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ABSTRACT Hydrogenotrophic methanogens typically require strictly anaerobic cul-
turing conditions in glass tubes with overpressures of H2 and CO2 that are both
time-consuming and costly. To increase the throughput for screening chemical com-
pound libraries, 96-well microtiter plate methods for the growth of a marine (environ-
mental) methanogen Methanococcus maripaludis strain S2 and the rumen methanogen
Methanobrevibacter species AbM4 were developed. A number of key parameters (inoc-
ulum size, reducing agents for medium preparation, assay duration, inhibitor sol-
vents, and culture volume) were optimized to achieve robust and reproducible
growth in a high-throughput microtiter plate format. The method was validated us-
ing published methanogen inhibitors and statistically assessed for sensitivity and re-
producibility. The Sigma-Aldrich LOPAC library containing 1,280 pharmacologically
active compounds and an in-house natural product library (120 compounds) were
screened against M. maripaludis as a proof of utility. This screen identified a number
of bioactive compounds, and MIC values were confirmed for some of them against
M. maripaludis and M. AbM4. The developed method provides a significant increase
in throughput for screening compound libraries and can now be used to screen
larger compound libraries to discover novel methanogen-specific inhibitors for the
mitigation of ruminant methane emissions.

IMPORTANCE Methane emissions from ruminants are a significant contributor to global
greenhouse gas emissions, and new technologies are required to control emissions in
the agriculture technology (agritech) sector. The discovery of small-molecule inhibitors
of methanogens using high-throughput phenotypic (growth) screening against com-
pound libraries (synthetic and natural products) is an attractive avenue. However, phe-
notypic inhibitor screening is currently hindered by our inability to grow methanogens
in a high-throughput format. We have developed, optimized, and validated a high-
throughput 96-well microtiter plate assay for growing environmental and rumen meth-
anogens. Using this platform, we identified several new inhibitors of methanogen
growth, demonstrating the utility of this approach to fast track the development of
methanogen-specific inhibitors for controlling ruminant methane emissions.

KEYWORDS methanogen, greenhouse gas, Methanococcus maripaludis, high-
throughput, rumen, Methanobrevibacter

Methane emissions from ruminants are a significant contributor to global green-
house gas emissions (1). In countries such as New Zealand, with a large pasture-

based livestock sector, greenhouse gas emissions from agriculture represent approxi-
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mately half of its total emissions (2). Methane is produced in the rumen principally by
methanogens, a group of archaeal microorganisms. The methanogens that dominate
the rumen belong to the Methanobacteriales and include the Methanobrevibacter
ruminantium, Methanobrevibacter gottschalkii, and Methanosphaera clades (3, 4).
Methanomassiliicoccaceae-affiliated species are also found (4). A number of technolo-
gies have been suggested for mitigating methane emissions (5, 6), including low-
methane-emitting animals (7) and the use of special forages (8), phage or their lytic
enzymes (5, 9), direct-fed microbials (10), vaccines (11), and inhibitors (12–15). Although
some of these strategies have shown promise, not all directly target methanogens.
Halogenated compounds (e.g., chloroform and bromochloromethane) are highly po-
tent inhibitors of methanogenesis in ruminants (6, 16–21). However, these compounds
are not considered appropriate for use in current animal husbandry due to environ-
mental, human health, and animal welfare concerns. In addition, halogenated hydro-
carbons (e.g., bromochloromethane) have potent ozone-depleting properties (22).
Notwithstanding, there is still a significant potential for the discovery of narrow-
spectrum methanogen-selective inhibitors that are more potent, more specific, and less
toxic and that target methanogens and methane formation without negatively affect-
ing animal productivity, consumers, or the environment (6, 23).

An early-stage drug development strategy that has undergone a recent resurgence
in the discovery and development of small-molecule inhibitors of pathogenic micro-
organisms is phenotypic screening (24, 25). In phenotypic screening, a high-throughput
platform using microtiter plates for the growth of the target bacterium is used to screen
the toxicity of a compound library. Screening is an important prerequisite of this
technology. Therefore, it has not been applied widely to microorganisms that have
fastidious growth requirements, such as anaerobic bacteria (for an exception, see
reference 26). Because hydrogenotrophic methanogens typically require H2 and CO2

overpressures in addition to strictly anaerobic conditions for growth, they represent
additional challenges. Methanococcus maripaludis strain S2 is a well-characterized
genetically tractable methanogen that can be grown in the absence of H2 and CO2

