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Identifying heterogeneous structures in glasses—such as local-
ized soft spots—and understanding structure–dynamics relations
in these systems remain major scientific challenges. Here, we
derive an exact expression for the local thermal energy of inter-
acting particles (the mean local potential energy change caused
by thermal fluctuations) in glassy systems by a systematic low-
temperature expansion. We show that the local thermal energy
can attain anomalously large values, inversely related to the
degree of softness of localized structures in a glass, determined
by a coupling between internal stresses—an intrinsic signature
of glassy frustration—anharmonicity and low-frequency vibra-
tional modes. These anomalously large values follow a fat-tailed
distribution, with a universal exponent related to the recently
observed universal ω4 density of states of quasilocalized low-
frequency vibrational modes. When the spatial thermal energy
field—a “softness field”—is considered, this power law tail man-
ifests itself by highly localized spots, which are significantly
softer than their surroundings. These soft spots are shown to
be susceptible to plastic rearrangements under external driv-
ing forces, having predictive powers that surpass those of the
normal modes-based approach. These results offer a general,
system/model-independent, physical/observable-based approach
to identify structural properties of quiescent glasses and relate
them to glassy dynamics.
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Understanding the glassy state of matter remains one of
the greatest challenges in condensed matter physics and

materials science (1–5). In large part, the elusive nature of the
glassy state is due to the absence of well-established tools and
concepts to quantify the disordered structures characterizing
glassy materials—in sharp contrast to their ordered crystalline
counterparts—and because of the lack of understanding of the
relations between glassy structures and dynamics. Over the years,
many attempts have been made to identify physical quantities
that can indicate underlying local structures within glassy mate-
rials (6–9). These indicators include, among others, free volume
(10–12), internal stresses (13), local elastic moduli (14), local
Debye–Waller factor (15), coarse-grained energy and density
(16, 17), locally favored structures (18–20), short- and medium-
range order (21–23), and various weighted sums over a system-
dependent number of low-frequency normal modes (24–30).

These quantities measure some properties of quiescent glasses
evaluated at or in the near vicinity of a mechanically (meta-)stable
state of a glass (an inherent structure). Some of these indicators
are purely structural in nature (i.e., they are obtained from the
knowledge of particle positions alone), whereas others require
in addition the knowledge of interparticle interactions. Recently,
the local yield stress—the minimal local stress needed to trig-
ger an irreversible plastic rearrangement—has been proposed as
a structural indicator (31). It is required, however, to externally
drive each local region in a glass to its nonlinear rearrangement
threshold and hence, belongs to a different class of structural
indicators compared with those previously mentioned. The util-
ity of each of the proposed indicators is usually assessed by look-

ing for correlations between the revealed structures—typically
localized soft spots—and glassy dynamics, either thermally acti-
vated relaxation in the absence of external driving forces or local-
ized irreversible plastic rearrangements under the application
of global driving forces. In fact, a recent study established such
structure–dynamics correlations by machine-learning techniques,
leaving the precise physical nature of the underlying structural
indicator unspecified (32, 33). These machine learning-based
structural indicators also belong to a different class of structural
indicators, because the training stage of the machine-learning
algorithm requires knowledge of the plastic rearrangements
themselves.

Some of the previously proposed structural indicators have
revealed a certain degree of correlation between identified soft
spots and dynamics, providing important evidence that preexist-
ing localized structures in a glass significantly affect its dynam-
ics. However, oftentimes, the physical foundations of the struc-
tural indicators remain unclear, and they are sometimes defined
algorithmically but are not derived from well-established phys-
ical observables. Moreover, their statistical properties are not
commonly addressed, the relations between them and other basic
physical quantities are not established, and the fundamental rea-
sons for them being particularly sensitive to underlying hetero-
geneous structures in glasses remain elusive.

