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When we grasp and manipulate an object, populations of tactile
nerve fibers become activated and convey information about the
shape, size, and texture of the object and its motion across the
skin. The response properties of tactile fibers have been exten-
sively characterized in single-unit recordings, yielding important
insights into how individual fibers encode tactile information. A
recurring finding in this extensive body of work is that stimulus
information is distributed over many fibers. However, our under-
standing of population-level representations remains primitive. To
fill this gap, we have developed a model to simulate the responses
of all tactile fibers innervating the glabrous skin of the hand to
any spatiotemporal stimulus applied to the skin. The model first
reconstructs the stresses experienced by mechanoreceptors when
the skin is deformed and then simulates the spiking response that
would be produced in the nerve fiber innervating that receptor.
By simulating skin deformations across the palmar surface of the
hand and tiling it with receptors at their known densities, we
reconstruct the responses of entire populations of nerve fibers.
We show that the simulated responses closely match their mea-
sured counterparts, down to the precise timing of the evoked
spikes, across a wide variety of experimental conditions sampled
from the literature. We then conduct three virtual experiments
to illustrate how the simulation can provide powerful insights
into population coding in touch. Finally, we discuss how the
model provides a means to establish naturalistic artificial touch in
bionic hands.

mechanoreceptor | tactile afferent | somatosensory periphery |
skin mechanics | computational model

The human hand is endowed with thousands of mechanore-
ceptors of different types distributed across the skin, each

innervated by one or more large myelinated nerve fibers (1).
These fibers convey detailed information about contact events
and provide us with an exquisite sensitivity to the form and sur-
face properties of grasped objects (2, 3). During object manipula-
tion and tactile exploration, the glabrous skin of the hand under-
goes complex spatiotemporal mechanical deformations, which
in turn, drive very precise spiking responses in individual affer-
ents. Coarse object features, such as edges and corners, are
reflected in spatial patterns of activation in slowly adapting type
I (SA1) and rapidly adapting (RA) fibers, which are densely
packed in the fingertip (3, 4). At the same time, interactions with
objects and surfaces elicit high-frequency, low-amplitude sur-
face waves that propagate across the skin of the finger and palm
and excite vibration-sensitive Pacinian (PC) afferents all over the
hand (5–8).

Recording the activity of tactile nerve fibers in monkeys or
humans is technically difficult, is slow, and generally yields re-
sponses from a single unit at a time (9, 10). Although such
recordings have yielded powerful insights into the neural basis of
touch, they provide a limited window into the information that
the hand conveys to the brain, which is distributed over thou-
sands of responding fibers.

To fill this gap, we have developed a model with which we
can simulate the responses of all mechanoreceptive afferents
that innervate the palmar surface of the hand to arbitrary spa-
tiotemporal patterns of skin stimulation, taking into account skin
biomechanics and receptor biophysics. Model parameters are
derived from spiking data obtained from monkeys and validated

by reproducing both the strength of and temporal patterning
in the responses of afferents to a wide range of stimuli, mea-
sured independently in monkeys and humans by several research
groups, including our own. With the model, we can simulate in
real time the responses of hundreds of afferents to stimuli of
arbitrary complexity. We anticipate that the model will be an
important tool in somatosensory research to characterize the
peripheral representation of tactile stimuli. The model will also
be useful in providing somatosensory feedback through inter-
faces with the peripheral nerve for use in neuroprosthetic devices
by converting the output of touch sensors on the prosthesis into
biomimetic afferent responses, which can then be implemented
through electrical stimulation (11–13).

Results
The objective is to simulate the responses of tactile afferents
across the glabrous skin of the hand to arbitrary spatiotempo-
ral deformations of the skin. To this end, we randomly terminate
SA1, RA, and PC afferents over the palmar surface of the hand
according to their respective innervation densities, which vary
across locations (14) (Fig. 1A). When a given stimulus is applied
passively to the hand, the model estimates the spiking response
of those afferents through two sequential stages, mimicking the
mechanotransduction process (Methods): a skin mechanics stage
and a spike generation stage. In the first stage, the stresses
resulting from the stimulus are estimated at the receptor loca-
tion as two distinct components: a quasistatic component caused
by the redistribution of pressure applied to the surface of the
skin and a dynamic component resulting from the variations of
this pressure with time (Fig. 1 B and C). The quasistatic com-
ponent confers to tactile fibers response properties resulting
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Fig. 1. Overview of the model. (A) Receptors are distributed across the skin given the known innervation densities of SA1, RA, and PC afferents. (B) The
stimulus—in this case, a vibrating embossed letter A scanned across the skin—is defined as the time-varying depth at which each small patch of skin (here
dubbed a pin) is indented (with a spatial resolution of 0.1 mm). The traces in Lower show the time-varying depth at the three locations on the skin indicated
by the red dots in Upper. (C) The mechanics model relies on two parts: (Upper) modeling the distribution of stresses using a quasistatic elastic model and
(Lower) modeling dynamic pressure and surface wave propagation. Left shows the surface deformation of the skin, and Right shows the resulting pattern
of stresses at the location of the receptors. (D) The spiking responses are determined by leaky IF models using different sets of up to 13 parameters (marked
in red numbers) for individual SA1, RA, and PC afferents fit based on peripheral recordings to skin vibrations. Adapted from ref. 71. (E) The output of the
model is the spike train of each afferent in the population. Raster of the response of the afferent population sampled as in A to the stimulus shown in
B (only active afferents are included). Note that the SA1s (in contact) only encode the spatial aspect of the stimulus, that the PCs encode from the whole
finger phase-lock with the 200-Hz vibration, and that the RAs show mixed spatial and vibration responses.

from contact mechanics, such as edge enhancement and sur-
round suppression (15, 16). The dynamic component propa-
gates through the skin surface as a wave and confers to affer-
ents the ability to respond to vibration at a distance from the
contact point (5). In the second stage, the resulting stresses are
used as inputs to integrate-and-fire (IF) models (Fig. 1D)—with
parameters separately derived for each afferent—that produce
as output the spiking responses of individual afferents to the
stimulus (Fig. 1E). Each spiking model comprises up to 13 free
parameters (Methods) and is fit to each fiber individually, so
that the population simulations incorporate within-class differ-
ences in response properties, which play a role in neural cod-
ing (17). We extensively tested the model architecture to verify
that each component and free parameter was required to achieve
accurate and precise response predictions and avoid overfitting
(Methods).

