduces a 

novel robotic monitoring system as a step towards PHM with the motivation to display and 

predict both discrete system failures and continuous motion wear.

After further review of SMS, the paper introduces an industry-inspired use case. We will 

then apply a novel methodology from (Huzaifa, Umer and Marvel, Jeremy A. and LaViers, 

Amy E., 2015) that can incorporate a high-level description of the correct behavior for the 

robotic system to our use-case. This is accomplished with linear temporal logic (LTL) 

specifications and a labeled, discrete representation of the SMS. By generating a Büchi 

automaton representation of the high-level specification phrased in LTL, the system dynamic 
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and correct behavior can be represented in the same product automaton. This resulting 

automaton encodes all system behavior that is within the specification and forms the basis of 

the monitoring system. This methodology has been implemented in a MATLAB-based 

simulator, which also tracks a continuous system variable.

Finally, the paper presents results of this methodology with respect to PHM. Correct control 

sequencing is represented at a high-level using task-level labels for the discrete system 

model. It is over these task-level labels that the specification will monitor the correct 

behavior of the system. Wear monitoring is achieved using a differential equation model of 

wear in both loaded and unloaded conditions. These discrete and continuous statuses are 

tracked and displayed and will be used to develop corrective control strategies to maximize 

the lifetime of the robotic system. This work is part of a larger effort to create a modular, 

adaptive multi-scale PHM scheme (AM-PHM) where we take operational demand profiles, 

generate performance and health assessments, then create operational objectives.

2. Prognostics and Health Management for Smart Manufacturing Systems

Prognostics and health management (PHM) technologies reduce time and costs for 

maintenance of products or processes through efficient and cost-effective diagnostic and 

prognostic activities. In 2010, a comprehensive review was conducted of prognostic and 

diagnostic methodologies for condition-based maintenance (CBM) that presented the 

existing strategies within four categories: physical models, knowledge-based models, data-

driven models, and combination (hybrid) models (Peng, Dong, & Zuo, 2010). This review 

highlighted many specific methods across these four categories (e.g., Hidden Markov 

Models, Bayesian network-related methods, Fuzzy Logic, Principal Components Analysis) 

along with their successes and limitations. No one method stood out as being sufficient to 

provide both diagnostic and prognostic intelligence at multiple levels. This review 

demonstrated that for every method’s strength, there was at least a single weakness. 

Similarly, another review of existing methods was conducted in 2012 that focused on 

comparing time-based maintenance (TBM) and condition-based maintenance (CBM) 

(Ahmad & Kamaruddin, 2012). TBM, commonly referred to as preventative maintenance, is 

typically simpler to implement (in that maintenance is scheduled based upon a specific unit 

of time; e.g., cycle time) while CBM, sometimes termed predictive maintenance, may 

ultimately be more cost effective if a process’s or equipment’s health data accurately reflects 

its current state and allows a machine to run longer until maintenance (as compared to a 

TBM schedule). The challenge in CBM is gathering sufficient data to make a reasonably 

accurate prediction. Both of these studies revealed that PHM is applicable to both products 

and processes; this makes PHM a tremendous, and necessary, asset to SMS.

Product PHM (providing health monitoring, diagnostics, and/or prognostics for a finished 

system; e.g., automobile, aircraft, power generation station) is more widespread as compared 

to process PHM (providing health monitoring, diagnostics, and/or prognostics to a system 

that integrates one or more pieces of equipment to complete a task; e.g., assembly process, 

welding process, machining process). (Batzel & Swanson, 2009) (Holland, Barajas, Salman, 

& Zhang, 2010) (Hu & Koren, 1997) (Shen, Wan, Cui, & Song, 2010). Likewise, PHM 

techniques have been developed and applied more widely at the component/equipment level, 
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yet some work has occurred at the higher/system levels. For example, innovative methods 

have been developed for various machining operations (Al-Habaibeh & Gindy, 2000) 

(Altintas, Verl, Brecher, Uriarte, & Pritschow, 2011) (Biehl, Staufenbiel, Recknagel, 

Denkena, & Bertram, n.d.) (Borisov, Fletcher, Longstaff, & Myers, 2013). System level 

PHM methods have also been developed, yet seem to be very focused in their applicability 

and/or limited in capability (Barajas & Srinivasa, 2008) (Datta, Jize, Maclise, & Goggin, 

2004) (Hofmeister, Wagoner, & Goodman, 2013).

