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Schizophrenia (SZ) is a severe mental illness with high 
heritability and complex etiology. Mounting evidence from 
neuroimaging has implicated disrupted brain network con-
nectivity in the pathophysiology. However, previous findings 
are inconsistent, likely due to a combination of method-
ological and clinical variability and relatively small sample 
sizes. Few studies have used a data-driven approach for 
characterizing pathological interactions between regions in 
the whole brain and evaluated the generalizability across 
independent samples. To overcome this issue, we collected 
resting-state functional magnetic resonance imaging data 
from 3 independent samples (1 from Norway and 2 from 
Sweden) consisting of 182 persons with a SZ spectrum 
diagnosis and 348 healthy controls. We used a whole-brain 
data-driven definition of network nodes and regularized 
partial correlations to evaluate and compare putatively 
direct brain network node interactions between groups. The 
clinical utility of the functional connectivity features and 
the generalizability of effects across samples were evalu-
ated by training and testing multivariate classifiers in the 
independent samples using machine learning. Univariate 
analyses revealed 14 network edges with consistent reduc-
tions in functional connectivity encompassing frontal, 
somatomotor, visual, auditory, and subcortical brain nodes 
in patients with SZ. We found a high overall accuracy in 
classifying patients and controls (up to 80%) using inde-
pendent training and test samples, strongly supporting the 
generalizability of connectivity alterations across different 
scanners and heterogeneous samples. Overall, our findings 
demonstrate robust reductions in functional connectivity in 

SZ spectrum disorders, indicating disrupted information 
flow in sensory, subcortical, and frontal brain regions.

Key words:   psychosis/brain networks/resting-state 
fMRI/independent component analysis/machine 
learning

Introduction

Schizophrenia (SZ) is a severe psychiatric illness charac-
terized by hallucinations, delusions, apathy, social with-
drawal, and impaired cognitive function.1 Evidence from 
neuroimaging studies points to brain “dysconnectivity” 
in SZ,2 possibly partly reflecting altered neurotransmis-
sion mediated by excitatory and inhibitory imbalances, 
including NMDA/glutamate and GABA dysfunction 
stemming from a combination of genetics, obstetric com-
plications, neurodevelopmental perturbation, and altered 
synaptic plasticity.3 Associations between disrupted spine 
density at the microscale and connectivity disruptions at 
the neuroimaging scale4 support a link between the vari-
ous levels of explanation. At the functional neuroimaging 
level, such neuromodulatory abnormalities may mani-
fest as alterations in brain connectivity or integration 
of large-scale functional brain networks.2,5 The relative 
contribution of specific networks may mirror the neuro-
anatomical distribution of the relevant gene expression 
patterns6 or transmitters systems, reflecting primary defi-
cits, or reflect secondary downstream or compensatory 
effects in distant networks.

mailto:l.t.westlye@psykologi.uio.no?subject=
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In line with this, studies have reported altered brain net-
works in SZ,5,7 including a wide range of large-scale brain 
networks, such as the default mode network (DMN)8 and 
frontal regions,9 which are critical for introspection/self-
referential thought and cognitive functions. In SZ patients, 
studies have indicated aberrant connectivity between the 
DMN, the central executive network (involved in goal-
oriented cognitive functions), and the salience network 
(detection of behaviorally relevant stimuli),10–12 which 
could reflect or even modulate the ability to separate 
external information from self-generated thoughts.

Low-level sensory networks have been less extensively 
studied in SZ, but evidence points to a general reduced 
connectivity in these regions.13–15 Auditory, visual, and 
somatomotor processes have been implicated in SZ,16,17 
and may be related to the range of cognitive and emotional 
symptoms through various downstream mechanisms (so-
called bottom-up models).18,19 Thalamic dysfunction has 
classically been involved in cognitive dysmetria or men-
tal coordination models of SZ.20 Also, the sensory gating 
hypothesis,21 describing the filtering process by which the 
brain assigns relevance to external stimuli, strongly impli-
cates aberrant thalamic functioning in SZ,22,23 and tha-
lamic synchronization with frontal and somatosensory 
regions24,25 may reflect reduced dynamic flow and integra-
tion of information in the brain.