Model Fitting and Validation. Three neurophysiological datasets
(from ref. 18) were used to fit and validate the model, each con-
sisting of afferent responses (recorded from rhesus macaques)
to a different class of vibrations imposed on the skin: sinusoidal,
bandpass noise, and diharmonic vibrations. First, responses to
sinusoids and bandpass noise, spanning the tangible range of fre-
quencies (1–1,000 Hz), were used as the training data to find the
best fitting parameters for each afferent (Methods). The fitted
parameters for individual IF models were clustered by afferent
class, reflecting differences in the response properties of the dif-
ferent classes (Fig. S1). Second, responses to diharmonic stimuli
(with components spanning a wide range of frequencies), simu-
lated using the previously fitted parameters, were compared with
their measured counterparts to validate the models. To this end,
we compared both the firing rates and precise spike timing of the
measured and simulated responses. In total, four SA1, nine RA,
and four PC provided sufficiently complete and reliable training
and validation data to be used as a basis for model fitting.
Firing rates. We found that the firing rates of simulated neu-
rons closely match their measured counterparts [training data:
R2 =0.91± 0.04 (SD) and 0.92± 0.11 for sinusoidal and noise

vibrations, respectively (Fig. S2); validation data:R2 =0.85± 0.08
for diharmonic vibrations] (Fig. S3 and Table S1).
Spike timing precision. In early neurophysiological experiments
investigating tactile coding in the nerve, Mountcastle and co-
workers (9) observed that cutaneous mechanoreceptive afferents
exhibit very precise and repeatable timed responses to vibra-
tory stimuli. The importance of spike timing in tactile coding
has since been established across a variety of sensory continua,
including vibratory frequency, surface texture, surface curvature,
and direction of tangentially applied forces (19–22). With these
observations in mind, we tested the degree to which simulated
responses reproduced the fine temporal structure of afferent
responses, particularly those of RA and PC fibers, which are pre-
cise down to single-digit milliseconds. First, as the amplitude of
a sinusoid increases, the phase of each spike advances and then
stabilizes around the tuning point (i.e., at the amplitude that elic-
its one spike per cycle), a phenomenon that is also exhibited by
simulated RA and PC afferents (examples are in Fig. S4 A and
B). Second, at the tuning point, both real and simulated RA and
PC afferents respond with precisely timed spikes as evidenced
by vector strengths—a metric of phase-locking (23)—near one
(Fig. 2A). Third, simulated responses to complex stimuli match
their measured counterparts with high temporal precision (Fig. 2
B–D). To quantify the precision of the match, we computed the
distance between simulated and measured responses to dihar-
monic vibrations (the validation dataset) at different time scales,
ranging from submilliseconds to tens of milliseconds, using spike
distance as a metric (Methods). We then compared the temporal
imprecision in the simulated responses with that resulting from
jittering spikes. That is, we computed the spike distance between
measured and jittered spikes with different amounts of jitter at
different timescales. We could then determine how much we
need to jitter the measured spike trains to achieve the level
of temporal imprecision of our simulated responses. We found
that all models achieved a temporal precision better than 8 ms
(Fig. 2E). PC models were the most precise, down to submil-
lisecond precision, whereas SA1 and RA models achieved preci-
sions ranging from 3 to 8 ms. Note that the temporal precision of
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Fig. 2. Spike timing. (A) Vector strength for actual (black) and modeled
(blue and orange) RA afferents at 40 Hz and PC afferents at 300 Hz. Hori-
zontal lines denote averages. (B–D) Recorded (black tick marks) and simu-
lated (colored) spike trains for example (B) SA1, (C) RA, and (D) PC afferents
in response to a noise and a sinusoidal stimulus. (E) Normalized difference
in the spike distance between modeled and jittered spike trains to mea-
sured spike trains for the three afferent classes as a function of jitter level.
Shaded lines show means for individual afferent, and dark lines show means
across afferents. Vertical black ticks indicate the points at which the models
become significantly worse than the jittered data.

the simulated responses is well within the behaviorally relevant
range. Indeed, PC responses are most informative at a tempo-
ral resolution of 2 ms, RA responses are most informative at a
temporal resolution of about 5 ms, and SA1 responses are most
informative at even coarser timescales (20, 24).

Response Properties Captured by the Model. In the following sec-
tion, we systematically compare simulated afferent responses
with published data from the literature across a variety of well-
established response properties and examine the extent to which
the model, fit to measured responses to vibrations, accounts
for afferent responses observed in various other experimen-
tal contexts. Although some response properties are built into
the model—such as edge enhancement, which falls out of the
mechanics model—and others are specifically targeted in the fit-
ting process—such as phase-locking to sinusoidal stimuli—we
also test a number of properties that are not explicitly built in.
These properties include receptive field (RF) size, response to
ramp-and-hold stimuli, and responses to spatial patterns (such
as letters or dots) scanned across the skin. The extent to which
the model captures these properties is indicative of how well it
captures the underlying mechanisms and thereby, generalizes to
new stimulus spaces.

