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Cells can often be recognized by the concentrations of receptors
expressed on their surface. For better (targeted drug treatment)
or worse (targeted infection by pathogens), it is clearly important
to be able to target cells selectively. A good targeting strategy
would result in strong binding to cells with the desired receptor
profile and barely binding to other cells. Using a simple model,
we formulate optimal design rules for multivalent particles that
allow them to distinguish target cells based on their receptor pro-
file. We find the following: (i) It is not a good idea to aim for
very strong binding between the individual ligands on the guest
(delivery vehicle) and the receptors on the host (cell). Rather, one
should exploit multivalency: High sensitivity to the receptor den-
sity on the host can be achieved by coating the guest with many
ligands that bind only weakly to the receptors on the cell surface.
(ii) The concentration profile of the ligands on the guest should
closely match the composition of the cognate membrane recep-
tors on the target surface. And (iii) irrespective of all details, the
effective strength of the ligand–receptor interaction should be of
the order of the thermal energy kBT , where T is the absolute tem-
perature and kB is Boltzmann’s constant. We present simulations
that support the theoretical predictions. We speculate that, using
the above design rules, it should be possible to achieve targeted
drug delivery with a greatly reduced incidence of side effects.

multivalency | Monte Carlo simulations | drug delivery | endocytosis |
statistical mechanics

The fact that most cells can be recognized from the outside is
advantageous for the normal functioning of an organism, but

it can be a disadvantage when specific cells are being targeted by
pathogens. Cells betray their identity (and state of health) by the
composition profile of molecules that are exposed on their outer
surface. In what follows, we call these molecules “receptors,”
irrespective of whether they are receptors in the biological sense
(they are receptors for the ligands that will be used to recognize
them). It would clearly be advantageous if diseased cells could
be selectively targeted by a drug-delivery vehicle on the basis of
their receptor profile. Here, the crucial word is “selective”: We
wish to target only those cells that have the correct receptor pro-
file, as binding of drug-delivery vehicles to other cells may lead
to undesired side effects.

Targeted drug delivery is based on identifying a specific
marker (peptide, sugar) that is unique to the targeted group of
cells. Binding to a single marker type can be effective if this
molecule is presented in sufficient quantities on the outer surface
of the targeted cell. However, in many cases of practical impor-
tance (e.g., many types of cancer), the markers that are known
are not unique to cancer cells, but just overexpressed. Over the
past 20 y many nanoparticle-based targeting methods have been
developed. However, thus far, effective tumor drug delivery is
hampered by the lack of reliable, unique markers (1, 2).

To recognize the simultaneous presence of a mixture of dif-
ferent receptors on the host surface, we need to use a “guest”
particle (e.g., drug-delivery vehicle) that is coated with a mixture

of cognate ligands schematically shown in Fig. 1. In its simplest
form (the binding of dimeric bispecific antibodies compared with
monomeric antibodies), this problem has been studied theoreti-
cally (3) and experimentally (4). The in vitro experiments showed
that the use of bispecific antibodies led to a higher specificity than
can be achieved with their standard, monomeric counterparts.
However, antibodies are not very good at distinguishing between
surfaces that have different receptor concentrations. Such selec-
tivity can be achieved by exploiting multivalency. A series of
recent experimental and theoretical papers have shown that mul-
tivalent carriers (nanoparticles or polymers) can distinguish tar-
get surfaces (cells) on the basis of their receptor concentration,
rather than just on the basis of the presence of a suitable recep-
tor (5–9).

The use of multivalent particles coated with a single type of lig-
and is very effective, provided that a cognate receptor has been
identified that is sufficiently overexpressed in targeted cells. But
often the situation is not that clear cut (Fig. 1). In general, it is
essential to exploit all of the information that we have about the
concentration of various receptors on the cell surface and then
design guest particles that target this specific receptor profile.
In this paper, we show that the design rules for such multicom-
ponent targeting are surprisingly simple and therefore hopefully
useful. Specifically, we show that the individual ligand–receptor
binding strength needs to be weak, such that when the guest
particle is within interaction range of the surface, each ligand
is unbound 30% of the time. To target a specific receptor pro-
file selectively, many weak ligands work better than a few strong
ones. We derive our results using a simple analytical theory and
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Fig. 1. This schematic figure aims to explain the challenge addressed in this
paper. A shows a schematic drawing of a multivalent nanoparticle binding
to a surface containing several distinct receptors (represented as different
concave shapes). B shows the challenge: How to target cell B selectively, in
the presence of cell types A and C.

validate our approach using coarse-grained simulations. As an
example, we present simulation results (Fig. 2) showing that cor-
rectly functionalized guest particles are more successful at enter-
ing cells with matching receptor compositions than those with
suboptimal compositions.