Despite both theoretical and methodological advances, 
functional connectivity findings vary across studies.26 
This heterogeneity likely reflects a combination of meth-
odological and clinical variability, which have precluded 
a direct generalization across studies, and there is a need 
for well-powered studies applying common tools across 
independent samples.

In order to address the above-mentioned limitations 
and assess the robustness of brain network alterations in 
SZ, we utilize resting-state functional magnetic resonance 
imaging (rs-fMRI) data from 3 samples, including 182 SZ 
spectrum patients and 348 healthy controls (HC). We use 
a data-driven and anatomically unconstrained approach 
for defining network nodes across the brain in combi-
nation with partial correlations to assess connectivity 
strength between nodes. Using a combination of univari-
ate and multivariate techniques, we compare the strength 
of the connections between patients and controls, and 
test for associations with key clinical variables. Next, 
we assess the generalizability using a machine-learning 
approach that allows us to train and test a multivariate 
classifier using independent samples. By assessing the 
accuracy of individual prediction of diagnosis, we test 
the clinical utility of the approach.

Based on a current conceptualization of the brain-
network underpinnings of SZ, which suggest reduced 
network efficiency27 and specifically implicate the cortico-
cerebellar-striatal-thalamic loop and altered interaction 
between task-positive and task-negative networks in SZ,28 
we hypothesize the connectivity between these nodes to 

be affected with a general trend towards reduced connec-
tivity. In addition, based on the conception that clinical 
symptoms and cognitive impairments represent higher-
order consequences of basic sensory and perceptual dys-
functions, we expected sensory networks to be equally 
affected as higher order cognitive networks, with a reduced 
connectivity with other sensory regions and an increased 
coupling with the thalamus. Moreover, we expected fron-
tal, DMN, and sensory nodes to show a high cumulative 
effect and be affected in several edges in SZ. Lastly, in line 
with the assumption that fMRI-based functional brain 
connectivity is a sensitive and robust intermediate phe-
notype for psychotic disorders, we expected that the mul-
tivariate classifier trained on one sample would perform 
reasonably well in the independent datasets.

Methods

Participants

Three samples were recruited; 1 from the University 
of Oslo, Norway and 2 from Karolinska Institutet, 
Stockholm, Sweden (table  1). Norwegian datasets were 
recruited through the TOP study,7,14 and included 277 HC 
and 96 patients, with subgroups of SZ (n = 50), schizoaffec-
tive (SA, n = 15), schizophreniform (SFF, n = 5), and psy-
chosis not otherwise specified (NOS, n = 26). Karolinska 
Schizophrenia Project (KaSP) consisted of 30 HC and 
52 recently diagnosed patients (25 SZ, 3 SA, 15 psycho-
sis NOS, 6 delusional disorder, 3 brief psychotic disorder), 
while Human Brain Informatics (HUBIN)29 comprised 
34 patients (9 SA, 23 SZ, 2 psychosis NOS) and 41 HC 
from a 12-year follow-up. For simplicity, all patients will be 
referred to as SZ, unless stated otherwise. Written informed 
consent was obtained from all participants, and the studies 
were approved by the regional ethics committees.

Patients were diagnosed using the structured clini-
cal interview for DSM-IV (SCID). Symptom sever-
ity was assessed with Positive and Negative Syndrome 
Scale (PANSS)30 in TOP and KaSP, and with the Scale 
for Assessment for Positive Symptoms (SAPS) and the 
Scale for Assessment for Negative Symptoms (SANS)31,32 
in HUBIN. Medication usage was operationalized as 
the defined daily dose (DDD) according to the guide-
lines provided by the World Health Organization (http://
www.whocc.no/atcddd). The number of unmedicated 
patients was 6 in TOP and 29 in KaSP sample. HC were 
assessed with the Primary Care Evaluation of Mental 
Disorders (PRIME-MD)33 in TOP, by a structured clini-
cal interview in HUBIN,34 and by the Mini-International 
Neuropsychiatric Interview35 in KaSP.