Adaptation. One of the most striking differences between affer-
ent types is their response to ramp-and-hold indentations:
whereas SA1 afferents respond to the onset and hold phase
(but not its offset), RA afferents respond strongly to onset and
offset but not the hold phase. Simulated afferents also exhibit
these canonical properties, a phenomenon that is not explicitly
built into the model (Fig. 3 A and B and Fig. S4 C and D).
Furthermore, the responses of simulated afferents to ramp-and-
hold indentations match those of their biological counterparts in
two other ways: SA1 firing rates increase linearly as indentation
depth increases (25), and RA firing rates increase monotonically
with indentation rate (26).
RF size. A second well-known difference across afferent classes
is in the size of their RFs. First, we measured the RF size of sim-
ulated afferents at a fixed amplitude relative to threshold (as is
typically done) and reproduced published results (27, 28): SA1
afferents had the smallest RFs (around 10 mm2), RA afferents
had slightly larger ones, and PC RFs were roughly an order of
magnitude larger still (Fig. 3 C and D). Second, we investigated
how RF size changes with indentation depth. As is the case with
recorded afferents (29), the RFs of simulated RA fibers grow
roughly linearly with indentation depth, but the size of SA1 RFs
is independent of indentation depth (Fig. S4 G and H). Third,
we examined how threshold amplitude grows with distance from
the RF center for RA afferents. Indeed, threshold increases
sharply as one proceeds outward from the RF center (30), a
phenomenon that is also observed in the simulated responses
(Fig. S4 I and J). Fourth, simulated PC fibers that innervate the
palm respond to light touch on the fingertip (31), whereas SA1
and RA afferents only respond to local stimulation, mirroring
their biological counterparts.
Frequency response. A third well-documented difference in the
response properties of mechanoreceptive afferents is in their
frequency sensitivity profile. First, we examined how abso-
lute thresholds—the minimum amplitude that elicits a spike—
vary with frequency (tested with sinusoids). We found that
the threshold–frequency functions of simulated afferents closely
track those reported in the literature. SA1 afferents have
high thresholds across all frequencies (Fig. 3 E and F); RA
afferents exhibit their lowest thresholds at frequencies below
100 Hz, yielding minimum thresholds of around 10 µm (Fig. 3
G and H); and PC afferents are most responsive at 200–300 Hz,
where submicrometer amplitudes are sufficient to elicit spikes
(Fig. 3 I and J). Second, we found that the frequency depen-
dence of the tuning thresholds of simulated fibers—the mini-
mum amplitude at which they fired at least one spike per cycle—
mirrored their measured counterparts closely (red traces in Fig.
3 E–J). Third, we tested model predictions of rate intensity func-
tions across a wide range of frequencies and found that, again,
these closely matched their experimentally derived counterparts
(Fig. S4 K–P).
Spatial representations. SA1 and RA afferents have been shown
to carry information about the shape of objects in the spatial
pattern of their activity (4). That is, the spatial configuration
of stimuli applied to the surface of the skin is reflected in the
spatial pattern of activation in these two afferent populations,
drawing analogies to visual representations in the retina (32).
Furthermore, spatial representations carried by SA1 fibers are
sharper than those carried by RA fibers. Simulated SA1 and RA
responses exhibit spatial patterning, with SA1 responses yield-
ing sharper images than their RA counterparts (Fig. 4A). The
responses of SA1 and RA fibers to spatial patterns also dif-
fer in their susceptibility to spatial interactions. SA1 responses
are enhanced for edges and suppressed for spatially extended
flat stimuli, whereas RA afferents exhibit little to no surround
suppression and edge enhancement (33–35). In agreement with
these findings, simulated SA1 but not RA afferents exhibit sub-
stantial surround suppression (Fig. 4 B–E) and edge enhance-
ment (Fig. 4 F and G and Fig. S4 E and F).

Insights from Simulated Populations. As summarized above, sim-
ulated tactile fibers exhibit many response properties that have
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Fig. 3. Basic response properties of simulated afferents. (A) Measured responses of an SA1 afferent to ramp-and-hold indentations at different depths
(from ref. 75) and simulated responses of an SA1 fiber to those same stimuli. (B) Measured responses of an RA afferent to ramps at different speeds (from
ref. 26) and simulated responses of an RA fiber to the same stimuli. In A and B, Top shows the indentation depth of the probe over time, Middle shows
actual responses of afferents recorded in humans, and Bottom shows the responses of simulated afferents. (C) RF sizes (black, median; error bars, 25th and
75th percentiles) measured for SA1, RA, and PC afferents (27). (D) RF sizes of simulated afferents when stimulated and estimated in the same way as in C.
The models exhibit the property that RA fibers tend to have larger RFs than SA1 fibers and that PC fibers have by far the largest RFs. (E, G, and I) Measured
absolute (black) and tuning (red) thresholds for (E) SA1, (G) RA, and (I) PC afferents at different frequencies (76). (F, H, and J) Modeled absolute (black) and
tuning (red) thresholds, corresponding to data shown in E, G, and I.

been documented over the last half-century (we did not test
them all). Indeed, the match between simulated and measured
responses is nearly perfect, down to millisecond spike timing.
Next, we wished to simulate entire populations of afferents and
examine their responses to a few classes of stimuli. Indeed, unlike
electrophysiological experiments, which are limited to recording
from a single mechanoreceptive fiber or tiny fractions of all fibers
at a time, this stimulation allows for detailed view of the entirety
of the sensory signals that the hand sends the brain. In the model,
the palmar surface of the hand is innervated by around 12,500
afferents with measured densities that depend on location and
afferent type. Overall, SA1 fibers outnumber PC fibers by a fac-
tor of two, and RA fibers, in turn, outnumber SA1 fibers by a
factor of two. Furthermore, each fingertip contains just under
1,000 fibers, whereas the much more expansive palm contains
only 4,000 in total.
Population statistics for basic tactile stimuli. We simulated the
responses of the somatosensory nerves to different tactile stim-
uli: two skin vibrations (one low-frequency flutter and one high-
frequency vibration), which are commonly used in experiments
on touch, and the onset and hold phase of a two-fingered
grasp. First, we found that almost all tactile experiences elicit
responses in more than one and typically all afferent popula-
tions (Fig. 5A). Second, the total number of spikes per sec-
ond varied over several orders of magnitude across different
stimuli and afferent populations. For example, tactile flutter of
moderate intensity will generally evoke hundreds of spikes per
second in the SA1 or RA populations (Fig. 5B), whereas a
high-frequency vibration can evoke up to 100,000 spikes per
second across the PC population (Fig. 5C). Third, only a tiny
fraction of the total number of SA1 and RA fibers (up to
3%) is active for any stimulus, and the responding fibers are
all tightly clustered around the contact location(s); however,
some stimuli, such as the high-frequency vibration and the
onset of a grasp, activate almost all PC fibers on the glabrous
skin, and these fibers are distributed over the entire surface
of the hand (Fig. 5D and Movies S1 and S2). In general,
then, the total number of active PC fibers dwarfs that of active
SA1 or RA fibers, although PC fibers innervate the skin only
sparsely. Fourth, dynamic stimuli, such as vibrations, or rapid

force changes, such as during grasp onset, will elicit many
more spikes than static ones, such as the hold period during a
grasp, which only excites SA1 afferents and does so only weakly
(Fig. 5E).
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and simulated afferents.
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respond to a given stimulus, but in rare cases, a whole afferent population
might be silent. (B) Spatial distribution of afferent responses (green, SA1;
blue, RA; orange, PC) to a flutter stimulus (15 Hz) applied to the D2 finger-
tip through a small circular probe. Movie S1 shows a representation of the
response over time. (C) Spatial distribution of responses for a 300-Hz vibra-
tion. Note that PC afferents located all over the hand respond to this stim-
ulus. (D) Spatial distribution of responses during the onset of a two-finger
grasp executed with D1 and D2. The sudden contact and fast ramp up of
the contact force cause PC afferents all over the hand to respond, whereas
only SA1 and RA afferents close to the contact locations respond. (E) Spa-
tial distribution of responses during the static (hold) period of a two-finger
grasp. RA and PC afferents are silent, whereas the SA1 afferent directly at
the contact location responds weakly. Movie S2 shows a representation of
the grasp response over time.

