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Abstract

Breast cancer screening provides sensitive tumor identification, but low specificity implies that a 

vast majority of biopsies are not ultimately diagnosed as cancer. Automated techniques to evaluate 

biopsies can prevent errors, reduce pathologist workload and provide objective analysis. Fourier 

transform infrared (FT-IR) spectroscopic imaging provides both molecular signatures and spatial 

information that may be applicable for pathology. Here, we utilize both the spectral and spatial 

information to develop a combined classifier that provides rapid tissue assessment. First, we 

evaluated the potential of IR imaging to provide a diagnosis using spectral data alone. While 

highly accurate histologic [epithelium, stroma] recognition could be achieved, the same was not 

possible for disease [cancer, no-cancer] due to the diversity of spectral signals. Hence, we 

employed spatial data, developing and evaluating increasingly complex models, to detect cancers. 

Sub-mm tumors could be very confidently predicted as indicated by the quantitative measurement 

of accuracy via receiver operating characteristic (ROC) curve analyses. The developed protocol 

was validated with a small set and statistical performance used to develop a model that predicts 

study design for a large scale, definitive validation. The results of evaluation on different 

instruments, at higher noise levels, under a coarser spectral resolution and two sampling modes 

[transmission and transflection], indicate that the protocol is highly accurate under a variety of 

conditions. The study paves the way to validating IR imaging for rapid breast tumor detection, its 

statistical validation and potential directions for optimization of the speed and sampling for 

clinical deployment.

Introduction

Breast cancer is the most prevalent non-skin malignancy in women in the United States, with 

more than 231 000 new diagnoses and over 40 000 deaths estimated in 2015.1 Since 

mortality is reduced by early detection, widespread population screening for breast cancer 

by mammography is recommended2 and leads to over 1.6 million breast biopsies each year.3 
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Although 80% of these biopsies are not diagnosed as cancer,4 each biopsy must be stained 

and manually evaluated by a trained pathologist.5 Pathology examinations require extensive 

analysis of tissue morphology and structure, and add cost to the evaluation.6 In addition, 

manual analysis is time consuming and patients often wait significant time periods to obtain 

a diagnosis.7 Patient stress levels, as measured by biochemical indicators (cortisol, for 

example), are significantly elevated while waiting to learn results of a biopsy, regardless of 

the eventual diagnosis.8 Therefore, efficient automated techniques for biopsy evaluation 

would provide a substantial benefit for preliminary biopsy analysis. However, at this time, 

no automated technology exists to provide initial biopsy screening or reduce pathologist 

workload.

Infrared spectroscopic imaging today9 combines both measurement of morphological 

properties and extensive information about sample biochemistry, which may be applicable 

for high-throughput pathology.10–12 Fourier transform infrared (FT-IR) imaging, in 

particular, has been widely used in a number of studies which have evaluated the spectral 

features of breast tissue, both related to clinical disease diagnosis13–15 as well as to various 

properties of breast cancer-mimicking cell cultures,16–18 lymph node involvement,19 

methods of measurement20–22 and properties of tissues,23–31 including the tumor 

microenvironment. These studies have identified spectral features that may be useful for cell 

type, receptor status or disease recognition, but have not provided a validation analysis to 

demonstrate diagnostic performance that may be used to inspire clinical translation. Two of 

the major drawbacks of older technology – slower speed and poor spatial definition – are 

being actively addressed by advances such as discrete frequency IR imaging,32 especially 

using quantum cascade lasers,33–37 and the development of high definition imaging.38–40 In 

parallel, there is a need to develop practical protocols for application to breast cancer. One of 

the goals of this study is to explore the development of translatable protocols. We especially 

note that no study has examined the potential to combine the spectral and spatial information 

in IR tissue images to develop methods for automated breast biopsy screening or disease 

diagnosis. Hence, we focus on this aspect and seek to provide a combined spatial-spectral 

protocol that can later be validated extensively.

Methods

Tissue sampling

Seven paraffin-embedded breast tissue microarrays (TMAs) were obtained from U.S. 

Biomax and thin sections were mounted on barium fluoride (BaF2) for transmission mode 

FT-IR imaging. An adjacent section of each TMA was obtained and stained with 

hematoxylin and eosin (H&E) for pathologist evaluation. The TMA employed for 

supervised classification calibration and optimization contained 30 invasive ductal 

carcinomas, 1 invasive lobular carcinoma, and 34 adjacent normal tissue sections. An 

additional adjacent section of this TMA was mounted on a reflective slide (Kevley 

Technologies) for transflection mode IR imaging. Preliminary validation was performed on a 

separate section of this TMA containing 35 invasive ductal carcinomas, 2 invasive lobular 

carcinomas, and 40 adjacent normal tissue sections. Paraffin was removed from the TMAs 

by immersion and stirring in hexane at 40 °C for 2–3 days. The disappearance of the paraffin 
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peak at 1462 cm−1 was monitored to ensure the paraffin was completely removed prior to 

image acquisition.

FT-IR spectroscopic imaging data acquisition

TMA images were collected using a Perkin Elmer Spotlight 400. Six TMA datasets were 

acquired with a 4 cm−1 spectral resolution, 2.2 cm s−1 moving mirror speed, 6.25 μm 

nominal pixel size, and 2 scans per pixel. A further validation TMA with 182 cores was 

collected at a 16 cm−1 spectral resolution with all other acquisition parameters held constant. 

An adjacent section of the calibration TMA on a reflective slide was collected by light 

transflection with all other acquisition parameters the same as the original calibration TMA. 

A NB medium apodization and undersampling ratio (UDR) of 2 were used to convert 

interferograms to single beam images. An IR background was collected each day on a clean 

area of each BaF2 slide with 120 scans. Any remaining air and water vapor contribution was 

removed using the atmospheric correction algorithm in the Spotlight software. Finally, all 

datasets were truncated to 750–4000 cm−1 for ease of handling and storage.

IR images for the 199 core validation TMA were also collected with a Varian 7000 FT-

IR/600 UMA microspectrometer with a 128 × 128 focal plane array (FPA) detector. Images 

were acquired at 8 scans per pixel and a 16 cm−1 spectral resolution with a UDR of 2. Single 

beam spectra were computed using a triangular apodization and the spectral range was 

truncated to 900–4000 cm−1 due to the lower detector cut-off. An intensity ratio was 

computed to an IR background collected at 128 scans per pixel on a blank area of the BaF2 

substrate to remove spectral features not associated with tissue.

Image processing and classification

Individual TMA core images were compiled to build a single dataset for each TMA using 

Environment for Visualizing Images (ENVI) and software written in-house with Interactive 

Data Language (IDL). A supervised pattern recognition method based on a modified Bayes' 

Rule, described in detail elsewhere,41 was used to segment image pixels as stroma or 

epithelium and segment epithelium pixels as cancer or normal. To increase computation 

speed, the spectral datasets were reduced by manual tissue spectrum examination to a set of 

89 potentially useful metrics to test in algorithm development. These spectral metrics 

include the features of ratios of absorption peak heights, peak areas normalized to amide I 

(1652 cm−1) and centers of gravity. All bands were analyzed after a simple two-point linear 

baseline correction was performed across the absorption feature. These metrics were first 

tested for cell-type classification. Spectral metric frequency distributions with 50 bins were 

computed for each metric from pixels manually selected as stroma (140 100) and epithelium 

(50 082) by comparison with H&E staining. These pdfs were used to estimate probability 

distribution functions for each metric.