using formate (27–32). M. maripaludis grows quickly to high cell densities in contrast to
slowly growing rumen isolates, such as Methanobrevibacter ruminantium M1, where cell
densities are low (33, 34). Both methanogens are typically grown using anaerobic
culturing techniques in 5-ml or greater culture volumes using appropriately sealed and
pressurized glass tubes, which is incompatible with modern high-throughput screening
techniques for drug discovery and phenotypic analysis (35). A microtiter plate method
for performing antimicrobial peptide susceptibility testing has been reported for three
different nonrumen methanogens (36). These methanogens were cultured with either
methanol or H2-CO2 (36). To specifically perform high-throughput screening of large
compound libraries, we sought to develop a microtiter plate method that did not
require H2 overpressures for culturing rumen methanogens. This methodology was
applied to the development of methanogen-specific inhibitors for controlling ruminant
methane emissions.

Here, we report the culturing of marine and rumen methanogens in 96-well micro-
titer plates with methods that were optimized for robust growth, ease of use, and
reproducibility. The methods were validated using published inhibitors, were statisti-
cally assessed for sensitivity and reproducibility, and were used to screen compound
libraries as a proof-of-principle for their utility.

RESULTS AND DISCUSSION
Growth of methanogens in a microtiter plate format. A previously published

basal growth medium with formate (McF), with sodium sulfide as the reducing agent,
was chosen for the growth of the fast-growing (2-h doubling time) marine methanogen
M. maripaludis, eliminating the requirement for overpressurization with H2 (30). Using
this McF medium, rapid progress was achieved in adapting the growth of M. maripalu-
dis in 96-well microtiter plates (320-�l final volume). Cultures in the microtiter plates
were inoculated with a 4% starter culture grown in Balch tubes (optical density at 600

Weimar et al. Applied and Environmental Microbiology

August 2017 Volume 83 Issue 15 e00396-17 aem.asm.org 2

http://aem.asm.org


nm [OD600] of 0.9). In initial experiments, plates were incubated at 37°C under two
different anaerobic culturing conditions, namely, in an AGS AnaeroGen compact bag
(Oxoid) that was sealed and kept either inside or outside the anaerobic chamber. An
oxygen indicator (resazurin) in the medium enabled the detection of oxygen. For the
cultures that were incubated outside the anaerobic chamber, anaerobic conditions
lasted for approximately 40 h. Therefore, this method was not suitable for the exper-
iments for optimizing growth conditions. Microtiter plates incubated in the anaerobic
chamber reached a final optical density of 0.564 � 0.083 after 5 days of growth (Table
1). Based on these results, further experiments were performed in the anaerobic
chamber with a gas atmosphere of 5% H2, 5% CO2, and 90% N2 to maintain strictly
anaerobic conditions in the microtiter plate format.

A range of inoculum sizes (1 to 10%) was tested, and the smallest size that gave
consistently rapid and reproducible growth after 5 days (late exponential phase) was
4% (Table 1). Using this inoculum size, the concentration of sodium sulfide was
optimized. Because volatile H2S was readily formed under these growth conditions, it
was of special concern. Concentrations of 0.05%, 0.1%, 0.2%, and 0.3% (wt/vol) sodium
sulfide were tested. On the basis of the growth rate and final optical density, the best
concentration was 0.2% sodium sulfide (wt/vol), which is 4-fold higher than that used
in sealed tubes (data not shown).

These adaptations of the standard growth conditions yielded reproducible growth
of M. maripaludis in the 96-well microtiter plate format (Table 1). For instance, the
average with standard deviation OD600 was 0.564 � 0.083. The average with standard
deviation OD600 for five biological replicates was 0.466 � 0.094 (data not shown).
Similarly, in the presence of the inhibitors monensin and 2-bromoethanesulfonic acid
(BES), the values were 0.026 � 0.017 and 0.036 � 0.013, respectively (Table 1).
Compound libraries are typically supplied with either dimethyl sulfoxide (DMSO) or
some other organic solvent (e.g., ethanol) as the diluent. We tested the effects of 1%
and 2% DMSO and 1% ethanol (Table 1 and data not shown). Neither solvent at these
concentrations had a significant effect on the final optical density.