Here, we propose a structural indicator of glassy “softness”—
the local thermal energy (LTE)—which is a transparent physical
observable derived by a systematic low-temperature expansion.
We use the exact expression for the LTE of interacting parti-
cles to elucidate the underlying physical factors—most notably
internal stresses, anharmonicity, and nonlinear coupling to
low-frequency vibrational modes—that give rise to significant
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spatial heterogeneities of softness. We show that the LTE can
attain anomalously large values directly related to particularly
soft regions in a glass, which follow a fat-tailed distribution. The
power law exponent characterizing this distribution is shown to
be universal and directly related to the recently observed uni-
versal ω4 density of states of quasilocalized low-frequency vibra-
tional modes (34, 35), constituting a link to a fundamental uni-
versal property of glassy systems. The LTE field, a “softness
field,” thus exhibits highly localized spots, which are significantly
softer than their surroundings. These soft spots are shown to
be particularly susceptible to plastic rearrangements when the
glass is being driven by external forces, having predictive powers
that surpass those of the normal modes-based approach (24–27).
As such, they can be identified with the long sought for glassy
“flow defects,” the so-called shear transformation zones (STZ)
(36, 37).

Physical Observables in the Low-Temperature Limit
Our starting point is the idea that the thermal average of local
physical observables in a system equilibrated at a low temper-
ature T is expected to be sensitive to the system’s underlying
structure (38). Therefore, we first aim at deriving an expres-
sion for the thermal average of a general physical observable
A, 〈A〉T , in the low-temperature limit. The latter is given by
〈A〉T = Z(T )−1 ∫

A(x) exp (−U(x)/kBT ) dx, where the com-
ponents of the vector x represent the deviations of the system’s
degrees of freedom from a (possibly local) minimum of its energy
U(x), Z(T ) =

∫
exp (−U(x)/kBT ) dx is the partition function,

and kB is the Boltzmann constant. 〈A〉T can be systematically
expanded to leading order in T , yielding (SI Appendix)

〈A〉T −A
(0)

1
2
kBT

' ∂2A
∂x∂x

:M−1 − ∂A
∂x
·M−1 ·U ′′′ :M−1, [1]

whereM≡∂2U/∂x∂x is the dynamical matrix,U ′′′≡∂3U/∂x∂x∂x
is a third-order anharmonicity tensor, and A(0)≡ limT→0〈A〉T .
All derivatives are evaluated at the minimum of U (i.e., at x=0).
In obtaining Eq. 1, higher-order terms inT were neglected. In the
T→ 0 limit, these terms vanish, and the right-hand side (RHS)
of Eq. 1 represents an intrinsic property of an inherent structure,
independent of temperature.

To gain some understanding of the physics encapsulated in
Eq. 1, let us briefly consider a few physical observables. Con-
sider first the total energy A=U(x) in the quadratic (har-
monic) approximation. In this case, the first (harmonic) term
on the RHS of Eq. 1 equals the number of degrees of free-
dom N , and the second (anharmonic) term vanishes because
of mechanical equilibrium, ∂U/∂x = 0. Consequently, we obtain
〈U〉T −U

(0) = 1
2
NkBT , which is nothing but the equipartition

theorem in the harmonic approximation (39). Consider then
a system with energy U(X ) that depends on a single (scalar)
macroscopic degree of freedom X , representing changes in its
linear dimension relative to a reference stable state X = 0. In
this case, the first (harmonic) term on the RHS of Eq. 1 van-
ishes, and we obtain 〈X 〉T '−

1
2
U ′′′(U ′′)−2

kBT+O(T 2), where
a prime denotes a derivative with respect to X . The latter expres-
sion describes linear thermal expansion, which is well-known to
be an intrinsically anharmonic physical effect proportional to U ′′′
(39). These examples both show that Eq. 1 is fully consistent
with well-established results (equipartition and thermal expan-
sion) and highlight the anharmonic nature of the second term on
the RHS of Eq. 1.

The examples presented above focused on macroscopic
(global) scalar observables. Because our main interest is in spa-
tial heterogeneity, we consider now microscopic (local) observ-
ables defined at the particles’ level. We thus focus on the micro-
scopic generalization of 〈X 〉T : the thermal displacement vector

〈x〉T , which represents the variation of the mean positions of par-
ticles about the equilibrium state after thermal fluctuations are
introduced. Using Eq. 1, the normalized thermal average of x in
the T→ 0 limit takes the form

X ≡ lim
T→0

〈x〉T
1
2
kBT

= −M−1 ·U ′′′ :M−1. [2]