These distributions were applied with the metric profile to estimate posterior probabilities 

for each pixel for each class, which were used to build a discriminant function. The metrics 

were arranged by minimum pairwise error and classifiers were built from the first metric, the 

first two metrics, the first three metrics, and so on, continuing until a classifier was built with 

all 89 metrics. Receiver operating characteristic (ROC) analysis was used to assess each 
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classifier and the change in the area under the ROC curve (ΔAUC) was computed with the 

addition of each metric to test if the metric provided useful additional information for cell 

type classification. The metrics were reordered by ΔAUC until an optimal set of metrics was 

obtained to achieve a maximum AUC with a minimum number of features. Once the metrics 

for the classification model were finalized, optimal thresholds were selected to produce 

color-coded classified images. The model was then validated on independent datasets.

Epithelium pixels were extracted using this spectral histology classification model and the 

set of 89 spectral metrics were again used to evaluate for the discrimination of cancer and 

normal pixels with spectral information alone. In addition, two methods were evaluated for 

tumor identification by spatial polling. The first method involves segmenting each TMA 

core into boxes of a specified size ranging from 1 × 1 pixel (6.25 × 6.25 μm2) to 12 × 12 

pixels (75 × 75 μm2). The epithelium fraction of each box is computed, and the percent of 

boxes above a specified epithelium threshold is calculated for each individual TMA core. 

The fractions for cancer and normal TMA cores are compared to select an epithelium 

fraction for cancer detection. Epithelium thresholds from 0.1 to 1.0 are considered, and a 

cutoff point for cancer detection is selected. The cutoff points for each threshold are used to 

build a least squares linear trendline, which becomes an operating line for tumor detection. 

An operating line for each TMA core is computed, and the corresponding y-intercept and 

slope values are plotted to evaluate separation of cancer and normal TMA cores.

A second method was developed to perform pixel-level tumor segmentation. In this 

algorithm, a separate classification model is built by the procedure described for stroma and 

epithelium segmentation to distinguish the cancer and normal epithelium pixels with spatial 
metrics. These metrics are developed for cancer classification by computing the mean and 

standard deviation of the epithelium fraction for all boxes that contain a given pixel. Boxes 

ranging in size from 4 × 4 pixels (25 × 25 μm2) to 160 × 160 pixels (1 mm2) are considered 

in order to evaluate tissue features of various sizes. Probability distributions for each metric 

are estimated from the cancer (1 030 376 pixels) and normal (181 350 pixels) epithelium 

labeled from the two class histology model. A separate classification model is built for each 

spatial metric and ROC analysis is performed to select an optimal box size for pixel-level 

cancer classification. Combinations of spatial metrics are evaluated by ROC analysis for 

pixel-level tumor detection potential. TMA core-level tumor identification for univariate and 

multivariate spatial classification models is evaluated by varying the fraction of pixels 

identified as cancer on a TMA core as a threshold for tumor discrimination. The AUC values 

for core level ROC curves are computed by the trapezoid rule,42 which is known to provide a 

conservative estimate of the true AUC value.43

Statistical analysis

Confidence bands for core level ROC curves were calculated by evaluating the standard 

error E(p) for sensitivity and specificity values (p) for individual operating points with the 

binomial approximation
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(1)

where n is the number of cancer samples when p is sensitivity and n is the number of normal 

samples when p is specificity.44 The standard error for a TMA core level AUC value is 

evaluated as

(2)

with n0 as the number of normal samples and n1 as the number of cancer samples and

These methods for calculation of the AUC and corresponding standard error do not require 

any assumptions about the distribution of the underlying populations. A confidence band or 

AUC confidence interval half-width was computed by multiplying the standard error by a 

selected z-score that corresponds to the acceptable probability of type I error, α, for tumor 

classification. A value for α was selected to reflect the level of confidence required for a 

given question. The estimated probability of a confidence interval including the true AUC is 

equal to 1 − α. Therefore, a small α value is required for cancer classification. A α value of 

0.05 and a corresponding z-score of 1.96 were used for 95% confidence interval calculation. 

Since the AUC is an estimate of the true population, the central limit theorem permits the 

assumption of normal distribution for large sampling.45 The precision of an AUC value 

estimated from a set of samples is reflected by the width of the associated confidence 

interval. These equations indicate that the width of a confidence interval for sensitivity, 

specificity and AUC are determined by the respective values for these statistics, sample size 

and acceptable α value.

Results and discussion

Classification with spectral metrics

As seen in Fig. 1A, unstained fixed tissue does not have any inherent contrast and cannot be 

readily evaluated for disease diagnosis. Standard pathology practice involves the application 

of hematoxylin & eosin (H&E) dyes (Fig. 1B).5 Hematoxylin dye is used visualize basic 

nucleic acid structures prevalent mainly, though not exclusively, in epithelial tissue lining 

breast ducts and lobules and eosin dye is used to visualize acidic protein structures mainly 

prevalent in connective stromal tissue. This lack of specificity and staining variability is 

often a barrier to the application of computational approaches.46,47 As noted in Fig. 1C, FT-

IR imaging can also provide some contrast between different types of tissue due to 
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differences in relative IR spectral absorbance between different types of breast tissue. These 

spectral differences can be used for quantitative tissue classification to obtain color coded 

images (Fig. 1D) that provide high throughput histologic information using TMAs48 and can 

even be used to simulate H&E images.49 Identification of epithelium is an important first 

step in tissue analysis as over 99% of breast tumors arise in the epithelium,50 and this tissue 

is the primary component of most breast malignancies.51

Initial classification models are developed with spectral metrics to, first, segment epithelium 

and stroma and, second, segment the epithelium pixels as cancer or normal. As seen in Fig. 

2A, spectral features for stroma and epithelium demonstrate substantial biochemical 

differences for these cell types. Average spectra are computed from manual labeling of 

epithelium (50 082 pixels) and stroma (140 100 pixels) on TMA cores in a calibration 

dataset with tissue from 40 different patients. A piecewise linear baseline is applied and a 

ratio is computed to the amide I absorbance at 1652 cm−1 to normalize for tissue sample 

thickness. While scattering from tissue is well-known to affect spectra,52–55 an analysis of 

the variance in tissue56 shows that there is a significant fraction of the spectrum that can be 

useful for analysis using a simple baseline correction. More sophisticated models for 

spectral corrections57–59 and physics-based methods60,61 are being developed that can 

potentially provide more information and will likely improve our results here. In the 

baselined spectra we note especial differences within the fingerprint region, which contains 

many overlapping spectral features prevalent in tissue.62 The region includes symmetric PO2 

stretching and CO stretching vibrational modes at 1080 cm−1, amide III protein modes 

within 1200–1338 cm−1, CH2 wagging at 1236 cm−1, asymmetric PO2 stretching at 1240 

cm−1, CH2/CH3 bending at 1400 cm−1, asymmetric CH3 bending at 1456 cm−1, as well as 

the amide II vibrational modes within 1542–1556 cm−1.63 A broad amide A vibrational 

feature at 3294 cm−1 (ref. 25) is also prominent, but we do not use the CH stretching region 

in our analysis due to additional strong variability arising from potentially residual paraffin. 