Of course, there is a wide variety of possible host–guest inter-
actions that we could have considered: The receptors could be
mobile or immobile, clustered or mixed, etc. In what follows we
assume that the host cell is large compared with the guest parti-
cle and that the receptors are mobile on its surface. In this case,
the chemical potential of the receptors is effectively fixed and, as
shown in SI Appendix, the theoretical expressions for the bind-
ing free energy become surprisingly simple. The other situations
that we mention can also be modeled, and the overall conclu-
sions remain the same, except in the limit where so many guest
particles bind to the host surface that they deplete the receptor
“reservoir.” Hence, for the sake of simplicity, we consider just the
easiest case. We do not specify the precise nature of the guest
particle: It could be a functionalized nanoparticle, polymer, or
self-assembled DNA-origami structure. Again, for the present
analysis the distinction is immaterial. What is important is that
the ligands are flexible and can reach multiple receptors on the
surface equally well.

Model
The membrane surface is covered by a population of receptors
of different types j with concentrations c = {cj}. Similarly, a
multivalent particle is characterized by the ligand composition
{mi}≡m{pi}, where m is the total number of ligands on the
guest particle and p specifies their relative profile; i.e., the rela-
tive coverage of the particle with ligands of type i is pi =mi/m .
We are interested in the case where guest nanoparticles interact
with a fluctuating number of receptors on the surface. Hence,
following the Bell adhesion model (10), the number of receptors
in contact with the nanoparticle is not fixed, but their chemical
potential is. In contrast, the number of ligands on the nanopar-
ticle that can interact with the surface is fixed. The nanoparticle
is attracted to the surface only through ligand–receptor interac-
tions. Apart from that, the particle behaves like a hard sphere
(Fig. 1). The ligand–receptor binding is valence limited; i.e., only
a single ligand can bind to a receptor and vice versa. The model is
an extension of the model of refs. 5 and 7, generalized to include
different ligand/receptor types.

To calculate the binding free energy we need to consider all
possible bonding combinations between receptors and ligands.
To simplify the description, we neglect the interactions between
different receptors and we assume that different ligands bind
independently (except that no two ligands can bind to the same
receptor). The probability that a single ligand i and a single
receptor j form a bond depends on the equilibrium constant
K A

ij for their association in solution and on the free-energy

cost ∆Gcnf
i , which is due to the loss of configurational

entropy of the ligand upon binding. The configurational entropy
term ∆Gcnf

i obviously depends on the distance between the
receptor and the grafting point of the ligand, which we capture
in the simulations. However, it turns out that the distance depen-
dence of ∆Gcnf

i is not important in a simple theoretical descrip-
tion: In SI Appendix we show that we can treat the configurational
term as if it were a constant (∆Gcnf

i = ∆G̃cnf
i ) for all receptors

within a distance h0 of the ligands and infinite elsewhere. The
parameter h0 represents the ligand–receptor interaction range
and is determined by the length of the polymeric linker.

For a ligand within the interaction range of the receptor-
decorated surface, the ratio between the probabilities of being
in the bound and free (unbound) states is

Pbound
ij

P free
i

= cjK
A
ij

e−β∆G̃
cnf
i

h0
≡ cjKij . [1]

We have defined the effective association constant matrix K,
which includes the configurational contribution. Note that the
first index i in Kij always refers to a ligand, and the second index
j always refers to a receptor. Thus, Kii describes the equilibrium
constant for binding between ligand i and its cognate receptor
i . Emphatically, it does not mean that ligand i and receptor i
are the same species. Similarly, Kij describes the “cross”-binding
of ligand i with the receptor cognate to ligand j . Kij is, in gen-
eral, not the same as Kji , which describes the cross-binding of
ligand j with receptor cognate to ligand i . Using the fact that
probabilities must add to unity, P free

i +
∑

j P
bound
ij = 1, we can

directly determine the probability that a given ligand is unbound,
P free

i = (1 +
∑

j cjKij )
−1.