Next, we conducted two more simulated experiments: one in
which edges were indented into the skin at different orienta-
tions and one in which textured surfaces were scanned across
the skin in different directions. We then estimated the degree
to which the afferent population activity conveyed information
about edge orientation or motion direction and characterized the
time course over which this information evolved.
Decoding edge orientation. We simulated the responses of the
entire afferent population to edges indented into the fingertip
at 32 different orientations (Fig. 6A). We wished to examine
the extent to which edge orientation could be decoded from
afferent responses, either solely from the spatial layout of their
response (36, 37) or from temporal spiking patterns as well (24,
38). As expected, SA1 fibers responded strongly at the onset of
the indentation and tended to maintain their response through
the hold period (albeit weakly), whereas RA and PC fibers
responded during the onset and offset ramps only (Fig. 6B). The
spatial distribution and strength of the response depended on
orientation for SA1 and RA but not PC fibers (Fig. 6A). We
then attempted to classify the orientation of a bar based on the
responses that it evoked either based on spike counts alone or
taking the temporal spiking patterns into consideration (Meth-
ods). First, we found that we could decode edge orientation from
the RA and SA1 but not PC population responses (indepen-
dently) within a few tens of milliseconds solely based on spike
count distributions over the entire population (Fig. 6C). Criti-
cally, the observed discrimination latencies (∼40–50 ms to reach
perfect discrimination) are comparable with those observed in
a similar experiment carried out in humans using microneurog-
raphy. The latency to reach perfect discrimination of curvature

based on the timing of the first couple of spikes in ensembles
of afferents was found to be around 40 ms (21). This match in
timing further corroborates the claim that the temporal preci-
sion of the models, this time measured at the population level, is
similar to that of measured afferent populations. Interestingly,
SA1 and RA populations carry signals that are equally infor-
mative about orientation, contrary to what might be expected
based on their single-unit responses (33, 39). Indeed, individual
SA1 fibers tend to convey more precise information about spatial
form, but this advantage at the single-cell level seems to be com-
pensated for by the greater number of RA fibers. Second, tak-
ing the timing of spikes evoked in the afferent populations into
account (19, 20, 24, 38) only slightly improved classification per-
formance, suggesting that the orientation information conveyed
in the spatial pattern of activation dwarfs that conveyed in the
timing of spikes (Fig. S5A). Third, combining responses from the
populations led to a significant boost in performance after 10 ms.
Signals from the two populations of afferents thus have a coop-
erative effect, an observation only made possible by examining
population responses.
Decoding direction of motion. We simulated afferent responses
to three textured surfaces scanned across the skin in 16 differ-
ent directions at a speed of 20 mm/s (Methods and Fig. 7 A
and B). We wished to assess the degree to which information
about motion direction could be extracted from the responses
of populations of afferents independent of texture, which also
strongly modulates afferent responses (20, 40, 41). As might be
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Fig. 6. Insights from population responses: decoding the orientation of an
indented edge. (A, Upper) Sampled afferent populations (SA1 in green, RA
in blue, and PC in orange). (A, Lower) Their response strengths to indented
edges at 2 of 32 orientations tested (0° and 90°). Darker colors indicate
higher firing rates. (B, Upper) Responses of 30 selected SA1 and RA fibers
to edge indented at two different orientations depicted in red and black.
(B, Lower) Peri-stimulus time histogram (PSTH) of the afferent population
response for each type to the two orientations, with the temporal profile of
the stimulus superimposed in gray. (C) Classification performance for each
afferent type as well as the total population for different window durations
using spike count. Lines are means, and shaded areas show the SDs; the
dashed lines denote chance level.
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Fig. 7. Insights from population responses: decoding the direction of tex-
tured surfaces scanned across the finger. (A, Left) Three textured surfaces
were scanned along the direction indicated by the yellow arrow over a
patch of fingertip (denoted by the circle superimposed on the fingertip in A,
Right) in 16 directions (shown with arrows on the fingertip). (B) Location of
sampled afferents over the contact area for each class. Segments between
afferents show pairs selected to compute cross-correlations. (C) Responses of
three example afferents to different textures (labeled T1–T3 in A) scanned in
four directions (angles on the left are relative to distal direction). (D) Cross-
correlogram of a selected RA pair in response to 16 different directions. The
gray trace shows the expected peak in the cross-correlogram given a pair
of identical neurons responding to a sinusoidal grating. The resulting trace
is a cosine with amplitude that is determined by distance between the RFs
divided by the stimulus speed and phase that depends on their relative ori-
entation. (E) Performance of the direction classifier (across textures) using
correlograms for each afferent type and different window durations. Solid
lines denote means, and shaded areas are SEMs.

expected, simulated responses differed markedly across classes
and textures but perhaps less obviously, across scanning direc-
tions (Fig. 7C). First, we attempted to decode motion direction
(across textures) based on spike counts and temporal spiking pat-
terns (as we had done with orientation). We found that classifica-
tion performance based on spike counts was only slightly above
chance, and taking spike timing into consideration only made it
worse (Fig. S5B). As expected, both firing rates and spike pat-
terning of individual afferent responses are strongly impacted

by the texture itself (20, 40, 41) and much less so by motion
direction. Second, we sought to examine whether the correlated
activity across pairs of neurons was informative about direction.
Indeed, adjacent neurons along the scanning direction experi-
ence the same stimulus at different times, and therefore, in prin-
ciple, direction of motion can be inferred from correlated pat-
terns of afferent activation. However, afferents are not identical,
and therefore, their response to the same stimulus will not be
identical; it remains to be elucidated whether the responses are
sufficiently similar to yield discernible correlations. To test this
possibility, we selected pairs of adjacent neurons within the con-
tact area (Fig. 7B) and computed the cross-correlogram of the
most responsive pairs (Fig. 7D shows an example). We found
that we could classify movement direction based on these correl-
ograms with high accuracy (Fig. 7E). Again, combining responses
from the three afferent populations led to improved perfor-
mance, suggesting a cooperative effect of direction signals car-
ried by the different populations of nerve fibers. These results
suggest that a coincidence detection mechanism is likely required
to extract information about motion direction from afferent
responses (in the absence of shear force) (42).

