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Abstract
Introduction: Chronic immune activation due to ongoing HIV replication may lead to impaired immune responses against
opportunistic infections such as tuberculosis (TB). We studied the role of HIV replication as a risk factor for incident TB after
starting antiretroviral therapy (ART).
Methods: We included all HIV-positive adult patients (≥16 years) in care between 2000 and 2014 at three ART programmes
in South Africa. Patients with previous TB were excluded. Missing CD4 cell counts and HIV-RNA viral loads at ART start
(baseline) and during follow-up were imputed. We used parametric survival models to assess TB incidence (pulmonary and
extrapulmonary) by CD4 cell and HIV-RNA levels, and estimated the rate ratios for TB by including age, sex, baseline viral
loads, CD4 cell counts, and WHO clinical stage in the model. We also used Poisson general additive regression models with
time-updated CD4 and HIV-RNA values, adjusting for age and sex.
Results: We included 44,260 patients with a median follow-up time of 2.7 years (interquartile range [IQR] 1.0–5.0); 3,819
incident TB cases were recorded (8.6%). At baseline, the median age was 34 years (IQR 28–41); 30,675 patients (69.3%) were
female. The median CD4 cell count was 156 cells/µL (IQR 79–229) and the median HIV-RNA viral load 58,000 copies/mL (IQR
6,000–240,000). Overall TB incidence was 26.2/1,000 person-years (95% confidence interval [CI] 25.3–27.0). Compared to the
lowest viral load category (0–999 copies/mL), the adjusted rate ratio for TB was 1.41 (95% CI 1.15–1.75, p < 0.001) in the highest
group (>10,000 copies/mL). Time-updated analyses for CD4/HIV-RNA confirmed the association of viral load with the risk for TB.
Conclusions: Our results indicate that ongoing HIV replication is an important risk factor for TB, regardless of CD4 cell counts,
and underline the importance of early ART start and retention on ART.
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Introduction
In 2014, almost 1.5 million people died from tuberculosis
(TB), and an estimated 9.6 million developed the disease
worldwide [1]. TB is now the leading cause of death from
an infectious disease, along with HIV/AIDS. HIV-positive
patients are at high risk for opportunistic infections (OIs)
such as TB. HIV infection and HIV-associated immunodefi-
ciency are strong risk factors for TB, and in many low-
income countries TB is the most common AIDS-defining
illness [2–4]. Combination antiretroviral therapy (ART) has
substantially improved the prognosis of HIV infection, and

reduced the risk of OIs in both industrialized and low-
income countries [5,6].

However, the risk of activation of latent TB and progres-
sion to clinical disease remains high in HIV-positive patients
with high CD4 cells, possibly because HIV replication itself is
associated with impaired protection against progression to
active TB [7]. Indeed, patients with high levels of HIV
replication appear to have a greater risk of OIs compared
to patients on ART with suppressed HIV-replication and
similar CD4 cell counts [8–10]. There is increasing evidence
that ongoing HIV replication causes chronic immune
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activation, including the release of cytokines, and increased
cell turnover, which in turn leads to a shift in lymphocyte
phenotypes and to a reduced quality of the immune
response [11].

Previous studies of the association of HIV-RNA viral load with
TB incidencewere conducted in high-income settingswith a low
TB incidence, and had a relatively small sample size. We ana-
lysed a large collaborative cohort of HIV-positive patients from
three different ART programmes in South Africa to study the
role of ongoing HIV replication as an independent risk factor for
TB after starting ART.

Methods
We included data from patients ≥16 years of age starting ART
between 1 January 2000 and 31 December 2014 in three South
African treatment programmes that participate in the
International Epidemiology Databases to Evaluate AIDS in
Southern Africa (IeDEA-SA, www.iedea-sa.org) [12], and also
systematically record OIs and HIV viral load (Khayelitsha and
Tygerberg in the Western Cape, Themba Lethu Clinic in
Johannesburg). Data are collected as part of routinemonitoring
at enrolment and each follow-up visit, including TB symptoms.
All study sites have local institutional review board or Ethics
Committee approval to collect data and participate in IeDEA-SA.
Children were excluded as they present a different study popu-
lation, as well as patients with a previous TB episode. The
selection of eligible patients is shown in Figure 1.

An incident TB episode was defined as a diagnosis and
treatment start of TB (pulmonary or extrapulmonary) one
month after ART initiation or later, as reported by each site
[13,14]. Person-time was calculated from ART initiation
(baseline) to TB diagnosis, death or last follow-up informa-
tion. To account for missing values of CD4 cell count and
HIV-RNA viral load at baseline and during follow-up, we
generated 50 imputed datasets assuming missing at ran-
dom using the MICE and Amelia II package in R [15]. The
number of missing values are shown in Additional File 1.
The imputation model included age, sex, CD4 count, viral
load, observation time, and WHO clinical stage [16]. Results
were combined with Rubin’s rules [17]. For the purpose of
the imputation process, patients were expected to have
laboratory tests every four months until the time of TB
diagnosis, death or last follow-up information.