Note the analogy between Eq. 2—which features a quadratic
(nonlinear) coupling between the anharmonicity tensor U ′′′ and
the inverse of the dynamical matrix M−1—and the expression
given above for 〈X 〉T . The components of the normalized ther-
mal displacement vector Xi in Eq. 2 should be distinguished
from the local Debye–Waller factor x2

i (15), with thermal aver-
age according to Eq. 1 that is given by 〈x2

i 〉T = (M−1)ii kBT (no
summation is implied). Although 〈x2

i 〉T is completely given by
the first term on RHS of Eq. 1, which involves a single contrac-
tion of the inverse of the dynamical matrix M−1, Xi is com-
pletely given by the second term, which involves two contrac-
tions with M−1. As will be shown below, this distinction makes a
qualitative difference. Moreover,Xi is directly sensitive to anhar-
monicity, whereas 〈x2

i 〉T is independent of it. X , plotted in Fig.
1 for a 2D model glass, is shown to exhibit significant spatial het-
erogeneity, suggesting that it is particularly sensitive to localized
soft structures in glasses.

Local Thermal Energy
The normalized thermal displacement vector X , defined in Eq. 2
and shown to exhibit strong spatial heterogeneity in Fig. 1, con-
tributes to the thermal average of any physical observable 〈A〉T
that features ∂A/∂x 6= 0 at x = 0. It is important to emphasize
the counterintuitive result that, for observables with ∂A/∂x 6= 0,
anharmonicity seems to be important at vanishingly small tem-
peratures, independent of how well the harmonic approxima-
tion for the energy holds. Thus, on the face of it, the normal-
ized thermal displacements X could have been a good candidate
for an indicator of softness of the underlying structure. However,
we aim at proposing an observable that naturally “filters out”
the regions of homogeneous, collective translation-like motion
exhibited by the thermal displacements, further exposing local-
ized soft structures that exhibit large gradients.

Our goal now is to identify a physical observable A that can
potentially serve as a softness field (i.e., a local scalar that fea-
tures a nonvanishing first spatial derivative and is particularly
sensitive to gradients of X ). Inspired by ref. 38, an observ-
able that naturally suggests itself is the local potential energy
εα, where α represents any pair of interacting particles, and
U =

∑
α εα. Using Eqs. 1 and 2, we then define

Fig. 1. (Left) The normalized thermal displacement vector X , defined in
Eq. 2, measured in a model glass in 2D (details are in the text) of N = 1,600
particles. (Right) A spatial map of the normalized LTE Eα, defined in Eq. 3,
for the same glass realization shown in Left. Line thickness and opacity rep-
resent the LTE, with red (black) representing negative (positive) LTE.
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Eα ≡ lim
T→0

〈εα〉T − ε
(0)
α

1
2
kBT

=
∂ fα
∂x

:M−1 + fα ·X , [3]

where fα ≡ ∂εα/∂x is the internal force vector acting between
particles defining the interaction α.

Mechanical equilibrium at particle i implies that the sum of
all of the forces acting on it vanishes. In systems with no inter-
nal frustration, internal forces/stresses do not exist, and this sum
is trivially satisfied by having fα = 0 for all αs. In systems with
internal frustration, however, internal forces/stresses generically
emerge, fα 6= 0. In the former case, the second term on the RHS
of Eq. 3 vanishes. Such internal stress-free disordered systems
were studied in ref. 38, where it was shown that, under these
conditions, Eα is universally bounded between zero and one. The
bound on Eα suggests that significant spatial heterogeneity in Eα
cannot emerge in internal stress-free systems.

An intrinsic signature of glassy systems is the existence of
internal frustration (40) that leads to the emergence of internal
forces/stresses, fα 6= 0 (1). Consequently, we expect the fα ·X
term on the RHS of Eq. 3 to be generically nonzero for glasses.
Because X is already known to exhibit strongly localized struc-
tures, compared with Fig. 1, Left, we expect fα ·X to expose
localized regions with a very large concentration of the normal-
ized LTE Eα. In fact, we expect the scalar product of fα with
X to amplify the spatial heterogeneity in X . To understand this
amplification effect, note that fα is actually a force dipole com-
posed of two forces acting along the line connecting the particles
that define the interaction α in opposite directions. Therefore,
fα ·X is exactly the difference between the values of X at the
positions of the particles defining the interaction α, projected
along the line connecting them, multiplied by |fα|. Consequently,
regions of homogeneous thermal displacements are expected to
feature small values of fα ·X , whereas heterogeneous regions—
compared with Fig. 1, Left—are expected to feature much
larger values.