These experiments yielded three findings about neural coding
in the somatosensory nerves that would not have been possible
without population-level analysis. (i) The advantage of individual
SA1 fibers in spatial processing seems to be largely compensated
for at the population level by the greater number of RA fibers.
(ii) Orientation can be accurately decoded from population spike
counts within a short period (10 ms), which may obviate the need
for fast computations based on spike timing that were thought to
be necessary to guide object manipulation (21) but require more
sophisticated neural circuitry to achieve. (iii) The signals carried
by different populations of afferents complement one another
and together, are more informative than the signals carried by
any one population. This third observation has important impli-
cations for neural coding in touch. Indeed, the tactile coding of
any one stimulus feature (shape, motion, texture, etc.) has his-
torically been ascribed to a single population, deemed a special-
ist for extracting information about that feature. Although this
dogma has recently been called into question based on results
from single units (3), this analysis shows that some forms of
interplay between submodalities can only be observed at the pop-
ulation level.

The objective of the two simulated experiments was not to
yield a definitive conclusion as to the peripheral neural code
for orientation or motion direction. Rather, we wished to illus-
trate the potential of the model to address fundamental ques-
tions about sensory coding in neural populations by allowing us
to quickly test hypotheses and perform complex analyses on a
huge amount of tactile responses without having to carry out a
single experiment.

Discussion
Limitations of the Model. Although the model faithfully repro-
duces key response properties of tactile afferents, it is also sub-
ject to a number of limitations. First, we are able to simulate SA1,
RA, and PC but not slowly adapting type II (SA2) fibers. Indeed,
the models are based on electrophysiological data obtained from
rhesus macaques, which are devoid of SA2 afferents (43).

Second, the models were derived from responses to stimuli
that were indented into the skin and therefore, do not incor-
porate lateral sliding and the concomitant shear forces. Rather,
scanning is mimicked by moving an “image” of the indentation
pattern across the skin frame by frame. Note, however, that tan-
gential forces are often highly correlated with normal ones dur-
ing sliding (44), and therefore, this approximation is sufficient
under most circumstances. The model also does not incorpo-
rate the effect of fingerprints on texture responses (7) or the
onset of slip (45). Tangential sliding and its onset are governed
by the friction between the skin and object surface, which is a
complex mechanical problem that is not yet fully understood
(46). As our understanding of how tangential forces shape affer-
ent responses improves, this aspect can be incorporated into
the model.
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Third, the skin mechanics model treats the skin as a flat sur-
face, when in reality, it is not. The 3D shape of the skin matters
during large deformations of the fingertip. For example, press-
ing the fingerpad on a flat surface causes the skin on the side
of the fingertip to bulge out, which in turn, causes receptors
located there to respond (47, 48). Such complicated mechanical
effects can be replicated using finite element mechanical mod-
els (49) but not using the continuum mechanics (CM) model
adopted here. To the extent that friction is a critical feature of
a stimulus—for example, when sliding a finger across a smooth,
sticky surface—or that the finger geometry plays a critical role
in the interaction between skin and stimulus—as in the exam-
ple of high-force loading described above—the accuracy is com-
promised. Under most circumstances, the model will capture the
essential elements of the nerves’ response.

Fourth, SA1 and RA afferents have been shown to exhibit
complex RFs with multiple hotspots (24, 50), because single
afferents innervate multiple mechanoreceptors (43, 51). Afferent
branching is not currently implemented in the model; rather, RFs
comprise a single hotspot and are isotropic. However, the model
can be readily elaborated to accommodate afferent branching,
particularly when we better understand the mechanisms by which
input from the various mechanoreceptors is integrated to drive
the afferent response (52).

Applications. The proposed model can be a powerful tool to
investigate the sense of touch. Indeed, recording the responses
of human or monkey afferents is technically challenging and only
yields responses from a single fiber at a time. Even multielec-
trode arrays only yield responses from a sparse sample of affer-
ents (53) or the aggregate activity of a large number of fibers
(54, 55). The model allows us to simulate the responses of entire
populations of afferents to arbitrarily complex stimuli. These
simulated responses can be used to (i) test peripheral neural
codes (as illustrated above with the two simulated experiments),
(ii) assess the degree to which the results from psychophys-
ical experiments can be accounted for based on population
response (56), and (ii) investigate how sensory representations
are transformed as one ascends the somatosensory neuraxis (cf.
ref. 57).

Also, the model will be valuable in neuroprosthetic applica-
tions that aim to restore the sense of touch through peripheral
nerve interfaces (58–60). Indeed, the output of sensors on the
prosthesis during object contact can be used as input to the sim-
ulated afferents, which then provide an accurate representation
of how the nerve from an intact hand would respond to object
contact. This biomimetic pattern can then be effected in the
residual nerve of an amputee by delivering spatially and tem-
porally patterned stimulation pulse trains designed to evoke the
desired nerve activation (11, 12, 17). The implementation is com-
putationally efficient and can run in real time (SI Methods).
In the context of neuroprosthetics, the model can also be used
as a benchmark against which to compare simpler encoding
algorithms and determine the circumstances under which their
behavior diverges from that of nerves in an intact arm.

Methods
The model of peripheral afferents is structured in two distinct sequential
stages to capture the structure of the mechanotransduction process (Fig. 1).
In the first stage, we compute the deformations experienced by individual
receptors given a stimulus applied to the surface of the skin. In the second
stage, we compute based on this receptor deformation the spiking response
of the nerve fiber using an IF mechanism.

Stimulus. A stimulus is defined as the time-varying positions of a set of pins
indented into the skin in the direction orthogonal to the skin surface. Each
pin makes contact with the skin over a circular area of adjustable radius and
can move up and down independent of the other pins. The location of a
pin with respect to where it will touch the hand is fixed over time using a
coordinate system centered on the fingertip of the index finger (Fig. S6A).
A stimulus can be defined by a single pin (corresponding to a circular probe
indented into the skin) or multiple pins, which together form a shape (say
an edge, a letter, or a curved surface). Pin indentations are independent of

each other and can, therefore, form arbitrary spatiotemporal patterns of
indentation.

