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What can we learn about controlling a system solely from its
underlying network structure? Here we adapt a recently devel-
oped framework for control of networks governed by a broad
class of nonlinear dynamics that includes the major dynamic
models of biological, technological, and social processes. This
feedback-based framework provides realizable node overrides
that steer a system toward any of its natural long-term dynamic
behaviors, regardless of the specific functional forms and system
parameters. We use this framework on several real networks,
identify the topological characteristics that underlie the predicted
node overrides, and compare its predictions to those of struc-
tural controllability in control theory. Finally, we demonstrate this
framework’s applicability in dynamic models of gene regulatory
networks and identify nodes whose override is necessary for con-
trol in the general case but not in specific model instances.

network control | nonlinear dynamics | biological networks |
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Controlling the internal state of complex systems is of funda-
mental interest and enables applications in biological, tech-

nological, and social contexts. An informative abstraction of
these systems is to represent the system’s elements as nodes and
their interactions as edges of a network. Often asked questions
related to control of a networked system are how difficult to con-
trol it is, and which network elements need to be controlled,
and through which control actions, to drive the system toward
a desired control objective (1–11). Among control frameworks,
structure-based methods distinguish themselves due to their abil-
ity to draw dynamical conclusions based solely on network struc-
ture and a general assumption about the type of allowed dynam-
ics. For example, structural controllability (SC), which assumes
unspecified linear dynamics or linearized nonlinear dynamics,
allows the identification of the minimal number of nodes whose
receiving an external signal u(t) drives the system into a state of
interest (12, 13).

Despite its success and widespread application (14–18), SC
may give an incomplete view of the network control properties
of a system. In the case of systems with nonlinear dynamics, it
provides sufficient conditions to control the system in the neigh-
borhood of a trajectory or a steady state (refs. 1 and 18 and SI
Appendix), and its definition of control (full control; from any
initial to any final state) does not always match the meaning of
control in biological, technological, and social systems, in which
control tends to involve only naturally occurring system states
(19). In addition to the approaches provided by nonlinear con-
trol theory (9–11, 18), new methods of network control have
been proposed to incorporate the inherent nonlinear dynamics
of real systems and relax the definition of full control (4, 6, 11,
18, 20). Only one of these methods, namely, feedback vertex set
control (FC), can be reliably applied to large complex networks
in which only the structure is well known and the functional form
of the governing equations is not specified. This method, intro-
duced by Mochizuki and coworkers in refs. 3 and 21, incorpo-
rates the nonlinearity of the dynamics and considers only the
naturally occurring end states of the system (e.g., steady states
and limit cycles) as desirable final states. In this work, we use FC

on biological, technological, and social networks to predict the
nodes whose override (by external control) can steer a network’s
dynamics toward any of its natural long-term dynamic behaviors
(its dynamical attractors). We identify the topological charac-
teristics underlying the predicted node overrides, compare the
obtained results with those of control theory’s SC (1, 12, 13), and
identify the model-dependent and model-independent overrides
it provides for network models with parameterized dynamics.

Structure-Based Network Control with Nonlinear
Dynamics
Most real systems are driven by nonlinear dynamics in which a
decay term prevents the system’s variables from increasing with-
out bounds. The state of the system’s N nodes at time t , charac-
terized by source node variables Sj (t) (for nodes with no incom-
ing edges) and internal node variables Xi(t), obeys the equations

dXi/dt = Fi(Xi ,XIi , t), [1]

dSj/dt = Gj (t), [2]

where i =1, . . . ,N −Ns , j =N −Ns + 1, . . . ,N , and Ns is the
number of source nodes. The dynamics of each source node
j is independent of the internal node variables Xi (by defini-
tion), is fully determined by Gj (t), and does not include a decay
term. In the simplest case, Gj =0 and Sj will remain in its spec-
ified initial value. The dynamics of each internal node i is gov-
erned by Fi(Xi ,XIi , t), which captures the nonlinear response
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of node i to its predecessor nodes Ii (which can be source or
internal nodes), and which includes decay in the dependence of
Fi on Xi (SI Appendix). Functions of the form Fi = fi(XIi ) −
αi(XIi )Xi , which satisfy these conditions, are used to describe
the dynamics of birth–death processes (22, 23), epidemic pro-
cesses (22, 24, 25), biochemical dynamics (26, 27), and gene reg-
ulation (26–29). As an example, Xi(t) can denote the concen-
tration of proteins involved in a signal transduction pathway,
and Sj (t) can denote the concentration of extracellular signals
(molecules). In this case, fi can take the form of a Hill function
[e.g., fi =βiX