Image Acquisition

All subjects underwent rs-fMRI and structural scans at a 
3T General Electric scanner, either in Oslo or Stockholm. 
Imaging parameters are detailed in supplementary material.

http://www.whocc.no/atcddd
http://www.whocc.no/atcddd
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1


916

K. C. Skåtun et al

Data Cleaning and Motion

In order to minimize confounding effects of motion 
and other sources of noise we performed single subject 
independent component analysis (ICA) and applied 
FMRIB’s ICA-based Xnoiseifier (FIX) with a standard 
training set, which regresses out the components classi-
fied as noise and the estimated motion parameters from 
the fMRI data36,37 (supplementary table S1). FIX has 
been shown to compare favorably to other methods.38,39 
We assessed the effects of denoising by calculating the 
proportion of noise and variance removed, and the tem-
poral signal-to-noise ratio (tSNR)40 before and after 
FIX. A repeated measures ANOVA was used to test for 
main and interactive effects of denoising (pre and post 
FIX) and group (SZ and HC) on tSNR (supplementary 
table S1). Moreover, we tested for group differences of 
head motion (defined as the average root mean square of 
the frame-to-frame displacement), and to which degree 
motion and tSNR influenced the main effects of group 
(see Statistical analysis). In addition, we tested for main 
effects of tSNR (post-FIX) on connectivity within HC on 
edges showing effects of group.

Preprocessing

Full brain segmentation41 of the T1-weighted data was 
performed using FreeSurfer42 to provide brain extracted 
structural volumes used for co-registration. fMRI datas-
ets were processed using FEAT, part of FSL,43 including 
brain extraction, motion correction, spatial smoothing 

using a Gaussian kernel of full-width at half-maximum 
(FWHM) of 6 mm, and a high-pass filter of 100 seconds. 
fMRI volumes were registered to the structural scan 
using FLIRT44 and boundary-based registration,45 the 
structural scan was nonlinearly warped to the Montreal 
Neurological Institute MNI152 template46 using FNIRT,43 
before the same warping was applied to the fMRI data.

Independent Component Analysis

To integrate fMRI data obtained from 2 different scan-
ners, we employed a meta-ICA approach.47 Briefly, we 
randomly selected 140 subjects from each site and ran 2 
decompositions per site (model order 80), each includ-
ing 35 patients and 35 controls. A common brain mask 
containing voxels with signal in all subjects was used. 
The resulting group-level ICA spatial maps were used as 
input for a single-session meta-ICA47 with a model order 
of 80. We used dual regression to estimate individual 
component time series and spatial maps using the group-
level meta-ICA components as spatial regressors.48,49 
Components clearly associated with motion, white mat-
ter, CSF, or scanner artifacts were removed (supplemen-
tary figure S1). Due to the restricted brain coverage, the 
cerebellum components were excluded, leaving 59 com-
ponents for further analysis (supplementary figure S2).

Connectivity Matrices

In line with recent studies,14,50–52 we defined the com-
ponents’ spatial maps as nodes in the brain network, 

Table 1.  Demographic and Clinical Characteristics

TOP KaSP HUBIN

SZ HC SZ HC SZ HC

Demographics
  N 96 277 52 30 34 41
  Age, y 28.7 (7.9) 31.9 (7.6)a 30 (8.6) 27.3 (5.8) 51.4 (8.2) 54.4 (8.9)
  Sex, n (% male) 62 (64.6) 164 (59.2) 33 (63.5) 15 (50) 27 (79.4) 26 (63.4)
  Education, y 12.6 (2.4) 14.5 (2.1)a — — 12.7 (2.2) 14.6 (2.8)a