As shown in SI Appendix, the fact that the receptors do not
interact with each other and are in contact with a reservoir
(the remainder of the cell surface) simplifies the expression of
the binding free energy between a guest particle and a host
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Fig. 2. Simulation results of nanoparticle endocytosis. We consider a sys-
tem with two ligand types on the particle and two cognate receptor types
in the membrane with concentrations c1 and c2, respectively. The red and
blue beads in the membrane denote receptors of type 1 and type 2, respec-
tively. The yellow beads are inert (no binding to the ligands). The total con-
centration of receptors is kept fixed at c1 + c2 = cT = 0.4, but the compo-
sition c1/cT is varied. The curve shows the coverage of the particle by the
membrane beads (particle wrapping). When the wrapping exceeds 1, the
particle is fully covered and has therefore undergone endocytosis. Snap-
shots show corresponding system configurations. The nanoparticle is cov-
ered with 40 randomly distributed immobile ligands with a “ligand” profile
p1 = 1− p2 = 0.3. The interaction strength of a ligand patch i is determined
as εi = ε∗− ln(pi), with ε∗ = 5kBT for the above results.
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Fig. 3. Optimal targeting using the analytical theory. (A) The binding free
energy fb per ligand as a function of the cell receptor composition for two
ligand/receptor types. Different curves correspond to different guest pro-
files p1 = 1− p2. (B) Targeting with three ligand types. Contour plot shows
the binding free energy as a function of the receptor composition c1 and
c2. The ligand profile is chosen as p = [0.1, 0.2, 0.7]. We have used Eq. 2
to calculate the free energy, assuming a diagonal interaction matrix K and
optimal λp = 1.256.

membrane. Moreover, we assume that different ligands are
uncorrelated; hence the binding free energy of the guest particle
is simply a sum of individual ligand contributions, ∆Fb =mfb ,
with fb the binding free energy per ligand:

fb =
∑
i

pi lnP free
i = −

∑
i

pi ln

(
1 +

∑
j

cjKij

)
. [2]

We note that this expression could be interpreted as (minus)
the cross-entropy between the two distributions pi and P free

i . The
total binding free energy for a guest particle near the cell surface is
∆F = ∆Fb + ∆F0, where ∆F0 is the zero-bond free-energy cost
of bringing a guest particle into a position to start forming bonds
with the host membrane. For what follows, F0 is unimportant,

because we assume that it is the same irrespective of the recep-
tor composition or the ligand profile, and thus it drops out of the
expressions for free-energy difference that determine the selectiv-
ity. We note that the host–guest binding free energy is related to
the widely used “avidity” constant KA

av =e−∆F/kBT/ρ0, measur-
ing the association between multivalent entities in units of stan-
dard molar concentration ρ0 = 1 M.

Furthermore, the same free-energy expression (Eq. 2) also
governs the free-energy change upon a passive particle endocy-
tosis (Fig. 2) where ligands are not flexible, but the membrane
itself is. In this case ∆F0 simply refers to the particle endocyto-
sis free-energy change when there are no receptors present, and
∆Fb again captures bonding with mobile receptors.

Selectivity Optimization
Expression 2 describes how the binding free energy depends on
the receptor composition c, particle profile p, and the interaction
matrix K.

Our aim is to design a guest particle that binds more strongly
to cells with the specified receptor profile c∗ than to any other.
Among all possible receptor compositions c, the targeted compo-
sition c∗ should thus be the one with the minimum binding free
energy. This yields the condition

∂fb(c, p,K)

∂c

∣∣∣∣
c=c∗

= 0. [3]

Note that this equation does not imply that we optimize the
receptor composition of the target cell (after all, this composi-
tion is given). Rather, we vary the parameters that characterize
the guest particle (namely p and K) to make the guest particle
bind more strongly to the target receptor composition than to
any other. Because there are several combinations of p and K
that can satisfy this condition, we need to further select the one
that is the most selective, i.e., the one that results in the free-
energy minimum with the largest curvature.

Our optimization condition is therefore to maximize the selec-
tivity S, defined as

S = det

(
H(fb)

|fb |

)
c=c∗

, [4]

subject to the constraint of Eq. 3. H(fb) in Eq. 4 is the
(Hessian) matrix of second derivatives of the free energy with
respect to composition c. As can be seen from Eq. 4, the selectiv-
ity S is defined as the relative curvature of the free-energy func-
tional at its minimum.