To test these ideas, we plot in Fig. 1, Right the normalized
LTE Eα for the same glass realization shown in Fig. 1, Left. The
result is striking: Eα attains anomalously large values (both posi-
tive and negative) in localized regions where X exhibits marked
heterogeneity. This observation provides strong visual evidence,
to be quantified below, that Eα can be used to define a soft-
ness field that clearly identifies localized soft spots in glasses.
Finally, note that Eα can be also measured directly by tracking
thermal fluctuations in low T dynamics. Two examples obtained
by finite T molecular dynamics (MD) simulations are shown in
Fig. 2, Inset, showing perfect agreement with the exact expression
in Eq. 3.

Universal Anomalous Statistics
To quantify the degree of softness of soft spots revealed by Eα—
compared with Fig. 1, Right—and its probability of occurrence,
we focus next on the statistical properties of Eα. To this aim, we
argue that the statistics of normalized thermal energies Eα can be
related to the density of vibrational frequencies D(ω). In particu-
lar, the form of Eqs. 2 and 3 suggests that soft vibrational modes
(i.e., modes with small frequencies ω) give rise to large values
of Eα because of the appearance of the inverse of the dynamical
matrix M−1. Recently, it has been observed that low-frequency
vibrations in glassy materials appear in two qualitatively differ-
ent species: one is ordinary long-wavelength plane waves, and
the other is disorder-induced soft glassy modes. The former are
spatially extended objects, whereas the latter are quasilocalized
objects characterized by a disordered core and a power law tail
(34). Moreover, long-wavelength plane waves follow a Debye
density of states (DOS) DD(ω)∼ωd-−1 in d- dimensions, whereas
soft glassy modes follow a universal DOS DG(ω)∼ω4 (34, 35).
We stress that our focus here is on generic glasses, which do not

Fig. 2. Distributions of LTE—p(Eα)—measured for three model glasses in
2D and 3D (details are in the text) shifted vertically for visibility. We find a
universal form p(Eα)∼E−9/4

α at large LTEs, independent of model or spatial
dimension. (Inset) MD validation of Eq. 3 for two random interactions in a
model glass. The continuous lines represent the exact expression for Eα.

dwell near a jamming transition, where the physics is expected to
change.

To proceed, note that Eα in Eq. 3 has one contribution
that involves a single contraction with M−1 and another one
that involves two contractions with M−1; therefore, the lat-
ter is expected to dominate the former. Consequently, we write
Eα∼ fα ·X , with eigen decomposition that takes the form

Eα ∼
∑
i,j

(fα ·Ψi) cijj
ω2
i ω

2
j

with cijj ≡ U ′′′ .
: ΨiΨjΨj , [4]

where i , j run over all of the vibrational modes Ψi defined by the
eigenvalue equation M ·Ψi =ω2

i Ψi .
We argue that low-frequency plane waves and quasilocalized

soft glassy modes make qualitatively different contributions to
the double sum in Eq. 4. In order to support this claim, we note
that, similarly to the discussion about the dipolar nature of fα
above, each contraction of U ′′′ with a vibrational mode is pro-
portional to the mode’s spatial derivative (compare with figure 3
in ref. 41). For low-frequency plane waves, each such derivative is
proportional to the frequency ω, whereas for quasilocalized soft
glassy modes, the derivative is expected to attain a characteris-
tic value that is nearly independent of frequency. Consequently,
because cijj ∼ω3 and fα ·Ψi ∼ω for plane waves (which we have
numerically verified), we expect their contribution to be negligi-
ble compared with that of quasilocalized soft glassy modes, and
hence, the above double sum is now understood to be dominated
by the latter. Next, because different quasilocalized soft glassy
modes are spatially well-separated, we expect cijj for i 6= j to
be much smaller than ciii , such that Eα∼

∑
i(fα ·Ψi) ciii ω

−4
i .