2
k /(X

2
k +θ2) if k is the only node in Ii ] or of a mass

action term (e.g., fi =βiXkXl if k and l are the only nodes in Ii).
As an alternative example, Xi(t) can denote the probability that
an individual is infected in a contagion network, Sj (t) can denote
the influence of vaccination or prevention measures on certain
individuals, and Fi can take the form of a susceptible–infected–
susceptible model term [e.g., Fi =βiXk (1−Xi)−αiXi if k is the
only node in Ii ]. (Note that these functions are just examples, and
that the framework we describe is valid for any bounded dynami-
cal process of the form of Eqs. 1 and 2 that occurs on the specified
network structure.)

The dynamics described by Eqs. 1 and 2 are such that they pos-
sess some naturally occurring end states, or dynamical attractors.
Dynamical attractors in biological, social, and technological sys-
tems represented by networks have been found to be identifiable
with the stable patterns of activity of the system. For example,
in gene regulatory networks, dynamical attractors correspond to
cell fates (27–29); in opinion spreading dynamics on social net-
works, they correspond to opinion consensus states of groups
of individuals (25); and, in disease or computer virus spreading,
they correspond to the long-term (endemic) patterns of infected
elements (24).

In many systems, there is adequate knowledge of the underly-
ing wiring diagram but not of the specific functional forms and
parameter values required to fully specify Fi and Gj . Analyzing
such systems requires the use of structure-based control meth-
ods such as FC. FC, developed by Mochizuki and coworkers (3,
21), is a mathematical formalization of the following idea: To
drive the state of a network to any one of its naturally occurring
end states (dynamical attractors), one needs to manipulate a set
of nodes that intersects every feedback loop in the network–the
feedback vertex set (FVS). This requirement encodes the impor-
tance of feedback loops in determining the dynamical attractors
of the network, a fact that was recognized early on in the study
of the dynamics of biological networks (30, 31). Mochizuki and
coworkers (3, 21) mathematically proved that, for a network gov-
erned by the nonlinear dynamics of Eq. 1, the control action of
forcing (overriding) the state variables of the FVS into the trajec-
tory specified by a given dynamical attractor of Eq. 1 ensures that
the network will asymptotically approach the desired dynamical
attractor, regardless of the specific form of the functions Fi . Note
that FC does not use a controller or driver signal, and instead
considers node state override as its control action. [The general
task of designing a controller with an attractor as the target state
in a nonlinear system is a difficult and unsolved problem that
depends strongly on the functions Fi , although several numer-
ical algorithms for specific types of controllers have been pro-
posed (refs. 4, 7, and 18 and SI Appendix).] This type of inter-
vention is often used in biological systems, with examples such
as genome editing or pharmacological treatment (19, 32), and in
epidemic spreading networks, where vaccination is a node state
override that prevents a node from being infected. When using
node state overrides as the control action, controlling the FVS is
sufficient to drive the system to any of its attractors for each form
of Fi and is necessary if this must hold for every Fi (refs. 3 and 21
and SI Appendix). The problem of exactly identifying the minimal
FVS is nondeterministic polynomial-time hard (NP-hard), but a
variety of fast algorithms exist to find close-to-minimal solutions
(SI Appendix).

In the structural theory of Mochizuki and coworkers (3, 21),
every element is governed by Eq. 1. It is assumed that the source
nodes converge to a unique state (or trajectory) and do not need
independent control; thus they are iteratively removed from the
network before applying FVS control. However, source nodes
can denote external stimuli or boundary conditions the system is
subject to; a different set of attractors may be available for each
state of a source node. For example, in the parameterized biolog-
ical models we consider, source nodes provide positional infor-
mation for the cells and affect the patterning behaviors cells are
capable of.