The paper (Vogl, Weiss, & Donmez, 2014) conducted a detailed review of existing standards 

that were designed to help guide implementation of PHM in manufacturing. Specifically, 

many of the current PHM standards were developed within the International Organization 

for Standardization (ISO) and focus primarily on condition monitoring and diagnostics (ISO, 

2002) (ISO, 2003) (ISO, 2012). Few standards include discussion of prognostics (ISO, 

2004). The standards review highlighted that only very specific processes benefited from 

these standards; they are not considered broadly applicable. This study highlights a gap in 

that no standards are currently available that are both robust and flexible to address the 

diverse and dynamic environments presented by Smart Manufacturing.

Smart Manufacturing presents a paradigm shift in that manufacturers are thinking differently 

about how they implement their production technologies, tools, and teams. The field of 

robotics has already released and is actively working towards a next generation of new 

products, bolstered by developments in low-level controllers such as proximity detection, 

image processing, and precise human-safe actuators. In addition, collaborative robotics 

systems are emerging, enabling robots to work side-by-side with humans and other robots 

without requiring physical safety barriers. Collaborative robotics are characterized by:

1. Lower total implementation costs

2. Reduced barrier-to-entry in the form of operational technical skill

3. Improved efficiencies and overall equipment effectiveness (OEE) as discussed in 

(Jeong & Phillips, 2001)

4. Flexible spatial feasibility and responsive configurations

5. Increased safety features allowing humans to work alongside them

For many small and medium-sized manufacturers, the cost of integrating a robot into a 

historically manual process is the most prohibitive barrier to automation. While the purchase 

price of a robot is sometimes significant, it is dwarfed by the cost of process integration, 

programming, and support. Many collaborative robot technologies effectively reduce the 

overhead associated with safety, programming, and factory floor real estate. As such, the 

promise of reduced cost and ease of use are seen as a means by which even small and 

medium-sized enterprises may access and adopt automation technologies (Marvel, 2014).

However, with safety being the principal focus for the current development of collaborative 

technologies, system performance and reliability have yet to be verified. As such, these 

systems require the means by which end users can guarantee the application performance, 

and ultimately establish confidence in the systems on which they will rely. Proper health 
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monitoring and prognostics modeling of system and process performance, in particular, will 

provide end users with the necessary insights into the reliability of such emerging smart 

manufacturing technologies.

With this profound interest for installing robotic and other automated platforms, it is 

increasingly important to create the high-level control strategies necessary for operating 

them. The competitive landscape has changed the way corporations manage their supply 

chain solutions. A plant manager cannot lead his or her world class facility with only 

reactive maintenance systems in place. Rather, PHM based techniques could be seen as a 

corollary to the cultural principles established in Total Productive Maintenance (TPM) 

(Nakajima, 1988) and Lean Manufacturing (Shah & Ward, 2003).

3. The Industry-inspired Use-Case

For our use-case, we have created a scenario with two robots collaborating together to 

accomplish a task in a work cell that is assumed to be a part of an entire production line. The 

task to be completed can be subdivided into a pick and place operation combined with a 

drilling operation, as seen later in Figure 3. The pick and place will be performed by a robot 

which we will name “Ben”. The drilling operation is performed by a robot named “Mike”.

Boxes are generated according to a predetermined cycle time, arriving from an upstream 

work cell and appearing on a conveyor in front of Ben. Ben picks up a single box after it has 

been detected, rotates his torso actuators ninety degrees, and places it on a second conveyor 

that is elevated off the factory floor. Boxes then continue their conveyance route, already 

facing the correct orientation to receive the drilling operation. When a box is detected in 

front of Mike, the end effector is extended, grabs the box, drills a hole, and retracts the arm.

We will engage the use case to show the many motion trajectories that could be employed to 

accomplish this specific work cell’s task. It is an exciting contribution of the work to 

introduce the notion that we can generate redundant motion sequences to be leveraged for 

PHM. These will later be identified by the novel monitoring methodology achieved by a 

formalized separation between the overall system task and the single strategy employed at 

any one point in time.

It should be noted the use-case assumes a dynamic model of wear that shows increases in 

wear over time as the number of movements increase in the robot. We are also using a 

discrete transition system model of each robot’s behavior and capabilities.