A comparison of the stroma and epithelium cell type spectra indicate that symmetric PO2 

vibrations in the DNA-rich tissue regions and CO stretching vibrations in secretory 

glycoproteins contribute a more significant relative absorbance in epithelium while 

asymmetric PO2 stretching, amide III, and CH2 wagging in the methyl side chains in 

collagen characterize the stroma IR spectrum. Clear spectral differences in these regions 

between epithelium and stroma indicate the potential for highly accurate classification.

As described in the methods section, a method for classification with spectral metrics 

provides accurate and reproducible differentiation of stroma and epithelium, as shown in 

Fig. 2B and C. This is demonstrated by the reproducible mean AUC value above 0.98 for 

both the calibration and validation TMA datasets with matched cancer and adjacent normal 

tissue samples from a set of 40 patients. Accurate histologic classification is accomplished 

with only 6 spectral metrics, as shown in the inset plots in Fig. 2B and C. Although each 

individual metric may not provide the same contribution to classification in the calibration 

and validation datasets, the AUC still reaches a maximum value in both datasets with the 

same six metrics. Notably, the classification contribution for individual metrics appears to 

vary more for epithelium than for stroma. This is reasonable, as collagen is a predominant 

component of breast stroma and has a distinct IR spectrum. Conversely, the IR spectrum for 

epithelium may vary more due to underlying physiologic conditions, for example between 
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normal and different tumor regions, which would impact the performance of individual 

specific metrics in classification. It must be borne in mind that our model assumes two 

classes, but tissue is varied and the chemical diversity may not always fit the desired 

information model. Therefore, more than a few metrics are required to account for this 

diversity, compared to two-component polymeric systems for example.64 A multi-feature 

classifier is advantageous to provide accurate and reproducible cell-type classification with 

spectral data.

Next, epithelium pixels were segmented into cancer and normal classes based on spectral 

metrics alone. The automated classification procedure was repeated with manually labeled 

epithelium from cancer (38 384) and normal (10 483) pixels as ground truth. From Fig. 2D, 

it can be seen that spectral differences are less obvious for cancer and normal epithelium. 

Although some small differences in absorbance are visible at 1400 cm−1 and 1456 cm−1, 

these distinctions are less clear than those between different cell types and may not facilitate 

efficient classification in the manner of epithelium–stroma with only spectral metrics. 

Indeed, the classification potential for spectral metrics is significantly lower for 

discriminating cancer and normal pixels, as evidenced by the cancer pixel-level AUC of 0.81 

with eight spectral metrics in the calibration data (Fig. 2E) and 0.55 with the same eight 

metric classification model on validation data from the same patients (Fig. 2F). Notably, the 

metric contributions appear to vary even more between the calibration and validation 

datasets for the cancer class than for the normal class. This may indicate that spectral 

variation is greater for cancer epithelium pixels than normal epithelium pixels. In addition, 

the AUC appears to fall below 0.5 in validation for the cancer class when more than 33 

metrics are included in the model. This analysis indicates that metrics during calibration 

optimization may have completely different properties for cancerous epithelium between 

different datasets, even when both datasets contain tissue from the same set of patients. 

Therefore, techniques to improve data quality such as computational noise reduction65 or 

other image enhancement techniques66 would likely provide only limited benefit for this 

classification problem. Given the poor performance and reproducibility of pixel-level 

classification, sample level analysis will also provide a low level of accuracy. Inaccurate 

classification results will also have wide sensitivity and specificity confidence intervals and 

AUC error estimates,43,44 and will not be useful for tumor discrimination. These data may 

also indicate the need for more complex and better spectral features, a more sophisticated 

disease model going beyond the two-class model here or it may not be possible to perform 

this segmentation with IR imaging. Instead of pursuing complex models, corrections or 

computational-heavy methods to explore the potential of IR imaging, our goal was to 

develop a rapid protocol. Complex models and time-consuming calculations are not 

conducive to this. Hence, instead of mining the spectrum with more complex methods or 

applying spectral corrections, we chose to pursue an alternate method.

Classification with spectral and spatial metrics

The classification protocol with additional information that we propose and examine in this 

manuscript involves a two-step procedure outlined in Fig. 3. In Fig. 3A, the first step shows 

a spectral pixel-level segmentation of breast stroma and epithelium, which is highly 

accurate. In the second step, shown in Fig. 3B, a spatial information strategy is incorporated 

Pounder et al. Page 7

Faraday Discuss. Author manuscript; available in PMC 2017 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on the epithelium–stromal segmentation. Computerized algorithms quantify 

epithelium content and arrangement with a technique termed spatial polling. Two algorithms 

for spatial polling are considered here. The first method involves TMA core-level spatial 

polling of a set of small tissue regions to obtain a diagnosis of cancer or normal for each 

individual core on a breast TMA. The second method involves pixel-level spatial polling of 

somewhat larger regions to obtain a diagnosis of cancer or normal for each individual pixel 

on a breast TMA. The advantages and challenges for each method are considered next prior 

to validation analysis. While there are many other spatial analyses methods available, we 

sought to develop a fast and robust method. Doubtless, more complicated methods can be 

developed and the ideas proposed here can be extended to other methods.

First, TMA core-level spatial polling was conducted by dividing each TMA core into square 

boxes of specified dimensions (pixels). The percentage of boxes in each core with an 

epithelium fraction above a select threshold was computed. To minimize errors associated 

with inappropriate selection of a tissue region for tumor diagnosis, boxes containing no 

epithelium pixels were excluded from calculations. Square boxes sizes with pixel lengths of 

1 × 1 to 12 × 12 were considered, and an 8 pixel (50 μm) box length was selected as an 

optimal size for tumor segmentation. As seen in Fig. 4A, cancer and normal cores are clearly 

separated at a wide range of epithelium fraction threshold values. A cutoff was selected for 

each epithelium threshold by the relationship

(3)

where dC is the distance of the cutoff from the mean of the cancer TMA cores, dN is the 

distance of the cutoff from the mean of the normal TMA cores, σC is the standard deviation 

for cancer TMA cores, and σN is the standard deviation for normal TMA cores. A least 

squares linear fit was computed from the individual cutoff points for each epithelium 

threshold to determine the operating line for tumor detection in Fig. 4A.

A least squares linear fit with offset and slope values was also computed from the plots for 

the fraction of 50 μm2 boxes above a selected epithelium threshold for each individual TMA 

core. Cutoff values for cancer detection for y-intercept offset (Fig. 4B) and slope (Fig. 4C) 

were varied and the sensitivity and specificity of tumor detection was evaluated. The plots in 

Fig. 4B and C indicate that both of these metrics simultaneously provide high sensitivity and 

specificity for tumor identification. To assess the potential of both of these metrics in a 

single classifier, the slope and offset were then plotted together (Fig. 4D) and an operating 

line was moved to perform ROC analysis and evaluate classification potential. From this 

plot, cancer cores appear to have a greater y-intercept offset and slope absolute value than 

normal cores. Although most cases can be distinguished by the offset variable alone, the 

slope variable appears to add additional information that is useful to achieve the best 

possible classification. An AUC of 0.98 ± 0.04 (95% CI) is achieved on the calibration TMA 

with 65 cores (31 cancer and 34 normal) using this technique (Fig. 4E). This method is 

highly sensitive to the overall morphology of the tumor and intervening stromal scales. 
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Though the technique seems to work well, the method will underestimate regions where the 

tumor may be close to the edge. This will result in designation of pixels in sparse tumor 

regions or edges as non-cancerous and in a smaller spatial extent of tumor than present. 