It is important to define the selectivity as the relative, rather
than the absolute, curvature. The absolute value of the free
energy can be trivially controlled by changing the number of
bonds m , Eq. 2. Therefore, by optimizing for the relative curva-
ture, we obtain the largest possible curvature at a given absolute
value of the free energy ∆Fb . The binding can always be made
stronger by increasing the total receptor concentration (5–7, 11);
therefore, to make a meaningful comparison, we compare sys-
tems with the same total receptor concentration cT ≡

∑
i ci on

the membranes.
In general, finding the maximal selectivity by solving for the

above conditions is nontrivial and must be performed numer-
ically. However, we can greatly simplify the problem and find
a closed-form solution by also requiring that the binding free
energy is optimized with respect to the ligand profile p:

∂fb(c, p,K)

∂p

∣∣∣∣
c=c∗

= 0. [5]

This is in principle not a necessary condition for selective tar-
geting; however, we expect it to be a practically useful condition;
we wish to design guests that are robust to small variations in the
ligand profile. Robustness is important for practical applications
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Fig. 4. Grand canonical Monte Carlo simulation results of guest adsorption (symbols) and comparison with analytical theory (solid lines). The simulated
surface has two different types of receptors embedded (colored orange and cyan, respectively). The total concentration of receptors is kept fixed at
cT = 7/R2, with R the guest particle radius. Each guest particle has 10 ligands (each represented as a soft blob with radius rb) with a profile of p1 = 0.5 (red
circles) and p1 = 0.2 (blue diamonds) and cognate bond energy ε=−4.5kBT . The guest chemical potential corresponds to a bulk solution concentration of
ρ= 10−6(2R)−3. Theoretical adsorption curves (solid lines) are obtained by inserting the free-energy expression Eq. 2 at λp = 1.33 into a standard Langmuir
adsorption model, assuming each guest occupies an area of A = (2R + 2rb)2. The surface coverage θ is the number of adsorbed guests per guest area A. The
three snapshots correspond to the plotted data (red circles) at composition c1/cT = 0.2, 0.5, 0.9 and guest profile p1 = 0.5.

when the guest particle manufacturing-process tolerances must
also be considered. The additional constraint results in a simple
closed-form solution whereas the optimal selectivity decreases
only marginally (SI Appendix).

We can determine the optimal ligand profile p and interac-
tion matrix K analytically. The procedure that we use is discussed
in SI Appendix; here we outline only the main results. Our first
result is that all ligands should have the same probability to be
unbound,

P free
i = e−λp = const , [6]

and that each ligand contributes an equal amount, −λpkBT ,
to the total binding free energy. Hence, any ligand profile p will
yield the same free energy, fb =−λpkBT . In a sense, this result
is trivial: It simply states that if all ligands are equally likely to
bind, a small change in the ligand profile will not change the
overall host–guest binding free energy. This result should not be
viewed as a design rule to “target” guest particles by cells (in
fact, the rule states that, in the optimal case, the cells cannot dis-
tinguish between different particles). Rather, we are interested
in the opposite problem, namely the targeting of cells by guest
particles. That problem does have a unique, nontrivial solution.

Minimizing the free-energy functional Eq. 2 with respect to
the particle profile p and targeted composition c∗ determines the
optimal ligand profile p∗. For a symmetric interaction matrix K
(or when off-diagonal terms are small) the ligand profile should
match the cognate receptor composition: p∗= c∗/cT . Finally,
the selectivity S can be decomposed into a part that depends only
on λp and a reduced Hessian Ĥ that does not,

S =

[(
1− e−λp

)2
λp

]d−1

det(Ĥ), [7]

where d is the “dimensionality” (the number of distinct recep-
tor types). Optimizing the selectivity, ∂S

∂(λp)
= 0, we find that the

nontrivial solution satisfies eλp − 2λp + 1 = 0, and hence

λp ≈ 1.256 · · · . [8]

Eq. 8 is our most important result. It states that the binding
free energy of each ligand to the targeted surface should be fb =
−λpkBT ≈−1.3kBT irrespective of the details of the system.
Equivalently, Eq. 8 states that when the guest particle is adsorbed
on the targeted surface, each ligand should be unbound 30% of
the time: P free

i = e−λp ≈ 0.3.
Fig. 3 shows the variation of the binding free energy with

changing receptor composition obtained from the analytical
model. In practice we might wish to distinguish a host surface
with 20–80% receptor composition from a surface with inverted
80–20% composition. In Fig. 3 we see that the difference in
the corresponding bond strength is about ∆fb ∼ 0.5kBT per lig-
and. This may not seem to be much, but multivalent guests will
hold 10–20 ligands (or more) if we require a total guest binding
free energy of the order of ∆Fb ∼−10− 25kBT . The difference
thus becomes substantial ∆∆Fb ∼ 5− 10kBT , corresponding to
orders of magnitude difference in adsorption and, therefore, very
strong targeting efficacy as shown in Fig. 4.