4. An LTL-Based Monitoring Simulator For The Industrial Use-Case

We will now review the individual components of the software simulator framework as 

implemented on the industry inspired use case. This includes the representation of the 

involved robot subsystems as discrete transition systems. Further, we explain the linear 

temporal logic based high level objective description and monitoring.
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4.1. Transition System Representation

The two robots in our use case are represented in the form of discrete transition systems. A 

discrete transition system is a well known concept in Computer Science where it is 

extensively used in formal proofs for different algorithms and software. For our case, we 

have also incorporated a continuous state variable in the respective transition systems for 

representing the wear in the robots. The transition systems of the robots for the industry 

inspired use-case are given in the Fig. 1. Using notation described in (LaViers, Chen, Belta, 

& Egerstedt, 2011), for the two robots this representation is given as:

(1)

(2)

T1 represents transition system for Mike and T2 represents transition system for Ben where

i.  is the finite set of Mike’s states, either hand labeled by a user 

or generated automatically through a segmentation framework. 

 is the similar set of Ben’s states. Superscripts indicate the 

robot (1 is for Mike, 2 is for Ben).

ii. q01 and q02 are the initial states of Mike and Ben respectively;

iii. →i ⊆ i × i is a reflexive transition relation of Mike (if i = 1) or Ben (if i = 2) , 

where each state has a self-loop, allowing for one robot to transition to a new 

state without that requirement being imposed on the other robot;

iv. Π1 = {Minitial, Mopengrip, Mdetect, Mdrillready, Mdrill, Mclosedgrip} is a finite set of 

atomic propositions for robot Mike.

Similarly, Π2 = {Binitial, Bopengrip, BDetect, BDrop, BgrabReady, BGrab, Bhold, 
BIntermedPos, BDropReady} is a finite set of propositions for Ben.

These propositions represent the status of different subtasks performed by Mike 

and Ben respectively;

v. hi : i ↦ 2Πi is a satisfaction (output) map, where state  satisfies the set 

of propositions from Πi. 2Πi represents a set of all possible combinations of 

propositions of one robot. Thus, hi is a mapping of these combinations to each 

one of the states in the robot i. It can be seen in Fig. 1 how each of the states has 

a combination of individual propositions;

vi. C1 and C2 are sets of pairs of the form (f(x, t), τ). For C1 we have 

 such that  represents dynamics 

of a continuous parameter for duration of . In the final pair, n = 6 and defines 

the number of degrees of freedom in Mike; r = 13 and is the number of motion 
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primitives in Mike; e = 2 representing the two environmental cases e.g., loaded 

and unloaded condition, for Mike. Similarly for C2 we have 

;

vii. w1 : →1 ↦ C1 and w2 : →2 ↦ C2. w1 and w2 are mapping from each 

transition for a respective robot to a pair in corresponding C1 and C2. More 

simply, it is a function that maps all the transitions of a robot to a corresponding 

wear dynamic.

The states correspond to the robot states while performing the tasks. For example, a state can 

be the idle state when the robot is waiting for the sensor to detect the box in front of it. The 

atomic propositions represent statements about the states of the robot and they can be either 

true or false. The linear temporal logic (LTL) specifications, as will be explained in the next 

subsection, are described in terms of these statements and the system evolves in terms of 

them.

The next task is to combine the representation of different robots to describe the whole 

system in terms of a single transition system. This can be achieved using the composition of 

the two transition systems. This composition is achieved by taking synchronous product of 

the transition systems for the individual robots.

The synchronous product of two transition systems T1 and T2, denoted as Tp = T1 ⊗ T2, is a 

new transition system with ( P, q0P, →P, ΠP, hP). The states are Cartesian pairs of the single 

robot states, i.e., P ⊆ 1 × 2, likewise q0P = (q01, q02). Transitions exist between these 

joint states if and only if a transition existed between both single states, i.e., →P⊆ P × P is 

defined by (q, q′) ∈→P if and only if q ≠ q′,  and , where q = (q1, 

q2) and . The set containing atomic propositions for the composition of the two 

transition systems, denoted as ΠP, is a union of the individual sets of propositions for the two 

robots that extends to include propositions which apply to situations where both robots are 

active.

Now we have the transition system for the two robots defined. With a formal representation 

of the robots, we can now define high level tasks for the robots in terms of the states. This is 

accomplished with LTL specifications and their representation in the form of Büchi 

automaton. Next we describe the LTL based specifications.

4.2. Linear Temporal Logic (LTL) Specifications

What we want is a tailored transition system according to the high level objectives. This is 

where the LTL specifications come in. A brief introduction of the LTL operators is given as 

follows:

LTL formulas are described in terms of the set Π of atomic propositions. LTL specifications 

describe the high level objectives in the form of Boolean and temporal operators. The 

Boolean logic operators, that have been used, include, ¬ (negation), ∨ (disjunction), ∧ 
(conjunction), and → (implication). The temporal operators include, X (next),  (until), F 
(eventually), and G (always). LTL formulas are defined over infinite words generated by the 
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transition systems. In particular, the LTL specifications we define, describe the possible 

actions of our system of robots, p.