Finally, because the internal force fα is localized at the αth inter-
action, only the glassy mode that is localized there will contribute
to the sum, leading to

Eα ∼ ω−4. [5]

Eq. 5, which is verified below, establishes an important relation
between the LTE Eα and the frequency of vibrational modes ω.
In fact, it constitutes a relation between Eα and the local stiff-
ness κ≡ω2, Eα∼κ−2, showing that particularly soft excitations,
κ→ 0, correspond to anomalously large values of the LTE Eα.
The predicted relation between local stiffness and LTE justifies
the assertion that Eα quantifies the degree of softness of glassy
structures.
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Using Eq. 5 and the universal relation DG(ω)∼ω4, the prob-
ability distribution function p(Eα) is obtained as

p(Eα) = DG [ω(Eα)]
dω(Eα)

dEα
∼E−1

α E−5/4
α ∼E−9/4

α . [6]

Note that, in the above discussion, we implicitly used the fact that
the magnitude of the internal forces |fα| has a characteristic value
as shown in SI Appendix. The prediction in Eq. 6 has far-reaching
implications. First, it suggests that the physical observable Eα (i.e.,
the LTE) effectively filters out the effect of low-frequency plane
waves, which are known to obscure the origin of many glassy
effects (41–43). In fact, when low-frequency plane waves coex-
ist with quasilocalized soft glassy modes in the same frequency
range, they hybridize, such that glassy modes acquire spatially
extended background displacements and appear to lose their
quasilocalized nature. The derivation leading to Eq. 6 assumed
that Eα is insensitive to hybridization and that the DG(ω)∼ω4

distribution remains physically meaningful (i.e., it still character-
izes the probability to find a soft localized structure in a glass)
even in the presence of hybridization, when it cannot be directly
probed by a harmonic normal modes analysis. Second, the predic-
tion in Eq. 6 rationalizes the existence of anomalously soft local-
ized spots in glassy materials and predicts its probability.

To test the prediction in Eq. 6 and its degree of universal-
ity, we performed extensive numerical simulations of different
computer glass-forming models [(i) a binary system of point-like
particles interacting via inverse power law purely repulsive pair-
wise potentials in 2D (2DIPL) and 3D (3DIPL) (34) and (ii) the
canonical Kob–Andersen binary Lennard–Jones (3DKABLJ)
system (44) in 3D (SI Appendix has details about models and
methods)] to extract the statistics of Eα according to Eq. 3. The
results are summarized in Fig. 2. All of the glasses considered
exhibit a power law tail with a universal exponent fully consistent
with the theoretically predicted −9/4 exponent. These results
lend strong support to the prediction in Eq. 6 and therefore, also
implicitly, its underlying assumptions. The results presented in
this section explain the physical origin of the sensitivity of Eα to
soft glassy structures, elucidate its anomalous statistical proper-
ties, and establish a relation between its statistical properties and
the recently observed universal ω4 density of states of quasilocal-
ized low-frequency vibrational modes (34), a fundamental prop-
erty of glasses. Next, we would like to explore the possibility of
defining mesoscopic soft spots based on Eα and their predictive
powers.

Softness Field and Predicting Plastic Rearrangements
The normalized LTE Eα is microscopically defined for any inter-
action α. In Fig. 3, Left, we present yet another example of the

Fig. 3. (Left) LTE field in a 2DIPL system of N = 10,000, same as in Fig. 1.
(Right) Coarse-grained softness field (in the text). Enumerated by occurrence
order are the loci of plastic instabilities that occur upon application of qua-
sistatic shear deformation.

Fig. 4. (Left) The cumulative distribution function Fn(∆E ) quantifying the
fraction of plastic events of ordinal numbers n = 1, 2, 3 being closest to soft
spots characterized by a value equal to or smaller than ∆E (closed sym-
bols). The corresponding results based on the normal modes (NM) approach
(details are in the text) are superimposed (open symbols). (Right) The ratio
of Fn(∆E ) for the two approaches, δFn(∆E ), is plotted for n = 1, 2, 3. It is
clearly observed that the thermal energy-based approach significantly out-
performs the NM-based approach.

spatial map of Eα, here for a larger system compared with Fig. 1,
Right. A continuous field can be naturally constructed by coarse-
graining |Eα| on a scale larger than the particles scale. We use
|Eα|, because anomalously large negative and positive values of
Eα are strongly correlated in space. Coarse-graining is achieved
by discretizing space into bins containing at least two bonds each,
assigning a bin with softness obtained by averaging the values
of |Eα| of bonds belonging to it, and finally, averaging the bin’s
value with the values of all bins in the first layer of neighboring
bins (SI Appendix). Applying this procedure to Fig. 3, Left yields
Fig. 3, Right, which we treat as a softness field. Our goal now
is to test the predictive powers of this softness field in relation
to glassy dynamics. The latter, either thermally activated relax-
ation in nondriven conditions or plastic rearrangements under
external driving forces, entails crossing some activation barriers.
Activation barriers revealed by soft localized vibrational modes
Ψi of frequency ωi are small, of order ω6

i /c
2
iii in the leading

anharmonic expansion of the energy (45). Hence, we expect that
regions that feature large values of |Eα| will be particularly sus-
ceptible to plastic rearrangements.