  IQb 99.3 (15.4) 112.6 (10.7)a — — 92.3 (16.3) 106.2 (14.3)a

  Duration of illness, y 5.8 (0.7) — 1.34 (1.7) — 28 (8.5) —
Symptom rating
  PANSS total 58.2 (13.6) — 74.4 (20.7) — — —
  PANSS positive 13.5 (5) — 18.8 (6.1) — — —
  PANSS negative 14.9 (4.9) — 17.4 (7.3) — — —
  SANS — — — — 29.3 (14.9) —
  SAPS — — — — 8.8 (7.5) —
Antipsychotics DDD 1.31 (1.2) — 1.11 (.7) — 1.26 (.8) —

Note: DDD, defined daily dose; IQ, intelligence quotient; PANSS, Positive and Negative Syndrome Scale; SAPS, Scale for Assessment 
for Positive Symptoms; SANS, Scale for Assessment for Negative Symptoms. Means (SDs) are reported unless otherwise specified. At 
the time of investigation, the number of unmedicated patients was 6 schizophrenia (SZ) patients in the TOP sample, and 29 in the KaSP 
sample. Number of missing data TOP: Education: 20 SZ, 37 controls; IQ: 17 SZ, 36 controls; duration of illness: 15 SZ; PANSS: 11 SZ; 
medication: 25 SZ. Missing data KaSP: duration of illness: 9 SZ; PANSS: 2 SZ, medication: 4 SZ. Missing data HUBIN: IQ: 10 SZ, 13 
controls; medication: 4 SZ.
aSignificant difference between the means of patients and controls within each sample.
bIQ was measured using Wechsler Abbreviated Scale of Intelligence.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
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and the estimated temporal associations between 
nodes as edges. Full correlations measure the tem-
poral association between 2 components’ time series, 
while partial correlations additionally control for 
the common influences from other components.53,54 
Partial correlations may thus provide a more “direct” 
measure54 while also correcting for non-neural physi-
ological noise.55,56

After regressing out the time series from noise-com-
ponents, we computed connectivity matrices defined as 
the z-normalized node-by-node regularized partial cor-
relations using custom Matlab (The Mathworks Inc) 
tools and FSLnets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLNets), yielding individual connectivity matrices com-
prising 1711 unique edges. In line with recent studies,53,57 
regularization was performed with an individual estima-
tion of lambda.58,59

Statistical Analysis

For visualization purposes, the full correlation matrix 
averaged across subjects was used to compute a hierarchi-
cal clustering of the components (supplementary figure 
S3). To test for effects of diagnosis on edge connectivity, 
we ran ANCOVAs with diagnosis as independent vari-
able, and age, sex, and site as covariates. Results were cor-
rected at the FDR60 and Bonferroni-level (P < .05/1711). 
For significant edges, we also tested if  group effects were 
present within samples.

To assess the importance of each network node in dis-
tinguishing between cases and controls, we calculated the 
eigenvector centrality of each node based on the edge-
wise F-values from the group ANOVA. A high centrality 
indicates altered connectivity with several other nodes, 
indicating a relative importance of this node in group 
discrimination.

Multivariate Analysis—Machine Learning

We assessed the generalizability of the discriminative 
patterns across samples using regularized linear discrimi-
nant analysis classifiers58,61 on edgewise connectivity.14,57,62 
First, we trained a binary classifier on TOP to discrimi-
nate HC from SZ and tested the classifier on HUBIN, 
KaSP and the HUBIN+KaSP sample. Second, since 
the sample sizes of HUBIN or KaSP were too small to 
separately form a robust training set and since both sam-
ples were acquired on the same scanner, we merged and 
trained a classifier on HUBIN+KaSP, which was tested 
on TOP.

Subgroups and Clinical Associations

Since our clinical group included heterogeneous psycho-
sis spectrum patients, we tested for effect of subgroup (98 
SZ, 27 SA, 5 SFF, 43 psychosis NOS, 4 brief  psychotic 
disorder, and 6 delusional disorder) on the connectivity 

of edges showing main effects of diagnosis, covarying 
for age, sex and site. We also tested for associations with 
DDD and duration of illness within all patients on any 
significant edges identified in the main analysis, with age, 
sex and site as covariates. Associations with total PANSS 
were tested in TOP+KaSP.