Methanobrevibacter sp. strain AbM4 is a slowly growing rumen isolate that grows
without H2 in the presence of 20 mM methanol and 20 mM ethanol, the potential of
which was indicated by Leahy et al. (37). The inoculum size and cysteine concentration
were optimized for the growth of AbM4 in the 96-well microtiter plate format (320-�l
final volume) using rumen fluid-based (RM02) medium. Inocula of 2.5%, 5%, and 10%
(vol/vol) were evaluated after 4 days in the anaerobic chamber at 38°C (early-stationary-
phase cultures). The mean absorbance values were 0.180, 0.396, and 0.421, respectively
(Table 2). Based on the final OD600 reached and the number of population doublings
achieved (�3), we chose a 5% inoculum for all further experiments. The reducing
agents sodium sulfide (Na2S) at concentrations of 0.05%, 0.1%, and 0.2% (wt/vol) and

TABLE 1 Growth of Methanococcus maripaludis strain S2 in 96-well microtiter plate format

Replicate

Final OD600
a

Medium
only

Inoculum
only (4%)

DMSO
(2%)

Monensin
(1 �M)

BES
(30 �M)

R1 0 0.702 0.553 0.015 0.039
R2 �0.003 0.661 0.590 0.025 0.054
R3 �0.002 0.555 0.550 0.025 0.058
R4 �0.003 0.589 0.415 0.018 0.053
R5 �0.003 0.455 0.417 0.034 0.045
R6 �0.004 0.521 0.442 0.025 0.050
R7 �0.002 0.503 0.417 0.015 0.062
R8 �0.002 0.528 0.602 0.012 0.044
Avg �0.002 0.564 0.498 0.021 0.051
SD 0.001 0.083 0.083 0.007 0.008
aRecorded after 5 days of incubation at 37°C using a 4% inoculum (approximate OD600 of 0.020) and McF
medium containing 0.2% sodium sulfide (wt/vol) and 400 mM sodium formate. The Z= for the assay was
0.64.
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cysteine at concentrations of 0.05%, 0.1%, and 0.5% (wt/vol) were checked for their
ability to improve growth. The average absorbance values at 600 nm were 0.261, 0.406,
and 0.368, respectively, for Na2S and 0.585, 0.503, and 0.394, respectively, for cysteine
(data not shown). Thus, the highest growth was obtained with 0.05% cysteine, the
standard concentration used for growth in Balch tubes. Thus, this concentration was
used for all further experiments in 96-well microtiter plates. The effect of DMSO at
concentrations of 0.5%, 1%, and 2% (vol/vol) was tested. Concentrations greater than
1% were inhibitory (Table 2 shows 2% DMSO). Lastly, the average with standard
deviation of the growth yield (OD600) from five biological replicates in the 96-well
format was 0.331 � 0.056.

Inhibition of methanogens in a microtiter plate format. To further demonstrate
that controlled inhibition of growth of M. maripaludis was achievable in our microtiter
plate format, we tested the effects of two previously identified methanogen inhibitors
on the growth of M. maripaludis (Table 1) and Methanobrevibacter sp. strain AbM4
(Table 2). Monensin, a sodium ionophore, and 2-bromoethanesulfonic acid (BES), an
analogue of methyl-coenzyme M, are potent inhibitors of methanogens (34). Using
monensin (1 �M) or BES (30 �M), nearly complete inhibition, i.e., �85% reduction of
growth, was observed for both strains (Tables 1 and 2). The suitability of the assay for
high-throughput screening was determined using the statistical parameter termed the
Z-factor (38). The Z= values for our microtiter plate screens were 0.64 for M. maripaludis
and 0.82 for Methanobrevibacter sp. strain AbM4, indicating a high-quality assay exhib-
iting a wide separation between signal and background and low data variability.

Screening of compound libraries for new inhibitors of methanogens. Using the
microtiter plate format described above for M. maripaludis, the LOPAC 1280 library
(Sigma-Aldrich, St. Louis, USA), comprising 1,280 biologically active compounds, was
screened for inhibitors of M. maripaludis growth. The library was prepared as 1.0 mM
stocks in dimethyl sulfoxide (DMSO) and assessed for inhibition of M. maripaludis
growth at a final compound concentration of 20 �M. Each tested microplate contained
control wells for DMSO (1% [vol/vol]) and positive inhibitor control wells (monensin and
BES, 1 �M and 30 �M, respectively). The LOPAC screen was characterized by an average
Z-factor of 0.67. Forty-one compounds were identified that caused �90% inhibition of
growth after 5 days of incubation (see Table S1 in the supplemental material).