Skin Mechanics. The skin of the fingers and palm is known to have complex,
nonlinear mechanics (61–63), with properties that vary widely over differ-
ent spatial and temporal scales (64, 65). Modeling the precise skin defor-
mation resulting from a given stimulus requires advanced models (66, 67),
measurements of individual skin properties (68), many parameters, and con-
siderable computing power. Because we aimed to simulate the responses of
whole populations of afferents in quasireal time, we did not attempt to
estimate the exact deformation state of the finger but instead, simplified
the problem by evaluating mechanical quantities that have been shown to
be highly predictive of afferent responses. Accordingly, we focused on two
quantities that are strongly associated with neural responses but over dif-
ferent frequency ranges: (i) the local vertical stress based on a quasistatic
elastic model of the skin, mainly affecting receptor responses at low fre-
quencies (<100 Hz) (16) and (ii) dynamic variations in pressure propagated
across the skin as surface waves, mainly affecting receptor responses at
higher frequencies (5, 6). These two quantities are then combined in the
spiking model and differentially weighted depending on afferent type. For
instance, SA1 afferents are most sensitive to statically indented spatial pat-
terns, and therefore, the quasistatic component is strongly weighted in SA1
models. Conversely, PC afferents do not respond to static indentations but
are extremely sensitive to high-frequency vibrations even far away from
the center of their RF; therefore, PC models will feature a strong dynamic
component.
Quasistatic component. The quasistatic component of the model is inspired
by an existing CM model of afferent responses (15, 16). CM offers two impor-
tant benefits: (i) it provides analytical solutions and is, therefore, fast to
compute, and (ii) it provides very accurate predictions of the responses of
type I afferents (SA1 and RA) to spatial patterns indented into the skin (16).
In the CM model, the skin is assumed to be a homogeneous, isotropic, elas-
tic half-space, and the stimulus (i.e., the spatiotemporal pattern of inden-
tations) is applied at the free border of this half-space. The surface of the
object is considered to be frictionless and therefore, produce load only in
the direction perpendicular to the skin. In the original version of the model,
each stimulus pin was described as punctate (that is, with infinitely small
diameter). We modified this by defining each pin as a circular punch. This
modification has the benefit that large circular pins indenting the skin (i.e.,
circular probes as commonly used in tactile experiments) can be modeled
using a single pin rather than a large number of them, speeding up compu-
tation considerably. The deflection produced by a single pin is calculated as
follows (Fig. S6B) (69):

u (r) = f (r) · p, [1]

f =


1

k
(r< rp)

2

πk
sin−1 rp

r
(r> rp)

, [2]

k = 2rp
E

1− ν2
, [3]

where r is the distance from the center of the pin, u is the vertical skin
deflection at distance r, p is the force acting on the pin, rp is the radius of the
pin, k is the stiffness of the skin viewed by this pin, E is Young’s modulus, and
ν denotes Poisson’s ratio. This expression was later generalized to multiple
pins (15), adopting the following matrix form:

x =


x1

x2

...
xn

 y =


y1

y2

...
yn

 u =


u1

u2

...
un

 , [4]

Rij =

√(
xi − xj

)2 +
(
yi − yj

)2, [5]

u = f(R)p , [6]

where n is the total number of pins, x and y are the coordinates of each pin, u
is a vector containing the indentation depth of each pin, and p is a vector con-
taining the force exerted by each pin. R is a matrix containing the Euclidian
distances between pins (Rij is the distance between pin i and pin j).

The stresses acting on each receptor are then obtained in a two-step pro-
cedure. First, the indentation depth profile (i.e., the indentation depth of
each pin, which constitutes the input of the model) is converted to an inden-
tation force profile (i.e., the force applied by each pin to the surface of the
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skin). This conversion is achieved by solving the linear system presented in
Eq. 6 for p. Because pins can only push into the skin but not pull on it, all
pins exerting a negative force (pulling) are removed (because they would
not actually be in contact with the skin). The subsystem is then iteratively
resolved until all remaining pins exert a positive force (i.e., pushing into the
skin) as done in earlier models (16). Second, the stresses acting on a recep-
tor are obtained independently for each pin, and then, their effects are
summed by applying the superposition principle. This calculation is made
by using the analytical expression of the stresses resulting from the inden-
tation of a circular pin by a force p in the elastic half-space as obtained
by Harding and Sneddon (69). The analytical expressions are reported in SI
Methods. Note that these expressions assume a particular pressure distribu-
tion, and this assumption is not valid when two pins are very close to each
other. Nevertheless, the error is negligible if the pin radius is sufficiently
small compared with the afferent depth (Fig. S6C). The afferent depth was
set according to the literature (51) and is the same for all afferent models
(SA1 depth is 0.3 mm, RA is 0.2 mm, and PC is 2 mm). Most stress compo-
nents have been shown to be highly correlated with afferent responses (16).
Here, we chose the vertical component of the stress tensor (i.e., the stress
perpendicular to the skin surface), because this component was previously
shown to be a very good predictor of both SA1 and RA responses, and it is
consistent with the dynamic component described below.
Dynamic component. High-frequency vibrations applied to the fingertip,
elicited, for example, during making and breaking contact with objects or
scanning the finger across a textured surface, travel across the finger and
palm and have been recorded as far away as the wrist (5, 6, 8). In the model,
we wished to incorporate such surface waves resulting from pin movement.
First, the indentation velocity profile is converted into a force variation pro-
file using Eq. 6 as above but after replacing the stiffness coefficient k (Eq. 2)
with a viscous coefficient c (c is arbitrarily set to one because of the lack of
consistent measurement; therefore, the dynamic component has no unit).
Second, the force variation of each pin is propagated to the receptor as
a surface wave, with a decay of 1/r (5) and a propagation speed (group
velocity) of 8 m/s (as measured in ref. 5 but constant across frequencies for
simplicity). As in the quasistatic part, the stress acting on the receptor is
obtained by summing the contribution of each pin.