Therefore, other techniques of spatial polling were evaluated for cancer classification.

A second spatial polling technique was considered to accomplish pixel-level cancer and 

normal epithelium segmentation. Again, the method was developed for histology 

classification with spectral metrics with a second-level set of spatial metrics to evaluate 

epithelium content and distribution. In this method, we propose a computational selection of 

boxes ranging in size from 16 × 16 pixels to 160 × 160 pixels. This range was selected to 

evaluate regions varying in size from the approximate mean diameter of a normal breast 

duct67 to an area approaching the size of a typical TMA core. A somewhat larger area is 

required for the pixel-level spatial polling than the core-level spatial polling from Fig. 4 

because the metrics are computed separately for each individual pixel and are not averaged 

over an entire TMA core. The fraction of pixels in each box classified as epithelium was 

determined, and an average and standard deviation for the epithelium fraction was computed 

for each pixel from all boxes of a given size containing that pixel. These pixel-level 

computations were stored in an image metric vector with a format similar to the spectral 

metric vector used for histology classification. To evaluate the relative classification 

potential for spatial metrics, all pixels labeled as epithelium by histology classification 

considered as ground truth information with 1 030 376 cancer pixels and 181 350 normal 

pixels. Epithelium pixels were divided into cancer and normal classes by applying the same 

automated classification algorithm used to segment stroma and epithelium pixels but now 

with spatial metrics. Pixel-level ROC analysis was then performed for each class. Cancer 

and normal classification images were obtained at the operating point for each class where 

the difference between the fraction of pixels correctly and incorrectly classified was 

maximized. TMA core-level tumor identification was then accomplished by selecting an 

appropriate fraction of epithelium pixels on a TMA core labeled as cancer in the 

classification image as a threshold to diagnose the entire TMA core as cancer. This threshold 

was varied to produce an ROC curve to evaluate overall TMA core-level cancer 

classification potential.

To determine an appropriate region for pixel-level spatial polling, a single metric cancer and 

normal pixel-level classification model was developed for each box size metric and the area 

under the ROC curve (AUC) was plotted separately for each classifier. The plot for AUC vs. 

box size for 16 × 16 pixels to 160 × 160 pixels is displayed in Fig. 5A. The plot and images 

in this figure demonstrate that tumor identification is strongly influenced by the size of the 

spatial polling region. When a very small region of 16 × 16 pixels is considered, only a few 

cancer epithelium pixels are correctly classified and some normal pixels are misidentified as 

cancer (Fig. 5B). Clearly, this low sensitivity and specificity is not suitable for tumor 

detection. Therefore, a larger region must be considered for reasonable tumor identification. 

When a region greater than 48 × 48 pixels is considered the core-level classification AUC 

appears to plateau at a high value around 0.95 ± 0.06 (95% CI). A classified image for a 

spatial metric in this range with a box size of 80 × 80 pixels (Fig. 5C) indicates that a good 

separation of cancer and normal epithelium is achieved with some pixels labeled as cancer in 

29 of 31 tumor TMA cores and normal pixels labeled as cancer in only 3 of 34 adjacent 
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normal TMA cores. The core-level AUC begins to decline at a box size of 128 × 128 pixels, 

primarily due to a reduced sensitivity to small tumor regions in cancer TMA cores. A 

classified image for spatial polling with a box size of 160 × 160 pixels indicates that no 

pixels are labeled as cancer in 6 of 31 tumor TMA cores (Fig. 5D). These cores have small 

or more diffuse tumor regions that may not be detected when only a relatively large area is 

considered by spatial polling. This loss in classification accuracy with spatial polling at large 

regions indicates that both epithelium structure and content are important for TMA core-

level tumor discrimination, as a classifier based only on epithelium content would likely 

produce asymptotic behavior after obtaining a maximum AUC value. Conversely, pixel-level 

classification accuracy increases at a relatively constant rate as the box size increases and 

levels off as the area considered begins to approach the size of a 1.5 mm diameter TMA 

core. The pixel-level classification AUC begins to reach a plateau at a box size of 120 × 120 

pixels. For a pixel at the center of the TMA core with each 750 × 750 μm2 box containing 

this pixel included a total region of approximately 2.25 mm2 is actually considered by 

spatial polling, which encompasses the entire TMA core. Therefore, the pixel-level 

classification AUC approaches the core-level AUC when box sizes above 120 × 120 pixels 

are employed for spatial metric computation. Pixel-level and core-level classification do not 

follow the same trend for AUC vs. box size because different TMA cores have dramatically 

different numbers of epithelium pixels. Therefore, not all epithelium pixels are weighted 

equally in core-level ROC analysis.

While this simple approach yields encouraging results, multiple scales of spatial 

classification and morphologic diversity were evaluated by adding additional types of 

metrics and combining metrics from different box sizes. Metrics of the mean and standard 

deviation of the fraction of pixels classified as epithelium in all boxes of a selected size 

containing a given pixel were computed for box sizes ranging from 4 × 4 pixels (25 μm2) to 

160 × 160 pixels (1000 μm2). This range was selected to evaluate areas that contain only a 

few cells to an entire TMA core. These metrics were combined to obtain an 80-metric image 

vector with fraction mean and standard deviation metrics for a square box length of pixels 

4,8,16 and so on up to 160. Cancer TMA cores are expected to have higher values for 

fraction mean metrics since a large mass of epithelium often signifies a tumor. Conversely, 

normal TMA cores are expected to have higher values for fraction standard deviation metrics 

since normal breast tissue contains ducts and lobules lined with a thin layer of epithelium. 

The metrics were sorted by the average estimated error from frequency distributions and 

used to build a classifier with 1 metric, 2 metrics, 3 metrics, and so on until all 80 metrics 

were included. A total of 80 classifiers were built, and ROC analysis was performed and an 

AUC value was computed for each classifier. The ΔAUC value was computed with the 

addition of each spatial metric and the metrics were re-sorted to select a set that provides 

optimal classification with a minimal number of spatial metrics. To evaluate the contribution 

of spatial metrics when only a smaller area of tissue is considered, this classification 

optimization was repeated with a smaller 40-metric vector containing fraction mean and 

standard deviation metrics for box sizes ranging from 4 × 4 pixels (25 μm2) to 80 × 80 pixels 

(500 μm2).

Pixel- and core-level ROC analysis for each classifier indicates that adding additional mean 

and standard deviation metrics has a varying impact on AUC. From the 40-metric vector 
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with a maximum 80 × 80 pixel region an optimal classifier was obtained with 2 spatial 

metrics: an 80 × 80 pixel (500 μm2) mean and a 16 × 16 pixel (100 μm2) standard deviation. 