Here we adapt the structural theory of Mochizuki and co-
workers (3, 21) to networks in which source nodes are governed
by Eq. 2 (Fig. 1A and SI Appendix). Because the source nodes
are unaffected by other nodes, one additionally needs to lock
the source nodes of the network in the trajectory specified by
the attractor. We emphasize that the treatment of source nodes
is not merely cosmetic, because the state of a source node can
affect the dynamical attractors available to the system. For exam-
ple, steady states can merge, appear, or disappear depending on
the presence or absence of an external stimulus represented by
a source node (26, 33). In summary, control of the source nodes
and of the FVS of a network guarantees that we can guide it from
any initial state to any of its dynamical attractors (i.e., its natural
long-term dynamic behaviors) regardless of the specific form of
the functions. In the following, we refer to this attractor-based

A
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D

E

Fig. 1. Structure-based network control with nonlinear dynamics. FC is a
structure-based control method that can make conclusions about the long-
term dynamics of a system using solely the network structure. (A) In FC,
the objective is to drive the network from an arbitrary initial state to any
desired dynamical attractor of the system (e.g., a steady state) by forcing
(overriding) the state variables of certain nodes. (B–E) FC in simple networks.
FC requires control of the source nodes (yellow nodes with dotted outlines)
and of all cycles by control of the FVS (blue nodes with solid outlines).
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control method as FC (Fig. 1A), and to the group of nodes that
need to be manipulated by FC as an FC node set.

To illustrate FC, consider the example networks in Fig. 1. In a
linear chain of nodes (Fig. 1B, Left), the only node that needs to
be controlled is the source node S1. For Fig. 1C, a source node
connected to a cycle, FC requires controlling the source node
S1 and any node Xi in the cycle, the FVS in this network. Fig.
1D consists of a source node with three successor nodes, and FC
requires controlling only the source node S1, because there are
no cycles in the network. In Fig. 1E, we show a more complicated
network with a cycle and several source and sink nodes, and two
minimal FC node sets. These examples illustrate an important
feature of FC, namely, that it is determined by the cycle structure
and the input layer of the network. SI Appendix, Fig. S1 illustrates
FC in a network in which a specific form of the functions Fi and
Gj is given.

Feedback Vertex Set Control of Real Networks
We applied FC to several real networks and the ratio of the
minimal FC node set, NFC , and the total number of nodes,
nFC =NFC/N , was used to gauge how difficult it is to control
these networks. The real networks are of diverse types (biologi-
cal, technological, and social) and various sizes (from dozens to
millions of elements), and have been repeatedly used as bench-
marks to study SC (1, 18). The FC results are shown in SI

CBA

D
E

F

Fig. 2. FC in real networks. (A) Scatter plot with the contribution of source nodes ns and the FVS nFVS to the fraction of control nodes in FC nFC for each
real network in SI Appendix, Table S1. Each of the two lines in the scatter plot correspond to a fixed value of nFC , because nFC = ns + nFVS. The background
color of the scatter plot indicates areas in which nFC takes a certain range of values: green for nFC < 0.25, yellow for 0.25 < nFC < 0.5, and pink for nFC > 0.5.
(B) Scatter plot of the fraction of nodes in the FVS nFVS and the fraction of nodes in an SCC nSCC for each real network. The shading of the symbols
corresponds to their position in A and reflects the relative size of their FC node set. (C and D) Scatter plot with the fraction of control nodes in FC for real
networks (nFC ) and their (C) degree-preserving randomization (nRand−Deg

FC ) or (D) SCC-preserving randomization (nRand−SCC
FC ). Error bars denote the estimated

SD of the randomized ensembles. (E and F) Cycle number z score for different cycle lengths in real versus degree-preserving randomized networks for the
networks with (E) nFC >> nRand−Deg

FC and (F) nFC << nRand−Deg
FC .

Appendix, Table S1 and Fig. 2A, where the FVS and source node
contributions of nFC are denoted by nFVS and ns , respectively
(nFC =nFVS + ns). We observed that most types of biological
networks (gene regulatory, metabolic, and food web networks)
require control of a smaller fraction of nodes than social net-
works (trust, social communication, and intraorganizational net-
works); nFC is between 1% and 18% in biological networks vs.
more than 21% in social networks. FC’s prediction that biologi-
cal networks are easier to control than social networks matches
recent experimental results in cellular reprogramming and large-
scale social network experiments (19, 33, 34).

To understand the topological properties underlying the diver-
sity of the fraction of control nodes nFC among networks, we
identify the nodes in a network that determine its cycle struc-
ture and thus the FVS contribution of the control nodes (nFVS ).
Every node that is involved in a cycle must also be part of a
strongly connected component (SCC), a group of nodes in a net-
work in which there is a directed path between any pair of nodes.
The concept of SCC is related to the bow tie structure of multi-
ple empirical directed networks (35), in which most of the net-
work belongs to a large SCC, its in-component (the nodes that
can reach the SCC), or its out-component (the nodes that can be
reached from the SCC).