A second screen using M. maripaludis was performed with an in-house collection of
120 antibiotics and other natural products. Of the 120 compounds screened at final
concentrations of 20 �M, 17 inhibited the growth yield of M. maripaludis by �90% (see
Table S2). The screen was characterized by an average Z-factor of 0.78. These com-
pounds were then screened at a range of concentrations from 0.02 to 20 �M to
determine potency. Excluding previously reported inhibitors of methanogens (i.e.,
nigericin, valinomycin, and monensin) (Fig. 1) (39, 40), the most potent compounds
identified in our natural product screen were mangostin (50% inhibitory concentration

TABLE 2 Growth of Methanobrevibacter species AbM4 in 96-well microtiter plate format

Replicate

Final OD600
a

Medium
only

Inoculum
only (2.5%)

Inoculum
only (5%)

Inoculum
only (10%)

DMSO
(2%)

Monensin
(1 �M)

BES
(30 �M)

R1 0 0.179 0.376 0.451 0.254 0.039 0.062
R2 �0.003 0.161 0.370 0.442 0.278 0.045 0.049
R3 �0.002 0.174 0.379 0.438 0.282 0.040 0.061
R4 �0.003 0.275 0.397 0.348 0.285 0.038 0.053
R5 �0.003 0.157 0.421 0.479 0.292 0.038 0.062
R6 �0.004 0.149 0.430 0.408 0.280 0.041 0.069
R7 �0.002 0.157 0.365 0.411 0.257 0.016 0.053
R8 �0.002 0.190 0.428 0.398 0.254 0.026 0.049
Avg �0.002 0.180 0.396 0.422 0.273 0.035 0.057
SD 0.001 0.041 0.027 0.040 0.015 0.010 0.007
aRecorded after 4 days of incubation at 38°C using a 5% inoculum (approximate starting OD600 of 0.020) in
medium containing reductant (0.05% cysteine [wt/vol]). The Z= was 0.82.
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[IC50], 2.5 �M), lumichrome (IC50, 2.6 �M), echinomycin (IC50, 1.2 �M), and curcumin
(IC50, 6.5 �M) (Fig. 2). A comparison between M. maripaludis and strain AbM4 revealed
several potent inhibitors in common from screening natural product libraries, including
nigericin, valinomycin, and echinomycin (inhibited growth at 2 �M). Others hits included
daunorubicin hydrochloride, aristolochic acid, ellipticine, and actinomycin D, which showed
some growth inhibition of AbM4 at 20 �M (data not shown). These data suggest that
natural products have similar molecular targets in both methanogens, but the sensitivities
differ between the two strains tested. The identity of the mode of action of these new
inhibitors against methanogen growth is required to validate this proposal.

The inhibitors discovered in this study were identified through their ability to inhibit
the growth of both methanogen species on either formate or ethanol and methanol,
but there is reason to believe that core essential methanogen genes would also be

FIG 1 Determination of the median inhibitory concentration (IC50) values for monensin (0.20 �M) (a),
nigericin (0.30 �M) (b), and valinomycin (1.3 �M) (c) on the growth (percentage) of M. maripaludis using
the 96-well microtiter plate format. Growth was determined from OD600s recorded after 5 days of
incubation at 37°C using a 4% inoculum and McF medium containing 0.2% sodium sulfide (wt/vol) and
400 mM sodium formate. IC50 values are the results from three independent experiments.
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essential for optimal growth on hydrogen/carbon dioxide (41), the major difference
being the requirement for formate dehydrogenase or ethanol dehydrogenase under
our growth conditions. The reduction in the total number of genes screened when
using formate or methanol and ethanol is potentially quite small (1 to 2%). The increase
in throughput capacity of the phenotypic screening methods (24, 25), which was our
primary goal, outweighs the small loss in potential targets missed under hydrog-
enotrophic conditions.

In summary, we have developed, optimized, and validated a high-throughput
microtiter plate assay for the growth of environmental and rumen methanogens that
enables the rapid screening of compound libraries for the identification of novel
methanogen-specific compounds. Using this platform, we identified several new inhib-
itors of methanogen growth, demonstrating the utility of this approach.

MATERIALS AND METHODS
Methanogen growth and microtiter plate development and screening. Methanococcus maripalu-

dis strain S2 was grown in basal medium at 37°C containing sodium formate (400 mM) (McF medium)
essentially as described by Sarmiento et al. (30). For routine culture, strain S2 was grown in Balch tubes
(15-ml working volume in 28-ml tubes). Balch tubes were pressurized to 15 lb/in2 with N2/CO2 (80:20
[vol/vol]) prior to autoclaving. The pH after autoclaving was 7.7 to 7.8. Prior to inoculation, 0.3 ml of 2.5%
Na2S · 9H2O (wt/vol) was added per 15 ml of medium to ensure sufficient reducing conditions (final
concentration, 0.05% Na2S · 9H2O). Methanobrevibacter species AbM4 was isolated in New Zealand (37,
42) and maintained using H2 and CO2 at 38°C in either Hungate tubes, Balch tubes, or serum vials using
a 5% rumen fluid-based (RM02) medium (11). The medium was supplemented with a mixture of ethanol
and methanol (both at 20 mM final concentration) which supported good growth and avoided the
necessity for culturing with an overpressure of H2 and CO2. For storage of AbM4 cultures at �83°C,
recovery was more reproducible when AbM4 was transferred to By� medium using H2 and CO2