We used chi-squared tests for differences between
groups in binary variables, and the Wilcoxon rank-sum
test for continuous variables. We used parametric survival
models to assess TB incidence stratified by levels of base-
line CD4 cell count (0–99, 100–349, ≥350 cells/µL,
unknown) and HIV-RNA (0–999, 1,000–9,999, ≥10,000
copies/mL, unknown). We estimated rate ratios adjusted
for age, sex, baseline viral loads, CD4 cell counts, and WHO
clinical stage, taking into account clustering by cohorts (ART
programmes). Rate ratios were also calculated using a com-
plete case dataset (without missing CD4 cell count and HIV
viral load at start of ART). In addition, interactions between
CD4 count and HIV-RNA on TB incidence were assessed by
including interaction terms in the regression model. Finally,
we used Poisson generalized additive regression models

with time-updated CD4 cell counts and HIV-RNA values,
smoothed by a regression spline for CD4 and HIV-RNA,
and adjusting for age and sex.

All analyses were performed in Stata version 14.1 (Stata
Corporation, College Station, TX, USA) and R 12.1 (R
Development Core Team, Vienna, Austria).

Results
We analysed 44,260 patients with a median follow-up time
of 2.70 years (interquartile range [IQR] 0.99–5.02); 3,819
patients (8.6%) had an incident TB diagnosis one month
after starting ART or later (median 1.05 years, IQR [0.33,
2.66]). Median age at ART initiation (baseline) was 34 years
(IQR 28–41 years), and 30,675 (69.3%) patients were
female. Baseline median CD4 cell count was 156 cells/µl
(IQR 79–229) and the median HIV-RNA viral load was
58,000 copies/mL (IQR 6,000–240,000) (Table 1). Most
patients were on an ART regimen based on two nucleoside
reverse transcriptase inhibitors and one non-nucleoside
reverse transcriptase inhibitor (41,104 – 92.9%); 3,156
(7.1%) were on other regimens. Patients who developed
TB had lower baseline median CD4 cell counts (117 versus
161 cells/µl), higher baseline median HIV viral loads
(111,000 versus 50,000 copies/mL), and more advanced
disease (WHO clinical stage III/IV 22.2% versus 15.6%) com-
pared to other patients, whereas distributions of age and
sex were similar (Table 1).

During 146,008 person-years, TB incidence was 26.2 per
1,000 person-years (95% confidence interval [CI] 25.3–27.0).
TB incidence was higher in patients with high HIV-RNA com-
pared to patients with lower HIV-RNA, with this difference
being almost fourfold in the intermediate and highest CD4
stratum (Figure 2). When comparing the highest with the
lowest CD4 cell group (≥350 versus <100 cells/µl), the
adjusted rate ratio for TB was 0.52 (95% CI 0.39–0.69,
p < 0.001), as shown in Table 2. Comparing the highest
with lowest HIV-RNA group (0–999 versus ≥10,000 copies/
mL), the adjusted rate ratio for TB was 1.42 (95% CI 1.19–
1.69, p < 0.001). There was no statistically significant inter-
action between the effects of CD4 count and HIV-RNA on TB
incidence (p-value from test for interaction: 0.24). The com-
plete case analysis showed similar results (Table 2).

Time-updated analyses for CD4 cell count and HIV-RNA
viral load fixed at different HIV-RNA levels confirmed the
effect of viral load on the risk of TB (Figure 3), although CIs
were wide in the range of higher CD4 cell counts. Similar
results were obtained in a complete case analysis
(Additional file 2, Figure). Figure 4 shows a three-dimen-
sional model of CD4 cell count and HIV-RNA to predict TB
incidence after starting ART.

Discussion
We analysed HIV-positive patients starting ART in three
large HIV treatment programmes in South Africa. We
found that HIV-positive TB patients with ongoing HIV repli-
cation as determined by plasma HIV viral loads are at
increased risk for TB.
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Viral replication is an independent risk factor for TB
during ART, regardless of CD4 cell counts. This is supported
by both the analysis of TB incidence at baseline, as well as
the analysis of time-updated CD4 cell counts and HIV-RNA
viral loads on a continuous scale. CD4 cell counts in per-
ipheral blood are a useful marker of immune competence
in HIV-positive patients, but ongoing HIV replication as
measured by the plasma HIV-RNA viral load has previously
been suggested as a CD4 cell count independent risk factor

for OIs in patients on ART [7–9]. Even though ART reduces
the risk of TB substantially, the risk remains high in HIV-
positive people, even in countries with low TB transmission
[18,19].