Results

Univariate Connectivity Analysis

Components largely clustered into 7 groups, broadly 
representing parietal, frontoparietal and cingulum, sub-
cortical, somatosensory and auditory, DMN, frontotem-
poral, and visual components (supplementary figure S3). 
Fourteen edges showed significant effect of diagnosis 
at the Bonferroni-level (P < .00003) and 72 edges at the 
FDR-level (P < .002) (figure 1, figure 2A). Bonferroni-
corrected edges showed either a reduced magnitude of 
positive or negative regularized partial correlation (r 
approaching 0)  in patients and involved primarily sen-
sory, subcortical, and frontal nodes.

Within the visual networks 2 edges showed decreased 
positive correlation in patients (IC17-IC36 and IC17-24), 
and one edge showed reduced magnitude of negative cor-
relation (IC3-IC19) (table 2, figure 2). Two edges involv-
ing somatomotor nodes (IC4-IC7 and IC7-IC11) showed 
reduced positive correlations, and a lateral somatomotor 
node (IC1) showed reduced negative correlation with a 
precuneus node (IC48). For the auditory components, 
IC2 showed reduced positive correlation in patients 
with IC33 (bilateral middle/superior temporal gyrus) 
and reduced negative correlation with IC46 (right fron-
tal pole). Subcortically, a thalamus node (IC32) showed 
reduced negative correlation with bilateral middle/supe-
rior temporal gyrus (IC33), and putamen (IC5) showed 
decreased positive correlation with 2 premotor nodes 
(IC23 and IC30).

Frontal regions showed decreased positive correla-
tion between 2 nodes reflecting the superior frontal gyrus 
(IC45) and left inferior frontal gyrus (IC28). A left fron-
tal-parietal node (left middle/inferior frontal gyrus and 
superior parietal lobule, IC20) and right inferior fron-
tal gyrus (IC37) showed reduced positive correlation 
in patients. Within the DMN cluster, a precuneus node 
(IC48) showed reduced positive correlation with a medial 
frontal node (cingulate, paracingulate, and the frontal 
pole, IC35).

The directions of  effects for the significant edges 
were the same in all samples (supplementary table S2 
and figure 2C). All identified edges were significant (P 
< .05, uncorrected) within TOP, and in the combined 
HUBIN+KaSP sample all but 3 (IC2-IC33, P = .105, 
IC2-IC46, P = .133, and IC20-IC37, P = .065) were sig-
nificant. Within KaSP and HUBIN, 6 and 8 of  the 14 
edges showed nominally significant effects, respectively.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
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Node-wise Eigenvector Centrality Based on Edge-wise 
Effect Sizes

The highest centrality nodes were IC17 (visual), and IC24 
(V2 and cuneus), IC22 (lateral occipital and parietal cor-
tex), IC11 (medial somatomotor), IC39 (medial frontal), 
and IC28 (left inferior frontal gyrus; supplementary table 
S3). Of the DMN components, 2 medial frontal and pre-
cuneus/cingulate ICs (IC35, IC39, and IC9) also showed 
high centrality, while frontoparietal, and salience ICs 
showed average or below average centralities.

Multivariate Analysis—Machine Learning

A classifier trained on TOP showed an overall discrimina-
tion accuracy of patients and controls on the combined 
HUBIN+KaSP sample of 76.7% (sensitivity 80.3%, 

specificity 73.2%; figure  3). Testing the same classifier 
only on HUBIN showed an accuracy of 78.3%, with the 
largest sensitivity of 88.2% (specificity 68.3%), while test-
ing on KaSP showed an accuracy of 77.5% (sensitivity 
80%, specificity 75%). Training the classifier on HUBIN 
and KaSP combined and testing on TOP gave an accu-
racy of 69% (sensitivity 63.5%, specificity 74.4%).