In Fig. 6A, cancer and normal pixel-level ROC curves are compared before and after the 

addition of the standard deviation spatial metric. The pixel-level cancer AUC value is 

increased from 0.87 to 0.9 and the pixel-level normal AUC value is decreased from 0.91 to 

0.88 to provide a minimal overall increase of 0.001 in mean AUC with the addition of the 

standard deviation metric. The core-level AUC value is reduced from 0.94 ± 0.06 (95% CI) 

with the single metric classifier with an 80 × 80 pixel mean (Fig. 6B) to 0.92 ± 0.07 (95% 

CI) with the two metric classifier with an 80 × 80 pixel mean and a 16 × 16 pixel standard 

deviation (Fig. 6C). While this change is not statistically significant, it does indicate that 

these additional standard deviation metrics may not be independently beneficial for core-

level tumor identification. The discrepancy between pixel and core level classification is 

explained by examining TMA classified images and the shape of the ROC curve with and 

without the additional spatial metrics. When the mean fraction metric is considered alone, on 

most normal cores no pixels are classified as cancer. However, the addition of the standard 

deviation metric appears to increase the number of pixels classified as cancer on both tumor 

and normal TMA cores due to spatial heterogeneity. This small increase in non-specific 

pixels classified as cancer in normal TMA cores is responsible for the observed reduction in 

specificity on the core-level ROC curve and corresponding reduction in AUC with the 

addition of the standard deviation spatial metric.

Multi-level classification may provide advantages for core-level tumor detection when a 

larger tissue area is considered. When the entire 80-metric vector was employed to build an 

optimal classification model, 3 metrics were selected. These metrics include fraction mean 

metrics for box sizes of 160 × 160 pixels (1000 μm2), 152 × 152 pixels (950 μm2), and 148 

× 148 pixels (925 μm2). These additional metrics provide a minimal increase from 0.906 to 

0.908 in pixel-level cancer AUC, from 0.952 to 0.953 in pixel-level normal AUC, and from 

0.929 to 0.930 in pixel-level overall mean AUC. These increases in AUC are smaller than 

those observed when the smaller 80 × 80 pixel region was considered in spatial polling 

because the initial pixel-level AUC values with the single 160 × 160 mean metric classifier 

are greater, and may approach the maximum AUC value that can be attained with the 

information in these spatial metrics. The estimated core-level AUC was also increased by 

0.01 from 0.88 ± 0.09 (95% CI) to 0.89 ± 0.08 (95% CI). The width of the confidence 

interval was reduced due to the increase in AUC,43 even though the same set of 31 cancer 

and 34 normal samples were used for both analyses. However, the forward metric selection 

procedure employed in this classification model is not exhaustive and does not consider all 

potential metric combinations, and this selected model may not be the only useful model for 

classification with this spatial polling region.

To understand the influence of mean fraction metrics of different sizes, a classification 

model was built with the 160 × 160 pixel mean and 16 × 16 pixel standard deviation spatial 

metrics. With this classification model, the cancer pixel-level AUC was increased from 

0.906 to 0.915, the normal pixel-level AUC was reduced from 0.95 to 0.92, and the mean 

pixel-level AUC was reduced from 0.93 to 0.92. The pixel-level ROC curves in Fig. 6D 

indicate that these changes in AUC with the multivariate classifier are not substantial for 

pixel-level cancer classification. Conversely, the core-level AUC was increased from 0.88 
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± 0.09 (95% CI) with a single metric classifier with a 160 × 160 mean fraction (Fig. 6E) to 

0.93 ± 0.07 (95% CI) with a 2 metric classifier with a 160 × 160 mean fraction and a 16 × 16 

standard deviation (Fig. 6F). Although this increase is not statistically significant due to the 

limited number of samples included in the training analysis, the new classifier does appear to 

provide a substantial benefit for core-level tumor classification when large regions are 

considered. This change in AUC is reflected in the classified images and shape of the ROC 

curve. As noted earlier, classification with a single 160 × 160 fraction mean metric results in 

6 missed tumors out of 31 total cancer TMA cores in the calibration dataset. This limitation 

in sensitivity is reflected in the TMA core-level ROC curve with this single metric classifier 

in Fig. 6E. When the optimal multivariate classifier with this metric is employed, pixels are 

labeled as cancer in 30 out of 31 cancer TMA cores. This increase in sensitivity is reflected 

in the multivariate core-level ROC curve in Fig. 6F and results in the increased observed 

AUC value. A previous study of 432 breast ducts with necrosis from 26 cancer patients and 

520 ducts from 26 normal autopsy samples indicated that the ducts from advanced tumors 

with intraductal necrosis were rarely smaller than 240 μm in diameter while ducts from 

normal samples were rarely larger than 180 μm in diameter.67 Therefore, this spatial metric 

may provide important information for pixel-level tumor discrimination at a single duct 

scale. As indicated in Fig. 5, a spatial metric computed from this spatial area alone does not 

provide accurate tumor discrimination. However, when it is combined with spatial polling 

over larger areas of tissue it may provide useful additional information for tumor 

classification.

After consideration of a broad range of spatial regions and multiple combinations of spatial 

metrics, a single spatial polling classifier was selected for extensive validation analysis. 

Although a maximum pixel-level AUC is only achieved by spatial polling over areas 

approaching the size of a TMA core, optimal core-level classification can be achieved with 

consideration of a much smaller area. Since high density validation TMAs contain cores of 

diameter 1 mm or smaller, TMA core-level validation analysis was performed with the 

smallest region to produce an estimated core-level AUC of at least 0.95 on the calibration 

dataset. Therefore, a spatial polling region of 52 × 52 pixels (325 μm2) was selected for 

farther evaluation. This area is reasonable, as a study of 1285 breast ducts from 26 breast 

ductal carcinoma patients found a mean diameter of 349 μm.67 Therefore, a region of this 

size with a high fraction of epithelium should encompass a tumor. Models with this metric 

were considered but rejected when the TMA core-level AUC was not increased.

Tumor classification validation and sample size analysis

The expected AUC and desired confidence interval half-width were considered in selecting 

the appropriate sample size for validation. For a binomial problem of unknown sample size 

with 2 classification options, e.g. cancer and normal, the AUC variance can be estimated as

(4)
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where θ is the predicted AUC value.68 This variance can be employed with an acceptable 

half-width for a confidence interval (L) and a given total sample size (n) to calculate a 

corresponding z-score by the equation

(5)

The p-value associated with the computed z-score is then obtained from tabulated z tables or 

software packages. In this manner, the z-score will increase linearly with L and the 

corresponding p-value will increase until it approaches a value of one. This p-value 

represents the probability that the true AUC is greater than or equal to the lower bound of 

the confidence interval. For example, for an AUC of 0.95 ± 0.02, a p-value of 0.95 would 

indicate that an AUC of at least 0.93 will be obtained in 95 out of 100 validation studies with 

the similar sampling. Therefore, a confidence of 0.95 can be assigned to the interval 

obtained in that study. The confidence assigned to an AUC value depends upon both the 

estimated AUC value θ and the sample size n. This is reflected in eqn (5), in which the zα/2 

score and corresponding p-value increase with n and decrease with θ. This is expected, since 

populations with less overlap in metric distribution will be more easily separated and studies 

with a larger sample size will produce a smaller standard error. This trend is reflected in Fig. 

7, where confidence increases with sample size for a given θ until it reaches a maximum 

value near 1. In this plot an interval half width L of 0.02 is assumed for all zα/2 and 

confidence calculations. If the expected AUC value is known from calibration studies, an 

appropriate sample size n can be selected where the p-value begins to approach 1. For an 

estimated θ of 0.95, the confidence levels off near a value of 1 with a sample size of n = 700. 