Furthermore, Fig. 3B demonstrates that increasing the num-
ber of ligand types increases the selectivity because the optimal
binding region becomes a smaller fraction of the total param-
eter space.

Design Rules
Our analytical calculations suggest the following simple design
rules to make multivalent guest particles that target a particular
receptor profile:
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Fig. 5. Selectivity dependence on the mean bond strength λp. The the-
oretical curve is given by Eq. 7. The simulation results were obtained by
calculating the free-energy profile f sim

b (c, p∗, K) of a simulated guest parti-
cle and obtaining the relative curvature, and hence the selectivity S, from
a parabolic fit to the free-energy profile. The mean bond strength from
simulations is defined as the free energy per bond at the targeted composi-
tion λp =−f sim

b (c∗, p∗, K)/kBT . The simulated guest parameters are chosen
according to our analytical design rules, p∗ = [0.5, 0.5].

• pi = ci/cT : Ideally, the profile of the nanoparticle should
match the density composition of the targeted cell. As shown
in SI Appendix, this is not a condition on the average ligand
profile. It really means that, ideally, every nanoparticle should
have precisely the optimal number of ligands. In fact, if only
the averages are fixed and the number of ligands is Poisson
distributed, most of the selectivity is lost.

• Kii = eλp−1
ci

: The value of Kii should be inversely proportional
to the density ci . It is useful to avoid cross-binding (i.e., inter-
action matrix K should be diagonal). The optimal binding free
energy per ligand λp ≈ 1.3, which states that ligand binding
should be weak, with each ligand independently having the
probability of being bound at most 70%.

• The greater the number is of distinct ligand–receptor types,
the higher the potential selectivity.

• The overall binding free energy ∆F of the particle is propor-
tional to the number of ligands per guest particle (valency m).
Valency should be chosen to give a desired absolute value of
guest adsorption strength; for Langmuir adsorption the opti-
mal will be close to the chemical potential of the guests in solu-
tion ∆F ∼µ.

The major assumption underlying the derivation of the design
rules is that all pairs of ligands and receptors can in principle
form a bond. This assumption is fulfilled when both the ligands
and the receptors are mobile, which is often the case in bio-
logical systems. However, our results also apply in other situ-
ations with some additional restrictions: (i) For mobile ligands
on the guest but immobile receptors on the membrane, the the-
ory is relevant when the receptor density is large enough. If
Acont ≈R2 is the surface area of the membrane in contact with
the guest particle, the receptor concentration should be large
enough, ci >mi/Acont , such that all ligands mi can find their
binding partners. (ii) In the case of mobile receptors and immo-
bile ligands, the ligand profile p presented to the surface recep-
tors must be independent of the guest particle orientation. This
can be achieved when using a long, flexible ligand h0 >R, or
when targeting a deformable membrane that can wrap around a
particle (Fig. 2), or by carefully uniformly coating the guest par-
ticle with ligands such that every “face” presents the same ligand

profile. (iii) When both ligands and receptors are immobile, both
constraints i and ii apply and in addition each ligand must be able
to find a receptor within its interaction range h0: ci > 1/h2

0 .

Monte Carlo Simulation Results
The above analytical model is highly idealized. However, the
coarse-grained simulation results of both particle endocytosis
(Fig. 2) and adsorption (Fig. 4) support the predictions of our
analytical model. Our simulations clearly show that our design
rules, even though derived from a simple model, are nevertheless
directly applicable to more complex and realistic systems where
ligand interactions, correlations, and membrane elasticity cannot
be neglected.