An LTL formula ϕ is said to satisfy a word of the transition system if the formula ϕ is true 

for the first position of the word; Xϕ states that at the next state, an LTL formula ϕ is true; 

Fϕ means that the LTL formula ϕ eventually becomes true at some position of the word; Gϕ 
means that the LTL formula ϕ is true for all the positions of the word; ϕ1 ϕ2 means ϕ2 

eventually becomes true at some position in the word and ϕ1 is true until that position of the 

word comes. More complex and sophisticated specifications can be designed using a 

combination of Boolean and temporal operators. For details (Clarke, Peled, & Grumberg, 

1999) can be consulted.

As an example, some high level objectives and their LTL representations are given below. 

We will only show the basic LTL form G(Proposition1 → Proposition2), as this will be the 

most common form used in practice by manufacturers in specifying their high level 

objectives.

i. Ben! Stay in initial position when Mike is performing drilling

G (Mdrill → Binitial)

ii. Mike! do not grip unless you are in the drilling position

G (Mclosedgrip → Mdrill)

iii. Ben! do not open your hand while you are holding the box

G (¬Bhold → Bopen)

iv. Mike! Stay in initial position when Ben is dropping the box

G (BDrop → Minitial)

To check whether all words of the transition system, Tp, satisfy an LTL formula ϕ over the 

set of propositions ΠP, we need to have Büchi Automaton that accepts only the words 

satisfying ϕ. By the help of a tool, LTL2BA (Gastin & Oddoux, 2001), we are able to get a 

Büchi Automaton ℬϕ from the LTL specification ϕ. For example, the first specification can 

be given in the Büchi Automaton form as pictured in Fig. 2.

A tailored representation of the system can then be had by taking a product of the system 

transition system Tp and ℬϕ to get the final automaton . Now this automaton as mentioned 

earlier represents all the allowed transitions between states of the system in light of the 

specifications defined in ϕ. The LTL specifications are defined in such a way that they define 

the desired behavior of the whole system. We monitor the behavior of the system by 

monitoring the transitions in the system. If an error occurs, because of a sensor failure, robot 

motor failure etc., these specifications are not satisfied and the monitoring system returns a 

sequence that is not satisfied by TP × ℬϕ. We monitor and verify the desired movements of 

the robots based on the allowed transitions by using an interface between MATLAB and 

VREP.
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5. Applications To PHM

Through the use of LTL we are able to build the discrete sensor oriented piece of the 

monitoring scheme. The transition system’s representation of the continuous parameter for 

each robot, C1 and C2, allows us to track differential wear functions over time. The two of 

these combine to create the complete system monitor for use in PHM.

5.1. Results of the LTL-Based Monitor

Figure 3 depicts the three dimensional model of the robotic work-cell in the VREP 

simulation environment. Figure 4 shows the MATLAB interface displaying continuous time 

wear parameters and the cycle time associated with the two robots along with the discrete 

system information. In the top figure, continuous information for the whole system has been 

presented. This includes wear information of all the joints of the robots according to the 

dynamic functions defined in the previous section. For each of the robots, wear has been 

computed for all of the six joints. It can be observed that wear curves for robot Ben are more 

evenly spread on to all the joints. In comparison, wear curves for robot Mike are mostly 

defined by joint 6. The third graph in Figure 4(a) represents the cycle time for each task that 

Mike and Ben are performing.

Figure 4(b) conveys information of the system’s discrete nature. The Motion Primitives 
section indicates the current motion primitive of Ben and Mike by filling the corresponding 

circle for the motion primitive. Discrete Objective states the high level overall objective of 

the system. Overall Status indicates if the high level objective specifications are satisfied or 

violated by toggling the color of the corresponding bubble.

A generalizable structure of the work is defined by Figure 5. The figure is specifically for 

the use-case where we have two robots that collaborate with each other, but could be 

extended to include any number of Robotic Transition Systems. The Robotic Transition 

Systems, which abstract the physical robots present on the factory floor, are subsequently 

transformed into the overall Manufacturing System Automaton. The plant maintenance team 

or robotics engineers create the high-level LTL specifications to monitor the discrete 

exceptions of the Manufacturing System, which is then mathematically written as the Büchi 

Automaton of the LTL Spec. The LTL Spec and Manufacturing System Automaton can then 

be represented in the same automaton, which finally becomes the Discrete System Monitor 

for PHM applications. The actuator wear is also projected for each joint with respect to the 

robotic systems to monitor continuous parameters. Discrete and Continuous Prognostic 

Indicators are finally realized, which is exemplified by the MATLAB interface in Figure 4.