Subgroups, Clinical Associations, and Motion

Two of  the significant edges showed a nominally sig-
nificant difference between subgroups; IC35-IC48 
(F = 2.76, P = .02) and IC5-IC23 (F = 2.37, P = .041). 
Post hoc analysis showed that edge IC48-IC35 had 
lower positive correlations in SZ and psychosis NOS 
compared to SA, while SFF had the lowest values 

Fig. 1.  Effect of group on functional connectivity. Colored squares depict edges with a significant effect of group, represented as 
F-values. Upper triangle shows Bonferroni corrected edges (P < .00003), while lower triangle show FDR-corrected edges (P < .0021). 
Cluster colors broadly represents parietal (dark blue), frontoparietal/cingulum (blue), subcortical (yellow), somatomotor/auditory (light 
green), default mode (red), frontotemporal (pink), and visual/occipital components (green).

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
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among the subgroups (supplementary figure S4). SZ, 
SA, and psychosis NOS had lower correlations for 
IC5-IC23 compared to SFF, brief  psychotic disorder 
and delusional patients.

Among significant edges from the main analysis, one 
(IC2-IC46) showed a nominal association with DDD 
(F = 4.16, t = −2.04, P = .044), with an increasing nega-
tive correlation with increasing dose. No edges were asso-
ciated with total PANSS or duration of illness.

Patients had more head motion than HC, and a 
greater proportion of  noise removed by FIX (supple-
mentary table S1). All 14 edges remained significant 
after including motion as a covariate, although 4 of  the 
edges were no longer significant at the Bonferroni-level 

(supplementary table S4). Repeated measures ANOVA 
showed a large effect of  FIX on tSNR, with mean 
increases from 175.3 to 253.4 (F  =  5616.1, P < .001) 
(supplementary table S1 and supplementary figure 
S5). There was no interaction between group and FIX 
(F = 1.88, P = .172), though SZ had lower tSNR than 
HC (F  =  19.2, P < .001). tSNR was associated with 
functional connectivity within the control group in 5 of 
14 edges (nominal P < .05) (supplementary table S5). 
Four of  these edges showed increasing connectivity with 
increasing tSNR, and 1 showed increasing connectivity 
with decreasing tSNR. Adding tSNR to the main model 
did not remove any of  the group differences (supple-
mentary table S5).

Fig. 2.  (A) Correlations and their location between the 14 edges showing an effect of group. (B) Spider plot displaying the F-values for 
the group differences for each significant edge for the different samples. (C) Plots displaying the mean and standard error for all samples.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbw145/-/DC1
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Discussion

We have performed a comprehensive brain imaging inves-
tigation of functional connectivity in a large cohort of 

SZ and HC from 3 different samples, numbering a total 
of 530 subjects. Data-driven definitions of nodes in com-
bination with regularized partial temporal correlation 

Table 2.  Statistics of 14 Edges Significant at the Bonferroni-Level With Effect of Diagnosis on Connectivity

SZ HC ANOVA

Edge Mean SD Mean SD F P Partial η

IC1-IC48 −0.12 0.74 −0.49 0.71 23.42 .0000017 0.039
IC2-IC33 0.97 1.13 1.46 1.10 19.72 .0000109 0.034
IC2-IC46 −0.23 0.78 −0.67 0.83 21.86 .0000037 0.036
IC3-IC19 −0.75 1.00 −1.28 0.98 24.84 .0000008 0.042
IC4-IC7 2.04 1.36 2.94 1.44 37.51 <.0000001 0.061
IC5-IC23 0.39 0.77 0.79 0.81 33.65 <.0000001 0.055
IC5-IC30 0.41 0.91 0.83 0.83 20.89 .0000061 0.036
IC7-IC11 0.71 1.12 1.35 1.19 30.12 .0000001 0.051
IC17-IC24 0.69 0.98 1.11 0.84 24.44 .0000010 0.042
IC17-IC36 0.63 0.89 0.90 1.00 18.25 .0000230 0.032
IC20-IC37 1.22 0.93 1.75 1.02 18.14 .0000243 0.030
IC28-IC45 1.26 1.05 1.67 1.08 18.71 .0000182 0.033
IC32-IC33 0.04 0.83 −0.29 0.81 20.74 .0000065 0.037
IC35-IC48 1.44 0.82 1.78 0.76 21.35 .0000048 0.037

Note: HC, healthy controls; SZ, schizophrenia. See corresponding figures 1 and 2.