Therefore, our methods predict the number of samples required for definitive validation in 

addition to developing the protocol itself. The issue of sample size has received some 

attention as it is a critical aspect of the development of protocols. While at least one previous 

study examined the effect of sample size theoretically,69 the integration of classification and 

statistical validation can be jointly accomplished in the manner above. The combination of 

spectral histology and spatial polling for tumor identification translates effectively to 

independent validation samples, as demonstrated by the consistent high AUC values for 

validation. Although the algorithm is trained exclusively on TMA cores of 1.5 mm in 

diameter, it translates directly to smaller cores of 1 mm diameter. We have further tested the 

samples on TMAs that contained cores of sizes as small as 1 mm as well as surgical 

resections. A detailed study of the validation and the limitations of this study is beyond the 

scope here and will be analyzed in a future report.

Applications for clinical translation

To implement this technique efficiently in a clinical setting, rapid data acquisition and 

analysis is necessary as classification of IR datasets can be performed in a matter of minutes. 

The “standard” data collection parameters of 4 cm−1 spectral resolution, 2 scans per pixel, 

and a 6.25 μm pixel size dictate an acquisition time of at least 1.5 hours to collect data for a 

1.5 mm TMA core. These parameters, in our experience, provide an excellent trade-off 
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between data quality and time of acquisition while providing accurate biomedical 

segmentation for other tissues. As breast tumors are normally evaluated in a clinical setting 

on much larger biopsy surgical resections, these data collection parameters are not 

reasonable for clinical implementation with conventional IR imaging instrumentation. One 

route to increasing the rate of data acquisition can be to reduce the required signal to noise 

ratio (SNR) or coarsen spectral resolution from these levels.70 From the trading rules for IR 

spectroscopy, data collection time decreases linearly with spectral resolution and in quadrate 

with SNR,71 trends that also hold for IR imaging.72,73 In addition, a different hardware 

configuration using a FPA detector can be employed for rapid data acquisition.74,75 The 

potential for each of these options is evaluated next in this manuscript to assess the impacts 

on single pixel spectra, spectral histology classification and spatial pathology classification. 

Qualitative image evaluation and quantitative ROC analysis were employed to determine the 

classification potential with reduced spectral quality and detail in IR image datasets.

In practice, a reduction in SNR can be accomplished by decreasing the number of scans per 

pixel required for data acquisition. To evaluate the potential of classification on high noise 

data, random Gaussian noise was added to one validation dataset and spectral and spatial 

classification for the original dataset and the dataset with noise added were compared to 

assess spectral histology and spatial pathology classification. The RMS noise for 

background pixels was estimated as 0.001 before adding noise and 0.016 after adding noise. 

When individual pixel spectra without and with added noise were compared, the added noise 

clearly obscured many important features within spectra, as shown in Fig. 8A. This is 

particularly apparent in the fingerprint region, which contains many of the key metrics used 

in the histology model to segment stroma and epithelium. This loss in spectral quality is 

reflected in the histology classification ROC analysis. In Fig. 8B, it can be seen that the 

AUC value for stroma is reduced from 0.99 to 0.95 and the AUC value for epithelium is 

reduced from 0.98 to 0.88 with added noise. Since a large number of pixels (30 140 stroma 

and 20 019 epithelium) are used in validation ROC analysis these changes are statistically 

significant. Notably, the epithelium AUC appears to be more adversely effected by noise 

than the stroma AUC. A comparison of classified histologic images before and after the 

addition of noise in Fig. 8E and F, respectively, indicates that randomly distributed 

epithelium pixels are misclassified as stroma. This reduction in epithelium sensitivity is the 

primary cause for the drop in the epithelium AUC value. This may be due to the epithelial 

spectra, consisting of a small set of broadly distributed peaks, leading to a higher apparent 

absorbance that starts to overlap with the stromal values. Conversely, the stroma spectrum 

appears more similar to collagen, with a larger set of more overlapping narrow peaks and an 

increase in values does not affect classification and a decrease in values folds into the tails of 

the lower noise distributions. By adding random noise, the epithelial spectra become more 

similar to stromal spectra, which would lead to random misclassifications of epithelium 

pixels as stroma. Since these misclassification events are random instead of systematic, both 

histology class images correspond reasonably well with H&E staining (Fig. 8D).

Conversely, the core-level tumor diagnosis AUC value only decreased from 0.97 ± 0.04 

(95% CI) for the original dataset to 0.93 ± 0.06 (95% CI) for the dataset with added noise. 

As this change is not statistically significant, spatial polling can be performed on low SNR 

data without a statistically significant loss in classification potential. The ROC curve in Fig. 
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8C indicates that reasonable cancer detection sensitivity and specificity are achieved in the 

high noise dataset. A comparison of the classified images before and after the addition of 

noise indicates that the loss in AUC is due to a reduction in sensitivity, which may be a 

concern for cancer classification. However, most of this loss in sensitivity occurs near 

epithelium boundary pixels, as evidenced by the classification images to distinguish cancer 

(red) before and after adding noise in Fig. 8G and H, respectively. Therefore, large tumor 

regions can still be readily identified in high noise datasets.

Next, spectral resolution was evaluated for its effect on the spectral and spatial classification 

potential. Previous studies have demonstrated by simulation that a coarser spectral resolution 

of 16 cm−1 can be sufficient for histology classification.70,76,77 This could potentially 

decrease data collection time by a factor of 64 due to the dual benefit of collecting fewer 

points and more light throughput per spectral element. Hence, we tested our approach for 

histology and pathology classification on two datasets acquired at a 16 cm−1 spectral 

resolution. The first dataset was acquired at 4 cm−1 and 16 cm−1 spectral resolutions on a 16 

× 2 linear array detector and then at 16 cm−1 on a separate IR imaging instrument with a 128 

× 128 FPA detector. The second dataset was acquired at only a 16 cm−1 spectral resolution 

on the linear array detector. This dataset was employed for validation of classification from 

rapid image acquisition. A spectrum from a pixel (stromal) was first examined from an 

image collected at 4 cm−1 with the linear array detector, at 16 cm−1 with the linear array 

detector, and at 16 cm−1 with the FPA detector in Fig. 9A. Since biomedical spectra are 

typically complex mixtures, many of the broad spectral features remain apparent at the 

coarser spectral resolution. However, some finer spectral features apparent in the 4 cm−1 

spectrum are less obvious in the 16 cm−1 resolution spectra. Notwithstanding, the 16 cm−1 

spectra collected with the linear and focal plane array detectors appear to provide similar 

information. These observed spectral differences, however, are not important in themselves 

and need to be evaluated in the context of histologic classification. Classification of an IR 

image collected at a 4 cm−1 spectral resolution in Fig. 9D provides similar information to 

H&E staining in Fig. 9C. However, when classification is repeated on images collected at a 

16 cm−1 spectral resolution with a linear array detector (Fig. 9E) and a FPA (Fig. 9F) there 

appears to be a bias towards epithelium classification. This may be attributed to the reduced 

definition of some stroma spectral features associated with collagen in the spectra collected 

at a 16 cm−1 resolution. Nevertheless, in many cores the observed classification of images 

collected at a 4 cm−1 and a 16 cm−1 spectral resolution is relatively similar. The robust 

nature of the cell type classification can be attributed to the types of metrics employed in 

classification. The peak heights and ratios are relatively consistent as long as the full width 

at half maximum (FWHM) value remains unchanged. The peak area and center of gravity 

metrics are also not highly impacted by small changes in peak shape or location.70 Finally, 

many classified TMA cores appear similar when acquired at a 16 cm−1 spectral resolution 

with either the linear array or the FPA detector. Therefore, the spectral classification 

technique is broadly applicable across different spectral resolutions and IR imaging 

instruments.