5.2. Application to Adaptive Multi-Scale PHM

As previously stated, this paper is a part of a larger effort to create an adaptive multi-scale 

PHM scheme described in (Choo, Beling, LaViers, Marvel, & Weiss, 2015). Adaptive multi-

scale prognostics and health management (AM-PHM) is a methodology designed to support 

PHM in smart manufacturing systems. AM-PHM is characterized by its incorporation of 

multi-level, hierarchical relationships and PHM information. AM-PHM utilizes diagnostic 

and prognostic information regarding the current health of the system and constituent 
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components, and propagates it up the hierarchical structure. By doing so, the AM-PHM 

methodology creates actionable prognostic and diagnostic information along the 

manufacturing process hierarchy. This information includes the predicted health state upon 

completion of a task. The health estimates that flow up the hierarchy are based upon 

simulated operational directives that flow down it. Nodes at given levels along the system 

hierarchy consume operational profiles from adjacent, higher level nodes. These profiles 

describe the production goals under consideration by the decision makers (e.g., operators 

and supervisors) in the superior level. In addition to the traditional workload, bill of 

materials, and requirements of the manufacturing process, the operational profile may have a 

focused objective such as minimizing cost or maximizing reliability. Each AM-PHM module 

creates operational profiles for its subordinate AM-PHM modules while producing 

diagnostic and prognostic information for its higher level subsystem.

The simulator framework described in this paper would provide the capability to estimate 

wear and other measures of system health with respect to given operational profiles, and so 

could be the basis for upward push of prognostics and health estimates. In an attempt to 

deliver true adaptable and scalable information for translating operational profiles into 

operational directives, LTL specifications can be hierarchical in nature to capture subtopic 

levels, or the individual motors, and head topic levels, which is the team process flow.

6. Conclusion

The paradigm shift in Advanced Manufacturing, where manufacturers are introducing the 

next generation of flexible and collaborative robotics, has the potential to further shape the 

sector. This shift, along with Prognostic and Health Management techniques, is a large part 

of what will enable Smart Manufacturing Systems. The novel LTL-based monitor reviewed 

in this work introduces a method for connecting continuous and discrete prognostics, and is 

immediately applicable to the robotic platforms that manufacturers seek to install in their 

factories.

We have applied this monitor to an industry-inspired use-case and showed in a three 

dimensional simulation environment how the methodology can be integrated on a robotic 

work-cell. The differential wear functions can be installed to fit the manufacturer specific 

application, and handled by the automated computing environment for generating wear 

diagnostics. Intuitive high-level specifications can be applied by systems integrators or plant 

supervisors for filtering out discrete exceptions. This is especially important as production 

lines in the advanced manufacturing setting employ an increasing suite of sensors to observe 

their processes.

Therefore, we have laid the ground work for building intelligent control strategies to evenly 

spread wear of robotic platforms, ergo maximizing the life of the system. Future work will 

leverage the supervisory control and model checking found in the monitor to define the 

multiple ways motions can be performed, and then switch between styles of motion to best 

extend asset life. This automated flexibility continues to close the gap on waste, both in the 

form of time and capital expenditure.
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The LTL-monitor serves as a blueprint for implementing PHM in robotics and all other 

forms of automation. The protocols can be written to allow for information flow into the 

larger supply chain systems scheme, further bolstering the Adaptive, Multi-scale PHM 

environment. The overall vision gives plant leadership teams and operations management 

alike the structure to seamlessly integrate their manufacturing capabilities with market 

demand. As pressures for profitability continue, this will undoubtedly be of interest to 

industry to ensure productivity, quality, and safety goals.
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Figure 1. 
Transition Systems of the Robots.
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Figure 2. 
Büchi Automaton representation of an LTL specification
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Figure 3. 
VREP simulation environment of the use case complete with two robots performing the pick 

and place of the box and subsequent drilling operation.
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Figure 4. 
MATLAB interfaces for the continuous and discrete pieces of the monitoring framework
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Figure 5. 
A more general representation of the LTL based monitoring system applied to the use-case 

where two robots are working together to accomplish a task.
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