To test the susceptibility of regions with large LTE to plastic
rearrangements, we applied global quasistatic shear deformation
in a certain direction under athermal conditions to each glass
realization—such as the one shown in Fig. 3, Right—and mea-
sured the locations of the first few discrete irreversible plastic
rearrangements as described in SI Appendix. The advantage of
this T = 0 protocol is that it allows one to uniquely and unques-
tionably identify the discrete irreversible plastic rearrangements.
The locations of the first five discrete irreversible plastic rear-
rangements (events) were superimposed on the softness field in
Fig. 3, Right. The first four plastic events overlap soft spots iden-
tified by the softness field, indicating a high degree of predictive-
ness of Eα.

To quantify the degree of predictiveness of the LTE Eα, we
extracted the location of soft spots from the spatial distribution
of Eα (for example, the one shown in Fig. 3) as described in SI
Appendix. In addition to its location, each soft spot is character-
ized by its degree of softness, representing the average value of
|Eα| in its near vicinity (SI Appendix). Because the fat-tailed dis-
tribution in Eq. 6 predicts very large variability in the degree of
softness of different soft spots within a single glass realization and
among different realizations, we define ∆E of each soft spot as the
maximal degree of softness in a given realization divided by the
spot’s degree of softness. That way, we standardize the degree of
softness, such that the softest spot in each realization has ∆E = 1
and not as soft spots have ∆E > 1. Then, each plastic event of
ordinal number n (n = 1 for the first event, n = 2 for the second,
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etc.) is associated with the soft spot that is closest to it in space
(SI Appendix). We stress that the soft spots are extracted for the
nonsheared system and are not updated between plastic events.

The cumulative distribution function Fn(∆E), quantifying the
fraction of plastic events of ordinal number n being closest to soft
spots characterized by a value equal to or smaller than ∆E , is con-
structed by collecting data from 5,000 independent simulations of
2DIPL computer glasses. Fn(∆E) for n = 1, 2, 3 is shown in Fig.
4, Left, closed symbols. As expected, the smaller the n , the larger
the predictive power. Moreover, it is observed that about 20%
of the first plastic events (i.e., n = 1) are predicted by the soft-
est spot in each realization and that nearly 70% are predicted by
soft spots with ∆E ≤ 2. To assess how good these predictive pow-
ers are, we need some reference case to compare with, which we
consider next.

Among the many structural indicators studied over the years
(compare with the Introduction above), the normal modes-based
approach (24–27) stands out according to the relatively high cor-
relations between the structure and dynamics that it exhibits. The
basic idea behind this approach is that, although a single low-
lying normal mode Ψi does not clearly exhibit localized struc-
tures, possibly because of hybridization, some weighted sum over
a system-dependent number of normal modes does reveal such
structures. We use this approach here to compare its predictions
with the predictions obtained above based on the LTE. In par-
ticular, we follow ref. 15 and construct maps analogous to Fig.
3, Left and Fig. 1, Right by summing the norm squared of the
components of low-lying normal modes Ψi at each particle over
the first 30 nonzero modes (i.e.,

∑30
i=1 |Ψ

(j)
i |

2) for every particle
j . Here, Ψ(j)

i ≡ (Ψ
(j)
i,x ,Ψ

(j)
i,y) are the components of the normal

mode Ψi at particle j , and x , y are the axes directions in a global
2D Cartesian coordinate system.

After the normal modes maps are constructed (SI Appendix
has more details), we apply to them the same procedure
described above and calculate the cumulative distribution func-
tion Fn(∆E) based on them. The results are superimposed on the
LTE results in Fig. 4, Left, open symbols. The comparison reveals
that the thermal energy-based approach significantly outper-
forms the normal modes-based approach. The performance of
both approaches is quantified in Fig. 4, Right, where we plot the
ratio of Fn(∆E) for the two approaches for n = 1, 2, 3, δFn(∆E),
showing that the thermal energy-based approach outperforms
the normal modes-based approach by up to a factor of 1.85 for
n = 1 and up to a factor of 3.3 for n = 3.