Fig. 3.  Functional connectivity based classification of patients and controls, where the classifier is trained on one group and tested on 
data from another group. HC, healthy controls; SZ, schizophrenia.
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analysis revealed reduced connectivity in SZ in frontal, 
sensory, and subcortical networks, which was consistent 
in all 3 samples. Moreover, training a multivariate clas-
sifier on the TOP sample resulted in an accuracy close 
to 80% in HUBIN+KaSP sample, supporting that the 
clinical sensitivity of the brain network connectivity 
measures is generalizable across samples and scanners. 
Effect of medication, symptom scores, duration of ill-
ness, diagnostic subgroups, subject motion, and tSNR 
were negligible and had very limited effect on the identi-
fied group differences. The strengths of the study include 
a large sample size across 3 different sites and reducing 
methodological variability by using the same pipeline, 
which points to similar findings even with diverse patient 
groups. Classification accuracies were performed in inde-
pendent samples, thus testing for generalizability across 
sites, adding to the value of our study. Also, by using a 
data-driven approach with partial correlations, our study 
assesses putatively direct connections without the need to 
impose any predefined neuroanatomical constraints or 
assumptions.

Strikingly, all connections with a main effect of diag-
nosis showed a weaker positive or negative correlation in 
patients, ie, a correlation closer to zero, which can be inter-
preted as a desynchronization. The frontal lobe is criti-
cal for cognitive functions such as planning and problem 
solving, and has been shown to exhibit reduced connec-
tivity in SZ.5,26 Several of the edges showing group differ-
ences involved frontal nodes, 2 of which also showed high 
centrality, indicating strong cumulative effect of diagno-
sis also beyond the edges surviving strict correction for 
multiple comparisons. We identified reduced connectivity 
between a medial frontal node and the precuneus, part of 
the DMN. These regions also showed a high centrality, 
indicating they are implicated in many edges in SZ, sup-
porting our hypothesis and a role of the DMN in SZ.63,64 
Although the frontal lobe and DMN showed altered 
connectivity, we did not observe any altered connections 
directly between the DMN and typical task-positive net-
works (such as the frontal-parietal network, IC20), which 
is in contrast to the conception that altered or even oppo-
site correlation patterns between these networks give rise 
to clinical symptoms.28

In line with our hypothesis, sensory networks were par-
ticularly affected, with 5 visual nodes showing reduced 
connectivity with other visual nodes. Three nodes repre-
sented early visual cortices (IC36, IC24, and IC3), 2 of 
which had reduced connectivity with V4 (IC17) and 1 
that had reduced connectivity with V5 (IC19). The ven-
tral stream goes through V4 towards the inferior tempo-
ral cortex, and is critical for object recognition, visual 
perception and memory, and the dorsal stream passes 
through V5 (visual motion). Jointly, these findings dem-
onstrate that both visual processing paths are affected, 
which further strengthen the conception of dysfunctional 
multi-level visual information processing in SZ.16,17

Three somatomotor regions showed reduced connec-
tivity in patients, which have also been implicated using 
different approaches.13,14,16,17 In line with widely docu-
mented sensory processing deficits in SZ, both visual and 
somatosensory nodes had a high centrality, indicating 
many altered edges involving sensory nodes in patients. 
The auditory node showed altered connectivity with 
bilateral temporal and right frontal regions. Auditory 
processing impairments have been documented in SZ,65 
and auditory hallucinations are one of the core symp-
toms in SZ.66 Disrupted flow of information between the 
auditory cortex and other regions is a candidate mecha-
nism that may manifest as altered functional connectiv-
ity patterns. Together, these findings support that sensory 
processing deficits are a hallmark of SZ. If  the quality 
of the sensory input is already degraded before being 
forwarded to higher-level processes involving the frontal 
lobe, it could partially explain the cognitive difficulties 
observed in SZ. As of today, with some notable excep-
tions,13–15 neuroimaging studies have primarily targeted 
the DMN and cognitive processes, while our results sug-
gest more attention should be given to characterize sen-
sory processing deficits.