Despite some differences in spectral histology, core-level pathology classification appears to 

be reproducible across different spectral resolutions and IR imaging instruments. Spectral 

histology images were classified by spatial polling to segment epithelium pixels as cancer or 
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normal. Observed differences in pathology classification of the IR images collected at 4 

cm−1 (Fig. 9G), at 16 cm−1 (Fig. 9H), and at 16 cm−1 with the FPA detector (Fig. 9I) follow 

the pattern of observed differences in histology classification, with the epithelial pixels in the 

section with more stroma from the 4 cm−1 IR image misclassified as normal due to the 

increased stromal content. In addition, minimal differences were observed in cancer 

identification between the 16 cm−1 images collected with different instruments. The square 

pixel size for the FPA is somewhat smaller, with a length 5.5 μm instead of 6.25 μm. 

Therefore the estimated box area on the FPA image is 286 × 286 μm2, which is somewhat 

smaller than the 325 × 325 μm2 area considered on all other images collected with the linear 

array detector. However, the core-level tumor detection ROC analysis in Fig. 9B on the 

image acquired with the FPA still appears to be highly accurate, with an AUC of 0.92 ± 0.04 

(95% CI). Classification at a 16 cm−1 spectral resolution is confirmed on an additional 

validation TMA with 180 samples. Pixel-level ROC analysis for stroma and epithelium 

histology segmentation in Fig. 10A provides quantitative evidence of reproducible histology, 

with an AUC of 0.93 for epithelium and 0.96 for stroma. The small reduction in AUC for 

epithelium is due to a loss in specificity, which confirms the previous observation that some 

stromal pixels are mislabeled as epithelium. However, the histology AUC values for both 

classes are still acceptable. Next, core-level cancer detection ROC analysis was performed to 

assess tumor identification. From the plot in Fig. 10B, high sensitivity and specificity were 

achieved on this dataset with an AUC of 0.95 ± 0.03 (95% CI). These results indicate that 

data collection at a coarser 16 cm−1 spectral resolution is sufficient to achieve automated cell 

type classification and tumor detection in breast tissue.

To achieve cost-effective imaging in a clinical setting, sample preparation expenses must 

also be minimized. All evaluations to this point in this study have been performed on images 

collected by light transmission, which generally provides the best quality datasets. Other 

studies have reported using glass slides,78 which involve a trade-off between practicality and 

reduction in spectral wavelength bandpass, or reflective glass slides, which require 

transflection model imaging. Another alternative is to use attenuated total reflection mode 

sampling,79 which can offer higher spatial resolution80 but requires good contact with the 

sample that can be cumbersome for translation. To be compatible with clinical workflow as 

well as obtain the full spectrum, we chose to evaluate the approach using thin sections 

deposited on reflective glass slides. An adjacent section of the calibration TMA was placed 

on a reflective slide and images were acquired by light transflection with all other data 

collection parameters the same as transmission imaging. Transflection induced changes in 

spectra are well known,81,82 but there is emerging evidence to demonstrate effective 

classifications despite these effects.83 Spectral histologic classification was again performed 

to segment stroma and epithelium from this data set. Examination of classified images of a 

TMA core collected by transmission (Fig. 11D) and transflection (Fig. 11E) demonstrate 

similar classification in both datasets and reasonable correlation with H&E staining (Fig. 

11C). Pixels were then labeled on the same cores as the calibration TMA, with 140 899 

stroma pixels and 50 393 epithelium pixels manually annotated as a gold standard. Pixel-

level histology ROC analysis was then performed to provide a quantitative assessment of the 

classification accuracy. An AUC of 0.99 was obtained for epithelium and 0.98 was obtained 

for stroma in transflection datasets. From the pixel-level AUC plots in Fig. 11A a minimal 
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reduction in AUC is observed between the transmission and transflection images. These 

small differences can likely be attributed to optical effects and changes in SNR due to the 

double-pass nature of the measurement transflection imaging. Likewise, transmission and 

transflection images produce similar tumor identification. Pathology classified images for a 

single TMA core collected by transmission (Fig. 11F) and transflection (Fig. 11G) 

demonstrate that most epithelium pixels are correctly labeled as cancer in both images. This 

observation is confirmed by core-level ROC analysis on 75 samples in Fig. 11B with an 

AUC of 0.93 ± 0.06 (95% CI). While slightly lower than the transmission AUC of 0.95 

± 0.06 (95% CI), these results are not statistically different. Therefore, accurate tumor 

identification is possible by transflection image, spectral histology classification, and spatial 

pathology classification. Since our analysis is not based on complicated spectral analysis, 

rather on a simple spectral and spatial analysis, we anticipate that small changes in known 

confounding variables such as sample thickness will not have a significant impact. However, 

a comprehensive test needs to be conducted to quantify the effect, if any, of such changes.

Conclusions

Combining FT-IR imaging, spectral histology classification, and spatial pathology 

classification is demonstrated to provide automated, accurate, and reproducible tumor 

identification. Each pixel is first labeled as stroma or epithelium using spectral recognition at 

the single pixel level; subsequently, epithelium pixels are labeled as cancer or normal by 

spatial polling based upon epithelium content and distribution. Robust classification is 

demonstrated in a definitive validation study. Options are considered for efficient clinical 

translation, including classification of data with increased noise or reduced spectral 

resolution. Tumor classification is also demonstrated on images collected with a FPA 

detector and on inexpensive reflective glass slides. The data demonstrate that a practical 

protocol for rapid breast cancer identification is possible and the various tradeoffs in 

speeding up or reducing costs for clinical translation. Validation of this protocol and 

advances in instrumentation for rapid data acquisition can lead to a practical solution for 

breast cancer detection on biopsy samples.
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Fig. 1. 
Two-class breast histology. (A) Minimal tissue and tumor characteristics are visible on 

unstained tissue. (B) Stroma and epithelium are visible on tissue stained with hematoxylin 

and eosin (H&E) dyes. (C) Image of tissue absorbance, as per color bar scale below the 

image, of unstained tissue at 3294 cm−1 highlights differences in tissue, especially between 

stroma and epithelium. (D) Quantitative spectral data permits automated segmentation of 

stroma and epithelium, as noted by the color code below the image, without dyes or contrast 

agents. The scale bar represents the 1.5 mm diameter of a single core on this TMA.
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Fig. 2. 
Automated histology and pathology using only spectral metrics. (A) Average spectra for 

stroma and epithelium demonstrate clear biochemical differences between these cell types. 

(B) Spectral metrics provide accurate histologic segmentation of stroma and epithelium with 

AUC values of ∼1 for each tissue class with only 6 metrics. (C) This classification is 

reproducible in validation on separate tissue samples. (D) Average spectra for cancer and 

normal epithelium indicate biochemical changes are less obvious in disease development. 

(E) ROC analysis indicates that spectral metrics demonstrate reduced discrimination in 

cancer and normal epithelium pixels with a maximum cancer pixel-level AUC of only 0.81. 

(F) Spectral metrics do not provide reproducible pathology discrimination, as demonstrated 

by a low cancer pixel-level AUC of 0.55 in validation samples.
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Fig. 3. 
Development of automated breast histopathology with spectral and spatial data. (A) Spectral 

histologic classification was performed with supervised pattern recognition by acquiring an 

IR imaging dataset of multiple samples from a TMA and comparing images at frequencies 

of known biological significance with H&E staining, the current gold standard in pathology. 