Applying this reasoning to the studied real networks (SI
Appendix, Table S1), we expect the networks in which the fraction
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of nodes that are part of an SCC is high to have a large FVS con-
tribution nFVS . As shown in Fig. 2B, the networks show a strong
correlation between the relative size of their SCCs (denoted by
nSCC ) and of their FVS (SI Appendix, Fig. S2A). For example, all
of the networks with the largest FC node set size (nFC > 0.5, Fig.
2 A and B, pink shading; e.g., intraorganizational networks) have
a large fraction of nodes in their SCCs (nSCC > 0.93). Similarly,
networks with an intermediate FC node set size (0.25 < nFC <
0.5, Fig. 2 A and B, yellow shading; e.g., social communication
networks, and most trust and WWW networks) have an interme-
diate nSCC (0.46 < nSCC < 0.91), and most of the networks with
the smallest FC node set size (nFC < 0.25, Fig. 2 A and B, green
shading; e.g., food webs, circuits, and gene regulatory networks)
have correspondingly small SCCs (nSCC < 0.4).

Motivated by the observed remarkable agreement between
the number of control nodes of real networks and their degree-
preserving randomized versions in SC (1, 36), we study FC in
similarly randomized networks (SI Appendix, Table S1 and SI
Text). We find much weaker agreement (Fig. 2C): For most
networks, the number of FC nodes is higher than the num-
ber of control nodes in randomized versions (nFC >nRand−Deg

FC ),
with the notable exceptions of food web and citation networks,
in which randomized networks require more control nodes
(nFC <nRand−Deg

FC ) (Fig. 2 C and F). A closer look reveals that
the cycle structure of the real networks—their cycles and SCCs—
is responsible for the discrepancy of nFC . Although the number
of nodes in an SCC is similar or smaller compared with their
degree-preserving randomized counterparts, real networks tend
to have a more complicated cycle structure, evidenced by the
overrepresentation of short cycles compared with the random-
ized networks (Fig. 2E), and reflected by the larger size of their
FVS (SI Appendix, Table S1). The exceptions to this reasoning
are food web and citation networks (Fig. 2F), which are known to
have an acyclic (e.g., tree-like) or close-to-acyclic structure (37),
and thus feature fewer cycles and fewer nodes in an SCC than
randomized networks.

To verify that the cycle structure of real networks explains
the observed FC node set size, we generated degree-preserving
randomized versions of these networks that maintain their cycle
structure, which we achieve by randomizing the directed acyclic
part of the graph while keeping intact the SCCs (SI Appendix).
The results show a remarkable agreement between the FC node
set size of the networks and their randomized versions (Fig. 2D
and SI Appendix, Table S1). Given that short cycles were found to
correlate well with the discrepancy in FC node set size in real net-
works compared with randomized networks (SI Appendix, Table
S1, and Fig. 2 E and F), we reasoned that preserving only the short-
cycle structure of networks (in addition to their degree) might be
sufficient to explain the FC node set size of real networks. To test
this theory, we generated degree-preserving randomized versions
of the networks that maintain their short-cycle structure (cycles of
length 4 or less) (SI Appendix). SI Appendix, Fig. S2B and Table
S1 show the resulting FC node set sizes, which have an excellent
agreement with that of the real networks, the exceptions being the
near-acyclic food web and citation networks, for which short cycles
cannot capture their near-acyclic structure.

Taken together, these results show that the cycle structure of
a network, specifically its SCCs and short cycles, determines the
number of nodes that need to be overridden in FC.