Several recent studies have showed disrupted subcor-
tical connectivity, particular between the thalamus and 
somatomotor and frontal regions.25,67,68 We extend these 
findings by documenting reduced thalamo-temporal 
connectivity in all 3 samples, and decreased connectiv-
ity between the putamen and 2 premotor nodes. As 
the basal ganglia motors circuit involves the thalamus, 
putamen, and premotor cortex,69 these findings may 
indicate poorer coordination of cortico-basal ganglia 
pathways and subsequent reduced motor function,70 
and also supports our hypothesis of disruptions in the 
cortico-striatal-thalamic loop.

The group effects for the 14 significant edges were in 
the same direction in all 3 samples with comparable effect 
sizes across edges, supporting the robustness of the find-
ings. Six and 8 of the effects were replicated within KaSP 
and HUBIN, respectively, despite smaller sample sizes, 
which may also explain some of the discrepancies in the 
literature.26 Also, effects of diagnostic subgroup were 
nominal only and restricted to 2 of the significant edges, 
suggesting common functional brain pathology across 
the SZ spectrum.

Using machine learning utilizing all edges we found 
high overall classification accuracies. Training the classi-
fier on TOP gave good accuracies in KaSP+HUBIN, and 
even in the smaller individual samples. Training the clas-
sifier on KaSP+HUBIN gave slightly lower accuracy in 
TOP, likely due to a smaller sample size. These robust vali-
dations are important since they suggest generalizability 
of connectivity aberrations across different scanners and 
heterogeneous samples, including both recently diagnosed 
and chronic patients. Consequently, our results suggest 
that a mega-analysis attempt similar to those recently 
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deployed in the structural imaging domain71,72 and genet-
ics73 may be feasible for functional connectivity analysis.

In-scanner head motion may be a confounder as 
patients moved more than controls. However, we care-
fully denoised the data using FIX and by regressing out 
motion parameters, and the main effects of group on 
edgewise connectivity remained after adding motion as 
a covariate. FIX substantially increased tSNR across 
groups, though patients had lower tSNR than HC both 
before and after FIX. Some edges were associated with 
tSNR in HC, and mainly showed decreased connectiv-
ity with decreasing tSNR. However, adding tSNR to the 
main model as a covariate did not remove any of the sig-
nificant group effects, and is therefore unlikely to explain 
the group differences.

Many patients were treated with antipsychotic medi-
cation at the time of scanning, which is a limitation of 
this study. It is difficult to disentangle the effects of medi-
cation and disease mechanisms in naturalistic clinical 
studies, though effects were found in KaSP where about 
half  of the patients were not medicated. Moreover, the 
one edge that showed an effect of medication was in 
the opposite direction of the patient-control difference, 
making it unlikely that our findings are purely a result 
of medication effects. Whereas the observed connectiv-
ity differences between cases and controls are likely to 
reflect relevant pathophysiological mechanisms,74 the 
links between functional connectivity and clinical, cog-
nitive and behavioral traits are complex75 and should be 
interpreted with caution.

In conclusion, we have shown altered functional con-
nectivity encompassing frontal, somatomotor, visual, 
auditory, and subcortical brain nodes in patients with 
SZ in 3 different samples. Results were robust across scan 
sites, with good classification accuracies in the indepen-
dent samples. Most affected edges involved sensory nodes, 
corroborating the conception that sensory and percep-
tual processing may lie at the core of SZ pathophysiology.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin online.
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