A large set of pixels were manually selected to represent the two tissue classes [stroma, 

epithelium]. Frequency distributions for the two classes for each important spectral feature 

were computed and used to classify individual pixels. After calibration of the two-class 

histology model additional validation TMA dataset images were automatically classified 

without any operator intervention. (B) Spatial information from resulting histologic images 

was used for pathologic classification by extraction of epithelium pixels and computational 

pixel-level spatial polling. Resulting spatial metrics were used as the input for the supervised 

classification procedure, used previously for histology analysis, to segment epithelium pixels 

into cancer and normal classes.
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Fig. 4. 
Tumor TMA core segmentation by spatial polling. (A) A TMA core was divided into 8 × 8 

pixel (50 μm2) boxes and the fraction of boxes with epithelium content above a set of 

thresholds for each TMA core was computed. The mean value for cancer and normal classes 

was computed, and error bars represent standard deviation. An operating line was obtained 

for tumor TMA core classification. (B) A linear fit was calculated for each TMA core and 

the y-intercept offset cutoff for cancer detection was varied to assess classification sensitivity 

and specificity with this variable. (C) The slope cutoff for cancer detection was also varied 

to assess classification sensitivity and specificity with this variable. (D) A scatter plot of 

offset vs. slope absolute value for each TMA core demonstrates the contribution of each 

metric to tumor core identification. (E) The ROC curve indicates near-perfect tumor 

classification. The area between the dotted lines represents a 95% confidence region for the 

mean value.
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Fig. 5. 
Automated pathology with spatial metrics. (A) A plot of AUC vs. square box length in 

pixels indicates that accurate TMA core-level classification can be achieved at a range of 

box sizes and that pixel-level classification becomes more accurate as the box size increases. 

Error bars for the core-level AUC values represent standard error. (B) A classified image 

from a 16 × 16 pixel box size indicates low sensitivity when only a small spatial 

neighborhood is considered. Red represents pixels classified as cancer and blue represents 

pixels classified as normal. The notation [C, N] denotes [cancer, normal] samples as judged 

by pathologist review. (C) A classified image from an 80 × 80 pixel box size indicates 

increased sensitivity with high specificity when a larger spatial neighborhood is considered. 

(D) A classified image from a 160 × 160 pixel box size (1000 μm2) indicates reduced 

sensitivity when a spatial area larger than the tumor area in some TMA cores is considered. 

The scale bar represents a 1.5 mm diameter of an individual core on this TMA.
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Fig. 6. 
Classification with multiple types of spatial metrics. (A) ROC analysis for multiple 

classification models for pixel-level cancer and normal segmentation using metrics 

computed from a box size range of 4 × 4 pixels to 80 × 80 pixels demonstrates some 

improvement in pixel-level cancer sensitivity with multivariate classification. (B) ROC 

analysis for core-level classification with a single metric of mean fraction for an 80 × 80 box 

indicates accurate overall tumor identification. (C) Core-level specificity is somewhat 

reduced with the addition of a standard deviation spatial metric for this 80 × 80 box size 

classifier. (D) ROC analysis for univariate and multivariate classification models for pixel-

level cancer and normal segmentation using metrics computed from a box size range of 4 × 

4 pixels to 160 × 160 pixels demonstrates some improvement with multivariate 

classification. (E) ROC analysis for core-level classification with a single mean fraction 

metric for a 160 × 160 box indicates reduced sensitivity in tumor detection. (F) Core-level 

sensitivity is improved with the addition of a standard deviation metric to this 160 × 160 box 

size spatial polling classifier. The areas between the dotted lines on the core-level ROC 

curves represent 95% confidence regions.
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Fig. 7. 
Prediction of sample size for a potential validation study. Confidence in the AUC value 

shows a variation with the value of the AUC and the sample size for an interval of half-width 

0.2 at a range of AUC values. Confidence increases with both AUC and sample size and the 

precise sample size needed can be read from the chart.
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Fig. 8. 
Classification with reduced SNR. (A) A single pixel spectrum (epithelial) from the original 

dataset and the dataset with noise added demonstrates reduced visibility of spectral features, 

particularly in the fingerprint region. (B) Pixel-level segmentation accuracy of stroma and 

epithelium is decreased in high-noise data, but reasonable cell-type classification is still 

possible. (C) ROC analysis indicates that reasonable core-level tumor classification is 

possible with the addition of noise to the dataset. The area between the dotted lines 

represents bounds for a 95% confidence region. (D) H&E staining, (E) histology 

classification and (F) pathology classification by spatial polling on the original dataset 

indicate that this sample contains a dense invasive epithelial tumor. (G) This core 

classification from the dataset with noise added indicates some reduction in epithelium 

detection. (H) Tumor detection is also somewhat less sensitive in the core with noise added.
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Fig. 9. 
Classification with a linear array and focal plane array detector with low resolution data. (A) 

A single-pixel stroma spectrum from images acquired at a 4 cm−1 spectral resolution with a 

linear array detector, 16 cm−1 spectral resolution with a linear array detector, and a 16 cm−1 

spectral resolution with a FPA detector indicate some spectral changes associated with 

spectral resolution but minimal spectral variation associated with the detector. (B) ROC 

analysis indicates that accurate core-level classification is achieved at a 16 cm−1 spectral 

resolution with a FPA detector. (C) An epithelium tumor is detected by conventional H&E 

staining. (D) An IR image of a single TMA core collected at a 4 cm−1 spectral resolution 

with a linear array detector demonstrates epithelium (green) and stroma (magenta) 

segmentation that is consistent with H&E staining. (E) An IR image of this TMA core 

collected at a 16 cm−1 spectral resolution with a linear array detector demonstrates some 

additional pixels classified as epithelium. (F) An IR image of this TMA core collected at a 

16 cm−1 spectral resolution with a FPA detector demonstrates similar classification to the 

image collected at 16 cm−1 with the linear array detector. (G) Pixel-level classification 

segments the epithelium pixels as cancer (red) or normal (blue) from the 4 cm−1 histology 

classified image. (H) Somewhat more epithelium pixels are identified as cancer from the 16 

cm−1 image collected with the linear array. (I) The 16 cm−1 image collected with the FPA 

Pounder et al. Page 29

Faraday Discuss. Author manuscript; available in PMC 2017 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detector provides similar tumor identification as the image collected with the linear array 

detector.
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Fig. 10. 
Validation at a course spectral resolution. (A) Pixel-level segmentation of epithelium and 

stroma is demonstrated on a 180 patient TMA collected at a 16 cm−1 spectral resolution. (B) 

ROC analysis indicates that accurate core-level cancer detection is also achieved on this 

dataset.
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Fig. 11. 
Validation of transflection-mode imaging data. (A) Pixel-level ROC analysis indicates 

similar histologic classification accuracy is achieved in transmission and transflection 

images. (B) Core-level ROC analysis indicates that transflection images can be accurately 

classified to identify tumors. The area between the dotted lines represents a 95% confidence 

region. (C) H&E staining, (D) transmission histology, and (E) transflection histology images 

demonstrate similar cell-type segmentation. Green labels epithelium and magenta labels 

stroma as in previous images. (F) Transmission and (G) transflection images demonstrate 

similar patterns of tumor detection. Red labels cancer and blue labels normal epithelium 

pixels, as noted previously.
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