Our findings show that HIV replication is a useful tool to
predict the risk for TB after starting ART. This supports the
current WHO guidelines to scale-up viral load testing in low-
income countries to monitor adherence to ART and treat-
ment failure. The recent results from clinical trials and the

Age at ART start <16 years 

n=11,898

In database as of January 1, 
2016 

n=79,664 Excluded: 

Included in the study 

n=44,260 

On ART at the time of entry into 
ART program 

n=6,034

Unknown gender / age 

n=12

Initiated ART before January 1, 
2000 or after December 31, 2014 

n=1,490

Unknown date of TB diagnosis 

n=87

Died before ART start 

n=6 

Previous TB episode 

n=15,877 

Figure 1. Selection of the study population.
ART: antiretroviral treatment; TB: tuberculosis.
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Figure 2. Crude incidence rates (per 1,000 person-years) of tuberculosis after starting antiretroviral therapy, by baseline levels of CD4 cell
count (cells/μl) and HIV-RNA viral load (copies/mL).
Based on 44,260 HIV-positive patients. Bars correspond to 95% confidence intervals. Unknown HIV-RNA viral load categories are shown in
blue (unknown CD4 cell count category not shown).

Table 1. Baseline characteristics of patients in antiretroviral treatment (ART) programmes included in the study, overall and
stratified by tuberculosis (TB) status

All Incident TB No TB

Characteristic n = 44,260 n = 3,819 n = 40,441 p-Value

Age at start of ART, median (IQR), years 34 (28–41) 33 (28–40) 34 (29–41) 0.015

Female sex, n (%) 30,675 (69.4) 2,448 (64.1) 28,227 (69.8) <0.001

Site of TB, n (%) 3,819 3,819 -

Pulmonary 2,797 (73.2) 2,797 (73.2) -

Extrapulmonary 1,022 (26.8) 1,022 (26.8) -

CD4 cell count at ART start, median (IQR), cells/µl 156 (79–229) 117 (55–180) 161 (82–233) <0.001

No. of patients with value (%) 36,773 (83.1) 3,227 (84.5) 33,546 (83.0)

Imputed values 175 (96–270) 130 (67–205) 179 (100–277)

HIV RNA viral load at ART start, median (IQR), copies/mL 58,000 111,000 50,000 <0.001

(6,000–240,000) (32,000–370,000) (3,900–220,000)

No. of patients with value (%) 7,205 (16.3) 924 (24.2) 6,281 (15.5)

Imputed values 36, 013 107,102 27,472

(1,613–418,771) (3,526–500,000) (1,613–365,717)

WHO clinical stage, n (%)

No. of patients with value (%) 15,711 (35.5) 1,021 (26.7) 14,690 (36.3) <0.001

I and II 13,187 (84.0) 794 (77.7) 12,393 (84.4)

III 2,041 (13.0) 166 (16.3) 1,875 (12.7)

IV 483 (3.0) 61 (5.9) 422 (2.9)

Imputed values for stage IV, % 1,218 (2.8) 196 (5.1) 1020 (2.3)

Treatment programme, n (%) 44,260 <0.001

Themba Lethu 15,711 (35.5) 1,021 (26.7) 22,412 (55.4)

Khayelitsha 24,935 (56.3) 2,523 (66.1) 14,690 (36.3)

Tygerberg 3,614 (8.2) 275 (7.2) 3,339 (8.3)

IQR: interquartile range
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newly issued WHO guidelines state that ART should be
initiated in all people diagnosed with HIV, regardless of
CD4 cell counts at time of diagnosis [20]. However, many
obstacles will need to be overcome before the new

guidelines will be implemented widely in sub-Saharan
Africa which carries the highest HIV-TB burden [21]. Until
recently, ART was not generally recommended in HIV-posi-
tive patients with CD4 cell counts above 500 cells/µL.

Table 2. Adjusted rate ratios for tuberculosis (TB) according to CD4 cell count and HIV-RNA viral load at start of antiretroviral
therapy (ART).