Comparing Feedback Vertex Set Control and Structural
Controllability
An interesting result from applying FC on real networks is
that biological networks are easier to control than social net-
works, yet this prediction stands in contrast with those of SC
on the same type of networks, in which the opposite result was
obtained (1). This contradicting prediction is somewhat surpris-

ing, because both methods can be used to answer the question
of how difficult to control a network is based solely on network
structure, albeit each focuses on a different aspect of control
(full control vs. attractor control), considers different underlying
dynamics (linear vs. nonlinear), and uses different control actions
(controller signal vs. node state override). To test whether this
significant difference in the predictions of FC and SC is com-
mon among other networks, we compare their fraction of con-
trol nodes nSC and nFC . As shown on Fig. 3A and SI Appendix,
Table S1, nSC and nFC appear to be inversely related across sev-
eral types of networks. For example, gene regulatory networks
require between 75% and 96% of nodes in SC yet only require
between 1% and 18% of nodes in FC. A similar nSC >>nFC

relationship is also seen in food web networks and internet
networks, whereas the opposite relationship (nSC <<nFC ) is
seen in the social trust networks with low nSC and intraorgani-
zational networks. This difference between methods warns prac-
titioners against a naive application of SC or FC to control
situations beyond their realm of applicability in terms of dynam-
ics, control objective, or control action, as others have previously
cautioned (8).

Fig. 3. Comparing FC and SC. (A) Scatter plot with the fraction of control
nodes in FC (nFC ) and SC (nSC ) for each real network in SI Appendix, Table
S1. The bold line denotes the positions in the plot with nSC = nFC , and the
dashed lines denote nSC = 1.5 nFC and nFC = 1.5 nSC . (B) Examples of the
effect of cycle structure in the FC and SC node set size. Control of the source
nodes (yellow nodes with dotted outlines) is shared by SC and FC; in SC,
every source node is the top node of a chain in a minimal group of non-
intersecting linear chains of nodes (pink background) and directed cycles
(green edges) that span the network. SC additionally requires controlling
the top nodes in other chains (red nodes with dashed outlines) but requires
no independent control of cycles. FC requires controlling all cycles by control
of the FVS (blue nodes with solid outlines).
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The difference in nSC and nFC can be attributed to the treat-
ment of cycles in each of these methods: Cycles have to be con-
trolled in FC but do not require independent control in SC. In
SC, the nodes that must be directly controlled are each node at
the top of a (minimal) group of nonintersecting linear chains of
nodes and directed cycles that span the network; these cycles do
not need to be directly controlled if there is a path to them from
a linear chain of nodes.

To illustrate how the cycle structure influences the number
of control nodes in FC and SC, consider the networks in Fig.
3B. The left-most network contains several cycles (green back-
ground) and requires more nodes to be manipulated in FC com-
pared with SC (nFC >nSC ). In FC, each of these cycles can be
controlled through the nodes in the FVS (blue nodes); in SC, the
cycles do not require independent control given that the whole
network is spanned by the specified group of linear chains of
nodes (pink background) and a directed cycle (green edges).
The right-most network in Fig. 3B has nFC <nSC because of
the absence of cycles, which means FC only requires controlling
the source nodes (yellow nodes), whereas SC requires additional
nodes (red nodes) because of the group of nonintersecting lin-
ear chains. A detailed analysis in which the topological proper-
ties underlying SC and FC are jointly considered backs up the
importance of the cycle structure in the differences between their
results and points to other contributing factors (SI Appendix).

Feedback Vertex Set Control and Dynamic Models of Real
Systems
Validated dynamic models can be an excellent testing ground to
assess control methods (4, 6, 8). Here we use two models for the
gene regulatory network underlying the segmentation of the fruit
fly (Drosophila melanogaster) during embryonic development: a
differential equation (ODE) model by von Dassow et al. (28)
(Fig. 4A) and a discrete (Boolean) model by Albert and Othmer
(29) (Fig. 4B). Both models consider a group of four subsequent
cells as a repeating unit, include intracellular and intercellular
interactions among proteins and mRNAs, and recapitulate the
observed (wild type) stable pattern of gene expression (Fig. 4
A–C and SI Appendix).

Using FC on these network models, we find NFC = 52 (14) for
the ODE (discrete) model (Fig. 4 A–C and SI Appendix, Fig. S3,
and SI Text). Both model networks have a large SCC and, thus, a
significant FVS contribution to the FC node set; nSCC/nFVS are
0.74/0.35 and 0.5/0.18, respectively, similar to the yellow-shaded
networks in Fig. 2. In FC, locking the FC nodes into their tra-
jectory in the wild-type attractor successfully steers the system to
the wild-type attractor (Fig. 4 D and E and SI Appendix, Figs. S4
and S5 and SI Text). Thus, FC gives a control intervention that is
directly applicable to dynamic models and that is directly linked
to their long-term behavior.