The simulation snapshots of multivalent nanoparticle target-
ing in Fig. 4 give a pictorial illustration of the effect of optimizing
the ligand concentration profile to target a mixed receptor sur-
face. The adsorption isotherm is well captured by the simple ana-
lytical model. Furthermore, Fig. 5 shows the selectivity, obtained
from the analytical theory (Eq. 4) and simulations, plotted as a
function of the ligand binding strength λp . Clearly, the simula-
tion results support the analytical value for the optimal ligand
strength λp ≈ 1.3kBT .

Conclusions
In this paper, we outline simple rules to design ligand-coated
particles that can target cell surfaces on the basis of a receptor
profile, rather than on the recognition of a single receptor. The
receptor profile of a cell surface can be viewed as a “bar code”
that is selectively recognized by the ligand profile of the guest
particle. Here we have shown that properly designed multivalent
targeting of multiple cognate receptor types results in a speci-
ficity toward a chosen receptor composition, thus demonstrating
a general route toward targeting cells without particularly domi-
nant markers.

We have assumed a generic case where background (untar-
geted) cell populations contain all possible receptor composi-
tions. However, the selectivity can be increased further if only a
few distinct cell populations are present and their receptor com-
positions are known in advance. In this case the optimal target-
ing strategy is obtained by maximizing the free-energy difference
between discreet populations rather than the free-energy curva-
ture. We also note that, although in this paper we focus on the
targeting of cells, our model can also be used to understand how
imprinted polymers can be used to sort cells (12, 13).

Materials and Methods
Endocytosis Simulations. We perform Monte Carlo simulations with a
coarse-grained membrane model (14) and a patchy hard-sphere model (15)
for the nanoparticle. The nanoparticle has two different types of circular
patches modeling coverage with two different ligand types. The membrane
is composed of individual beads that can be either inert (representing nor-
mal lipids) or “receptor” beads that bind to the cognate patches on the
particle, but are otherwise identical to the inert beads. The receptor beads
can interact with the patches via a square-well attraction with width σ equal
to the diameter of individual beads σ, where ε denotes the well depth. The
particle wrapping is calculated as the number of membrane beads within
a distance σ of the particle surface Nw , normalized by the fully wrapped
triangular lattice, w = Nw

√
3

2π(R+σ)2
, with R = 4σ the particle radius.

The simulations are performed using standard Monte Carlo translational
moves in the NpT ensemble and no applied external pressure (to be pre-
cise, our membrane system is metastable at zero applied external pres-
sure, and the thermodynamically stable configuration is an infinitely large
box; however, on a simulation timescale, a flat membrane is stable). The
box size is 40σ·40σ with periodic boundary conditions in lateral directions.
The box size in the vertical z direction is sufficiently large to ensure that
none of the particles ever interacts with the hard ceiling or the floor.
The simulations started with the particle center of mass at height R +σ

above the membrane and were run for 6·106 cycles, where in each cycle
on average one translational/rotational move per every bead and particle is
attempted.

7214 | www.pnas.org/cgi/doi/10.1073/pnas.1704226114 Curk et al.
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Multivalent Particle Adsorption. We performed grand canonical Monte Carlo
simulations where the chemical potential of the guest particles in solution
is fixed to a value that results in a desired guest density in solution. Guest
particles are represented as hard spheres with radius R = 3rb and attached
polymeric ligand arms that are modeled as a series of soft blobs of size rb

(16). Receptors are represented as points on the hard surface and can bind to
ligands with a valence-limited harmonic bond and the interaction matrix ε

determines the individual binding/unbinding probabilities. Standard Monte
Carlo moves are used to displace and add/delete guests into the system,
and Rosenbluth sampling is used to change polymeric ligand conforma-
tions. The model and technique are an extension of ref. 5 to multiple ligand/
receptor types.

Free energies are calculated using the Wang–Landau sampling technique
(17). First, we bias the sampling in the number of formed ligand–receptor
bonds to obtain the absolute value of the bound guest free energy relative

to a common reference point: a single unbound guest particle within inter-
action range h0 of the surface (h0 = 3rb for single-blob ligands and can be
well approximated as the average height of a guest with a single formed
bond). We then bias the simulation in the receptor composition to obtain
the curvature of the free energy. The selectivity S is calculated by fitting a
quadratic function to the free-energy profile and normalizing by the abso-
lute value as in Eq. 4. Langmuir isotherm (Fig. 4) zero-bond free energy is
approximated as the translational entropy of a guest within a lattice site of
size A and height h0: ∆F0 =−kBT log(Ah0ρ0N A).
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