All

patients

Patients with

incident TB

Imputed dataset analysis

(n = 44,260)

Complete case dataset

analysis

(n = 6,707)

Characteristic n = 44,260

n = 3,819

(8.6%)

Adjusted rate

ratio (95% CI) p-Value

Adjusted rate

ratio (95% CI) p-Value

CD4 cell count at ART start, cells/µl, n (%) 0.001 <0.001

0–99 11,506 1,388 (12.1) 1 1

100–349 23,116 1,800 (7.8) 0.78 (0.67–0.92) 0.85 (0.82–0.88)

≥350 2,151 39 (1.8) 0.49 (0.36–0.66) 0.52 (0.30–0.93)

HIV RNA viral load at ART start, copies/ml, n (%) <0.001 <0.001

0–999 1,336 54 (4.0) 1 1

1,000–9,999 710 57 (8.0) 1.23 (1.08–1.41) 1.43 (1.00–2.04)

≥10,000 5,159 813 (15.8) 1.41 (1.17–1.71) 2.01 (1.35–2.99)

Age at start of ART, years - - 0.99 (0.98–1.0) 0.02 0.99 (0.97–1.00) 0.12

Sex <0.001 <0.001

Male 13,585 1,371 (10.1) 1 1

Female 30,675 2,448 (8.0) 0.76 (0.70–0.82) 0.78 (0.70–0.87)

WHO clinical stage, n (%) <0.001 <0.001

I and II 27,553 1,693 (6.1) 1 1

III and IV 15,664 2,060 (13.2) 1.84 (1.76–1.94) 1.98 (1.59–2.47)

The complete case dataset included patients without missing CD4 cell count and HIV-RNA at start of ART.
Model adjusted for age, sex, baseline viral loads, CD4 cell counts, and WHO clinical stage, taking into account clustering by cohorts (ART
programmes).
95% CI: 95% confidence interval; IQR, interquartile range.

Figure 3. Influence of current CD4 cell count, and current HIV-RNA viral load on tuberculosis (TB) incidence. Models of TB incidence after
starting antiretroviral therapy (ART) per 1,000 person-years, CD4 cell count (cells/µl), and HIV-RNA viral load (copies/mL) after imputation
of missing CD4 cell counts and viral loads at start of ART and during follow-up, based on 44,260 HIV-positive patients. Curves represent
patients with different HIV-RNA viral loads. (a) Viral load 100 vs. 10,000 copies/mL; (b) 100 vs. 100,000 copies/mL.
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However, the risk of activating latent TB infection and fast
progression to disease remains high in the group of HIV-
positive patients with higher CD4 cells, particularly in
patients with high HIV-RNA viral loads as shown here. This
could possibly be explained because HIV replication itself is
associated with a distorted immune system and impaired
protection against progression to disease [11]. These
mechanisms include increased cell turnover, activation, dif-
ferentiation, and cytokine release [11]. This is demon-
strated by the fact that the immune response to vaccines
such as yellow fever is reduced in patients with ongoing HIV
replication [22].

HIV-positive patients with high HIV viral loads are at high
risk of TB, regardless of CD4 cell counts, and may therefore
particularly benefit from administration of isoniazid preven-
tive therapy (IPT) to reduce the risk of developing TB.
Therefore, HIV viral load monitoring in patients on ART can
be an important tool to identify patients at highest risk of TB
who would benefit most from long-term IPT. In high TB
incidence regions, the scale-up of IPT to prevent progression
from infection to TB disease is still challenging as shown in a
survey among ART programmes of the IeDEA collaboration
[23]. In addition, randomized clinical trials showed a limited
efficacy of IPT, and the benefit of IPT might be only short-term
in high TB prevalence settings with ongoing TB transmission
and a high risk of re-exposure [24–26]. Individuals with proven
TB infection (e.g., tuberculin skin test positive) appear to
benefit most from IPT [26], but reliable testing for latent TB
is difficult to perform in low-income settings. However, IPT
could be an additional tool that complements early start of
ART to further reduce the risk of TB [27,28].

A limitation of our study was the missing values for HIV-
RNA which is not routinely performed at start of ART in
South Africa. We addressed this by imputing HIV-RNA
values at baseline and during follow-up. Another limitation
is potential residual confounding by factors not captured in

the dataset, and the potential under-ascertainment of TB.
However, we restricted our study to cohorts that system-
atically collect information on OIs. Another limitation was
the heterogeneity between the included ART programmes
[13]. To address this, we also calculated risk ratios, adjusted
for the most important confounding factors.

Conclusions
We found that ongoing HIV replication is an important risk
factor for TB, regardless of CD4 cell counts. Furthermore, viral
load values in addition to CD4 cell counts should be used to
predict the risk of TB after starting ART and during follow-up.
Our study underlines the importance of early start of ART in
HIV-positive persons with a high viral load and continuous
retention on effective ART. Further studies are needed during
the ongoing scale-up phase of universal HIV-RNA viral load
monitoring to document its usefulness to predict the risk of
TB after starting ART and the effectiveness of IPT.
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