IF Model. The output of the skin mechanics model at all receptor locations is
fed into IF models that generate spiking responses for each afferent. We fit
the parameters of these models on electrophysiological recordings obtained
previously (18). These models were similar to earlier ones (57, 70, 71), with
some key differences. First, rather than simply using skin indentation depth
(along with derivatives) as IF model input, we used the static and dynamic
pressure as calculated from the skin mechanics model. This choice of input
allowed us to reproduce response properties driven by skin mechanics, such
as edge enhancement and surround suppression (Results), as well as effects
caused by the propagation of dynamic pressure waves. Second, the models
were fit on a wide variety of vibrotactile frequencies, ranging from 1 to
1,000 Hz, in contrast to earlier models, which were fit on much narrower
stimulus sets (i.e., either low or high frequencies).

Each IF model works as follows (Fig. 1D). The mechanical input (both qua-
sistatic and dynamic) is passed through a low-pass filter (parameter 1) (Fig.
1D) to accommodate the fact that afferents become nonresponsive above
a certain (afferent type-specific) stimulation frequency. Then, the dynamic
component is differentiated to obtain three signals (quasistatic, dynamic,
and differentiated dynamic). Those three inputs can be interpreted as the
three terms of a “lumped” mass–spring–damper model, with the quasistatic
term being associated with the elastic stress, the dynamic term being asso-
ciated with the damping, and the differentiated dynamic term being asso-
ciated with the mass. Next, the three signals are split into positive and neg-
ative contributions and rectified, yielding six time-varying inputs (Fig. 1D),
which are each multiplied by a weight (parameters 2–7) and summed. Then,
the resulting time-varying trace is passed through a saturating nonlinear-
ity, reflecting the fact that afferents’ responses saturate at high intensities
(parameter 8). Next, Gaussian noise is added (parameter 9) to mimic the
observed stochasticity in afferent responses, which is particularly evident
for perithreshold stimuli (72). The resulting trace constitutes the input to a
leaky IF model, with “membrane potential” that decays to zero with a char-
acteristic time constant (parameter 10). When the potential hits one, a spike
is triggered, the membrane potential is reset, and a postspike inhibitory
kernel is added to the potential to build in refractoriness (parameters 11 and
12). The kernel consists of two parts: a fast component, which decays com-
pletely within 4 ms, and a slow component, which contributes maximally
8 ms after a spike is triggered and decays within 36 ms (a similar model is
shown in ref. 71). In all fitted models, the first component was weighted

more heavily than the second component, leading to initially strong but lin-
gering weak inhibition after each spike. Finally, spikes are shifted in time
by a small amount to mimic conduction delays (parameter 13), which are
largely determined by where the recording was made (proximal vs. distal).
An individual IF model, therefore, possesses 13 parameters: the low-pass cut-
off frequency, the six weights, the saturation parameter, the noise term, the
membrane leak time constant, two parameters to determine postspike inhi-
bition, and the conduction delay. Not all parameters were required for all
afferent models. SA1 models did not include a weight for the derivative of
the dynamic pressure, because these afferents do not respond to high fre-
quencies. SA1 models also did not include a saturation parameter. RA and
PC models did not include weights for the static stress component, because
these afferent types do not respond to constant indentations. Thus, SA1
models used 10 parameters, whereas RA and PC models were fit using 11
parameters each.

Fitting Procedure. For model fitting, we used as a cost function the van
Rossum spike distance (73), which yielded a measure of difference between
the recorded and model-predicted spiking responses at a given tempo-
ral resolution (set by a time constant). We then optimized the model
parameters (apart from the noise term, parameter 9; see below) using
the patternsearch function in Matlab (The Mathworks, Inc.) using different
starting positions. We used a time constant of 50 ms for the computation of
the cost for SA1 and RA afferents and 20 ms for PC afferents. The parameters
were both fit on responses to sinusoidal stimuli and bandpass noise traces
(18). PC models were fit on all frequencies used in the stimulus set (rang-
ing from 1 to 1,000 Hz). SA1 and RA models were only fit on frequencies
between 1 and 150 Hz. After we had zeroed in on good parameter values,
we further optimized the parameters using genetic algorithms (ga in Mat-
lab) until they did not improve further. To fit the noise parameter, we first
calculated the average spike distance between all pairwise combinations
of the five recorded trials for each stimulus in the training data. We then
adjusted the noise parameter, such that five simulated runs of the model
on the same inputs resulted in the same average pairwise spike distance.
In total, we fit single-afferent models to four SA1, nine RA, and four PC
afferents.

Model Architecture Validation. Our goal was to create a model that could
recreate most afferent response properties described in the literature but
that was simple enough to allow for fast computation. Furthermore, we
wished to avoid overfitting and ensure that the parameters contributed
to prediction accuracy. We, therefore, tested a number of simpler mod-
els, and we examined which response properties they could successfully
recreate and where they failed. Additionally, these tests provide insights
about which specific afferent response properties are driven by which model
component.
Skin mechanics. First, as shown previously in a number of studies (15, 16,
33, 35), the spatial profile of afferent response strength is not accurately
predicted by the profile of the skin indentation. Indeed, as predicted by con-
tact mechanics, the distribution of pressure (and therefore, the distribution
of stresses inside the skin) is influenced, for example, by edges and the size
of the contact area. A contact mechanics component is, therefore, required
to incorporate all spatial response properties, such as edge enhancement,
surround suppression, and RF sizes. Second, PC fibers are known to respond
to vibration far away from their locations, which requires the wave prop-
agation (dynamic) component of the model. However, incorporating skin
mechanics is not necessary to achieve high spiking precision (for stimuli
located directly above the receptor location), because previous models were
able to reproduce precise spiking patterns evoked by vibrating probes with-
out implementing a skin mechanics model (70, 71).
Frequency selectivity of different afferent types. Selective weighting of
the quasistatic, dynamic, and dynamic derivative inputs will yield models
that differ in their frequency response and could, in principle, account for
the SA1, RA, and PC frequency response profiles. To test whether a simple
model using these inputs might be sufficient to model afferent response
properties or whether a more complex spike initiation model is required,
we implemented a linear–nonlinear–Poisson (LNP) model (SI Methods has
details on the fitting process). This model assumes that spikes are gener-
ated by a nonhomogeneous Poisson process and does not include leak-
age, a spiking threshold, or refractoriness. We found that the LNP model
was indeed able to fit and predict firing rates of the vibration datasets,
although less accurately than the IF models [training data: R2 = 0.66± 0.14
(SD) and 0.84± 0.14 for sinusoidal and noise vibrations, respectively; valida-
tion data: R2 = 0.73± 0.16 for diharmonic vibrations] (Results has details on
the IF fits). However, the precise spike timing was consistently much worse
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as shown using metric–space analysis of spikes trains at different timescales
(from 0.1 to 100 ms) (Fig. S7 A and B). In particular, we found that the timing
precision of the IF models surpassed that of the LNP models at the timescales
that have been shown to be particularly informative for the different affer-
ent classes (10 ms for SA1, 5 ms for RA, and 1 ms for PC) (19, 20, 24). An
example of this timing precision is the ability of an afferent to phase-lock to
sinusoidal stimuli at different frequencies and mechanical noise with differ-
ent bandpass frequencies (Fig. 2).
Individual IF parameters. After verifying that the IF model yields more accu-
rate predictions than a simpler spike generation model does, we next evalu-
ated the contribution of individual IF model parameters. Indeed, some of
these parameters (for example, the low-pass cutoff, the saturation, and
the membrane leak time constant) affect model responses in similar and
overlapping ways. To test whether these parameters were necessary to
reproduce precise spiking, we fit models that either lacked one of these
parameters or had the parameter “clamped” to a certain value during the
fitting process (SI Methods). We found that removing any of these param-
eters considerably reduced the model’s ability to reproduce key response
properties; the most notable problems were missing entrainment plateaus
(Fig. S7C shows a model with no postspike inhibition), thresholds off by an
order of magnitude (Fig. S7D, clamped membrane leak time constant), and
excessively high firing rates (Fig. S7E, no saturation). These effects can be
explained by the fact that we are fitting complex, frequency-dependent
response properties, and precisely matching those properties requires
several parameters.