overpressures compared with that from storage in RM02 medium (both using 5% [vol/vol] DMSO for
freezing) (43, 44). To recover cultures, the cultures were thawed and a 10% inoculum was transferred to
new tubes of By� medium and grown using H2 and CO2. The AbM4 inoculum that was used for
screening was first adapted to growth with ethanol and methanol by at least two serial transfers from
cultures grown in RM02 medium with H2 and CO2. For both methanogens, growth was measured by
culture absorbance at 600 nm. Routine checks of culture purity were made using 16S rRNA PCR
sequencing combined with fluorescence and phase-contrast microscopy.

FIG 2 Determination of the median inhibitory concentration (IC50) values for mangostin (2.5 �M) (a),
echinomycin (1.2 �M) (b), curcumin (6.5 �M) (c), and lumichrome (2.6 �M) (d) on the growth (%) of M.
maripaludis using the 96-well microtiter plate format. Growth was determined from OD600s recorded after
5 days of incubation at 37°C using a 4% inoculum and McF medium containing 0.2% sodium sulfide (wt/vol)
and 400 mM sodium formate.
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The final optimized McF medium composition for growing M. maripaludis strain S2 in 96-well
microtiter plates contained (per liter of ultrapure water; Milli-Q, Millipore, USA): glycyl glycine buffer (200
mM, pH 8.0), general salt solution (0.335 g/liter KCl, 2.25 g/liter MgCl · 6H2O, 3.45 g/liter MgSO4 · 9H2O,
0.5 g/liter NH4Cl, 0.14 g/liter CaCl2 · 2H2O, 0.14 g/liter K2HPO4, and 1.36 g/liter CH3COONa · 3H2O), trace
minerals solution, pH 7.0 [15 mg/liter nitriloacetic acid, 1 mg/liter MnSO4, 1 mg/liter Fe(NH4)2(SO4) · 6H2O,
1 mg/liter CoCl2 · 6H2O, 1 mg/liter ZnSO4 · 7H2O, 0.1 mg/liter CuSO4 · 5H2O, 0.25 mg/liter NiCl2 ·
6H2O, 2 mg/liter Na2SeO3, 1 mg/liter Na2MoO4 · 2H2O, and 1 mg/liter Na2WO4·2H2O], 1 mg/liter
Fe(NH4)2(SO4) · 6H2O, 0.1% (wt/vol) resazurin, 27 g/liter HCOONa, 5 g/liter NaHCO3, and 500 mg/liter
L-cysteine-HCl. The final optimized medium composition for growing Methanobrevibacter sp. AbM4 in
96-well microtiter plates was 5% rumen fluid-based (RM02) medium supplemented with a mixture of
ethanol and methanol (both at 20 mM final concentration, 0.05% L-cysteine) (11).

For growth in 96-well microtiter plates (Corning Costar 96-well flat-bottom tissue culture), empty
plates were preincubated in a Coy anaerobic chamber (gas mix, 4% H2, 5% CO2, and 91% N2) with �8
ppm O2 for at least 3 days to remove traces of O2. Test inhibitors were solubilized in dimethyl sulfoxide
(DMSO) and placed in the preconditioned plates the day before the assay commenced in a sterile laminar
flow hood (maximum final volume of DMSO was 1% [vol/vol] for AbM4 and 1 to 2% [vol/vol] for M.
maripaludis). The plates were then sealed with a gas-permeable seal (Sigma AeraSeal film) and placed in
an anaerobic chamber overnight to remove traces of O2 from the inhibitors. Cultures of M. maripaludis
(Balch tube) or strain AbM4 (serum bottles) were used for inoculation in a final culture volume of 320 �l
medium for 96-well plates. Optical density readings at 600 nm (OD600) (Flex Station 3 plate reader;
Bio-strategy, USA) were performed after 5 days of incubation under anaerobic conditions. The assay
performance was assessed by the statistical parameters Z and Z=, which take into account both data
variability and signal window (38). The Z evaluates the performance of a high-throughput screening
assay and Z= is the characteristic parameter of the assay itself in the absence of test compounds (38).
Statistical analysis was conducted in GraphPad Prism 6 using an unpaired t test (95% confidence, P �
0.05). The LOPAC1280 compound library was purchased from Sigma-Aldrich and screened in the 96-well
format at a final concentration of 20 �M. An in-house collection of 120 natural products was screened
at final concentrations of 20 �M.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.00396-17.

SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
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