We thus conclude that the LTE has predictive powers that
surpass those of the normal modes-based approach. Can we
also assess its predictive powers in absolute terms? To address
this question, one should note that soft spots are expected to
be anisotropic objects (41, 46) characterized by orientation and
polarity and hence, feature variable coupling to shearing in vari-
ous directions. That is, they are expected to be spin-like objects.
Consequently, a spot that is very soft in a given direction may not
undergo a rearrangement if the projection of the driving force
on its soft direction is small. Hence, the optimal predictive power
based on the degree of softness alone—a scalar measure—may
be significantly smaller than unity. In particular, assuming a uni-
form/isotropic orientational distribution of equally soft spots, a
naive estimation indicates that only 25% of them will rearrange
under shearing in a given direction. As a result, the ∼ 20% pre-
dictive power of the softest soft in each realization, compared
with Fig. 4, Left, closed symbols (n = 1), may, in fact, be not so far

from the optimal scalar predictiveness level. The optimal scalar
predictiveness issue certainly deserves additional investigation.

Conclusion
We have shown that the low-temperature LTE Eα is a physical
observable that is particularly sensitive to localized soft struc-
tures in glasses. Eα effectively filters out the contribution of long-
wavelength plane waves; hence, it is dominated by soft glassy
vibrational modes alone. This property allows one to establish
a quantitative relation between the recently observed universal
distribution of soft glassy vibrational modes, DG(ω)∼ω4 in the
limit of small frequencies ω, and the distribution of the LTE,
p(Eα)∼E−9/4

α in the limit of large Eα. This universal anomalous,
fat-tailed distribution of Eα has been supported by extensive sim-
ulations on various computer glass-former in 2D and 3D.

Although the problems of coexistence and hybridization of
long-wavelength plane waves and soft vibrational modes, which
have hampered a direct observation of soft quasilocalized glassy
modes and their statistical distribution for a long time, will
be addressed elsewhere, we stress that our results have poten-
tially important implications in this context. The universal fat-
tailed distribution p(Eα)∼E−9/4

α has been theoretically derived
based on the DOS of soft quasilocalized vibrational modes
DG(ω)∼ω4. However, the LTE Eα is a physical quantity that
is defined without any explicit reference to soft quasilocalized
vibrational modes or any harmonic normal modes analysis. Con-
sequently, it should be valid in the thermodynamic limit where
the harmonic normal modes analysis may not cleanly reveal soft
quasilocalized vibrational modes or their ω4 DOS. As such, it
suggests that the ω4 distribution has a physical meaning that
goes beyond the eigenvalues of harmonic normal modes, where
κ=ω2 is a generalized measure the stiffness of localized soft
glassy structures (43).

The universal anomalous distribution of Eα and its relation to
the universal localized glassy modes DOS imply the existence
of highly localized and soft structures in glassy materials. Con-
sequently, Eα forms a softness field that naturally reveals soft
spots. These soft spots are expected to be characterized by par-
ticularly small activation barriers and hence, predict the loci of
plastic rearrangements under shearing. As such, these soft spots
are natural candidates for STZ (36, 37). The predictive powers of
the LTE have been substantiated by extensive numerical simula-
tions and have been shown to be superior to those of the normal
modes-based structural indicator.

Our approach offers a general system/model-independent,
physical/observable-based framework to identify structural prop-
erties of quiescent glasses and relate them to glassy dynamics. In
particular, the identified field of soft spots and its time evolution
under external driving forces should play a major role in theories
of plasticity of amorphous materials, serving to define a popula-
tion of STZ (37, 47–50). The predictive powers of our approach
have been shown here for plastic rearrangements in athermal
quasistatically driven systems. An important future challenge
would be to test whether and to what extent these predictive
powers persist at finite temperatures—possibly up to the glass
transition region—and finite strain rates. It should also be tested
against thermally activated relaxation in the absence of external
driving forces. Finally, as mentioned above, an interesting direc-
tion would be to go beyond the scalar degree of softness mea-
sure by incorporating orientational information into a general-
ized structural indicator.
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