Spike Timing.
Metric space analysis. To measure the degree to which simulated responses
matched their measured counterparts, we used a spike distance metric with
an adjustable temporal resolution (74), which we have previously done (19,
20). In this metric, the distance between two spike trains is obtained by com-
puting the lowest possible cost for transforming one train into the other.
Adding or deleting a spike incurs a cost of one, whereas moving a spike
costs q per unit time. Therefore, by varying the parameter q, we can assess
the degree to which the timing of the spikes matches at different levels
of temporal precision. Specifically, when q is set to zero, distance is deter-
mined solely by the difference in spike count. At higher values of q, moving
spikes becomes more costly than adding or removing them, and therefore,
the timing of individual spikes increasingly determines spike distance, which
remains low if timing is precise. Therefore, the distance increases with q and
converges to the sum of spike count in the two spike trains when q tends
to infinity (which is equivalent to removing all spikes from the first train
and then inserting the spikes from the second train). In all of our timing
analyses, the distances between the measured spike trains and the simu-
lated spike trains were measured at 50 log-spaced timescales ranging from
0.1 ms to 1 s (corresponding to q values ranging from 10,000 to 1). The
distances obtained were then normalized by the sum of spike counts in
the two spike trains, yielding normalized distances that ranged from zero
to one, to make them comparable with each other (Figs. S7B and S8 show
examples).
Timing precision of the model. For each experimental condition (from a
total of 138 different diharmonic stimuli) and each afferent, pairs of spike
trains were used to obtain a distance at every time scale. Pairs consisted of
either measured and simulated spike trains or measured responses from two
different repetitions with temporal jitter added to the second repetition.
Jitter was sampled randomly from a zero-mean Gaussian distribution with
a given SD and added to each spike. We tested SDs ranging from 0.5 to

50 ms. The resulting two distances, measured/modeled (shown in blue in
Fig. S8) and measured/measured + jittered (shown in green in Fig. S8), were
then subtracted to yield a measure of which comparison spike train is closer
to the measured data (shown in red in Fig. S8). A positive value indicates
that jittered trains are closer, and a negative value indicates that simulated
trains are closer. This difference in spike distance was averaged across all
timescales above the jitter SD value and computed for each jitter SD value
(shown in Fig. 2E). We used a t test to determine whether this averaged
difference (corrected for the spike count error) (shown in orange in Fig. S8)
was statistically greater than zero, meaning that the model was worse (one-
tailed t test, alpha = 0.05). The lowest jitter value for which no significant
effect was observed was defined as the precision of the model.

Simulated Experiments.
Procedures.

Edge indentation. Simulated edges (8-mm length and 1.6-mm width)
were indented at the center of the index fingertip to a depth of 1 mm for
400 ms, including a 50-ms on ramp, a 300-ms hold phase, and a 50-ms off
ramp; 32 equally spaced orientations were tested, each repeated 10 times.
In addition to the intrinsic noise in the afferent spiking model, we added
experimental variability in the form of Gaussian noise in the exact stimulus
position (isotropic with 0.5 mm SD) to mimic jitter in the stimulus presenta-
tion as well as small movements of the fingertip.

Texture scanning. Three different texture samples were selected from
a previously used dataset (7, 20): one fine texture (wool gabardine), one
coarse texture (upholstery), and a dot pattern (2-mm interdot spacing). Tex-
ture profiles (obtained by profilometry) were used as inputs to the model
(with surfaces approximated as rigid). The contact area was defined as cir-
cular (with a radius of 4 mm), and the resolution (pin spacing) was set to
0.1 mm. The skin contact area moved across the texture at a speed of
20 mm/s for 0.8 s. The indentation depth was set to 1 mm at the center
of contact and followed a circular profile toward the border of contact. Six-
teen equally spaced directions were tested, each repeated five times. Gaus-
sian noise was added to the stimulus position (isotropic with 0.5 mm SD) to
mimic experimental noise.
Data analysis. We used linear discriminant analysis (LDA) to classify ori-
entation or scanning direction (using fitcdiscr in Matlab) using a leave
one out cross-validation procedure. We used a spike distance measure (as
described above) to compare spike trains at different timescales. The dis-
tances between spike trains of different repetition and different orienta-
tion were computed for each afferent. The distances were then summed
across afferents (by taking the root of the sum of square distances). The
final distance matrix was then converted back to Euclidean coordinates.
Those coordinates were used as feature vector for the LDA-based classifi-
cation. The classification analyses were performed over different response
time windows, starting after the first spike elicited across the whole popula-
tion and ending at different times (logarithmically spaced) (Figs. 6C and 7E,
x axis tick marks). Two different temporal resolutions were tested (q = 0 and
q = 500s−1).
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