FC gives a sufficiency condition about the ensemble of all
models with a given network structure, and, consequently, a
subset of the FC node set can often be sufficient for a given
model and an attractor of interest (i.e., FC provides an upper
limit for the size of the control node set). For the fruit fly
gene regulatory models, we show that 16 (12) nodes are suf-
ficient for the continuous (discrete) model, which is a 66%
(14%) reduction (Fig. 4 A–C and SI Appendix, Figs. S4 and
S5 and SI Text). Similar results were obtained by ref. 21, who
found that five nodes (out of seven in the FVS) are sufficient
for attractor-based control in a model of the mammalian circa-
dian rhythm. The generality of these findings is supported by a
recently developed control method in which controlling a sub-
set of the cycles (and thus a subset of the FVS) in Boolean
dynamic models was proven to be sufficient for attractor con-
trol (ref. 6 and SI Appendix, SI Text). This finding shows that
FC provides a benchmark of attractor control node sets that

Fig. 4. Control of the Drosophila segment polarity network models.
(A and B) Networks corresponding to (A) the differential equation model and
(B) the discrete model. Each image shows one cell of the four-cell paraseg-
ment together with the cell boundaries (thick green lines); the complete
networks contain four cells in a symmetric completion of each image. Ellip-
tical nodes denote mRNAs, and rectangular nodes denote proteins, which
can be localized inside the cell or in the membrane (subscripts refer to the
cell number and surface index). Intracellular interactions are drawn with
solid lines, and intercellular interactions are dashed. In B, positive edges are
drawn with black arrowheads, and negative edges are drawn with white dia-
monds. Yellow nodes are source nodes, blue nodes are FC nodes in every cell,
and half white/half blue nodes are FC nodes in alternating cells. Dark blue
nodes are sufficient for attractor control in the considered dynamic models.
(C) Wild-type segment polarity gene product expression pattern in a
Drosophilaparasegment.Theparasegmentboundary (dotted line) isbetween
the wg-expressing cells (cell 1) and en-expressing cells (cell 2). (D and E) The
dynamics of (D) wg in the first cell (solid lines) and (E) hh in the second cell
(solid lines), and en in the second cell (dotted lines) in the models. Pink lines
and green lines represent autonomous trajectories that start from different
initial conditions and converge to different steady states (the wild-type state
and the unpatterned state, respectively). Blues lines represent the case when
the system starts from the initial condition that autonomously evolves to the
unpatterned state but, when applying FC, evolves into the wild-type steady
state. (Insets) Evolution of the norm of the difference between the desired
attractor and the controlled state trajectory using FC.

are model independent, as well as an upper limit to model-
dependent control sets.
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Discussion
Network control methods have the general objective of identi-
fying network elements that can drive a system toward a speci-
fied goal while satisfying a set of constraints. Different control
methods answer complementary aspects of control in a com-
plex network; which one to use depends on the specific ques-
tion being asked, on the natural definition of control, and on the
underlying dynamics in the system or discipline of interest. We
argue that attractor-based control (and thus FC) is the appro-
priate choice of control for biological systems, for which a long
history of dynamic modeling has established the correspondence
of attractors with biological states of interest (27), but also in
many social and technological contexts, as illustrated by opinion
dynamics and the consensus state, and by epidemic processes and
the endemic state (24, 25).

As we showed in this work, FC is directly applicable to sys-
tems in which only structural information is known, and also to
systems in which a parameterized dynamic model is available,
for which it provides realizable control strategies that are robust
to changes in the parameters and functions. FC also provides a
benchmark and a point of contact with the large body of work
in network control methods that require the network structure
and a dynamic model (4, 6, 8, 18, 20). The prescription of a
directly realizable control action (even if a controller signal is not

provided) has no analogue in control theory’s structure-based
methods such as SC, wherein the existence of a controller sig-
nal is guaranteed but is yet to be determined. SC instead has the
advantage of integrating controller signals into its framework,
and being a well-developed concept in control and systems the-
ory with connections to other notions of control in linear and
nonlinear systems (9–11). Further work is needed to extend FC
and address topics such as the level of control provided by a sub-
set of nodes, the task of building a controller signal that can
implement the node state overrides, and the difficulty of steer-
ing the system toward a desired state, concepts that are well-
developed in control theory (9–11, 18). Taken together, our work
opens up a research direction in the control of complex networks
with nonlinear dynamics, connects the field of dynamic modeling
with structure-based methodologies, and has promising theoret-
ical and practical applications.
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