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Using Petri Net Tools to Study Properties and Dynamics of
Biological Systems

MOR PELEG, PHD, DANIEL RUBIN, MD, MSC, RUSS B. ALTMAN, MD, PHD

A b s t r a c t Petri Nets (PNs) and their extensions are promising methods for modeling and simulating biological
systems. We surveyed PN formalisms and tools and compared them based on their mathematical capabilities as
well as by their appropriateness to represent typical biological processes. We measured the ability of these tools to
model specific features of biological systems and answer a set of biological questions that we defined. We found
that different tools are required to provide all capabilities that we assessed. We created software to translate
a generic PN model into most of the formalisms and tools discussed. We have also made available three models
and suggest that a library of such models would catalyze progress in qualitative modeling via PNs. Development
and wide adoption of common formats would enable researchers to share models and use different tools to
analyze them without the need to convert to proprietary formats.
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Introduction
With the exponential growth in the volume of biological data,
it is becoming extremely important to integrate and organize
the data into coherent descriptive models that portray system
behavior. Such models can shed insight into complex biolog-
ical processes and suggest new directions for research.
Scientists can study and analyze such models to make predic-
tions about the behavior of the system under different condi-
tions and to discuss novel relationships among the different
components of a biological system. The ability to predict
system behavior with a model helps evaluate model com-
pleteness as well as improve our understanding of the mech-
anisms of biological processes. Differences between the
behavior of the model and the behavior of the real system,
as determined from experimental data, can suggest new com-
ponents that may account for the differences. Descriptive
models may also serve as educational aids.

A modeling methodology that is especially tailored for repre-
senting and simulating concurrent dynamic systems is Petri

Nets (PNs).1 An advantage of PNs is that they can represent
system behavior even when the biological mechanism is not
fully understood, by combining different levels of abstraction
in a single model. Petri Nets enable qualitative simulation
and allow a representation of a process that is broken down
into subprocesses that may be described at variable granular-
ities. Most PNs have a visual representation that facilitates
user comprehension. Petri Net tools enable users to verify
system properties, verify system soundness, and simulate
dynamic behavior.

There is a plethora of different PN tools available that differ in
their capabilities. We undertook this study to understand
these differences and explore their suitability in the context
of creating simulation models of different biological systems.

Background
The most basic PN is a directed, bipartite graph in which
nodes are either places or transitions, where places represent
Boolean conditions (e.g., parasite in the bloodstream) and
transitions represent activities (e.g., invasion of a host cell).
Figure 1 explains and demonstrates an example of a PN.
Tokens in places represent local (atomic) states signifying
that the condition associated with that place holds. The place-
ment of tokens in the net, called marking, defines the PN’s
global state. A PN can be ‘‘executed’’ or simulated by moving
tokens according to a firing rule; when all the places with arcs
leading to a transition have a token, the transition is enabled
and may fire by removing a token from each input place and
adding a token to each output place. The results of the simu-
lation can be visualized as graphs or analyzed quantitatively
or qualitatively.

Petri Nets have been applied mostly in manufacturing and
safety-critical systems. They are most suitable for modeling
and analyzing the dynamics of concurrent systems whose be-
havior could be described by finite sets of atomic processes
and atomic states. Several groups have used PNs to create
qualitative models of metabolic pathways and analyze them
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structurally.2–4 These groups represented several characteris-
tics of biological systems and modeled them in a way that en-
ables the following distinctions: separation of external and
internal metabolites, existence of enzyme-substrate com-
plexes, and reversible reactions occurring at cellular condi-
tions, which were modeled as two reactions occurring in
opposite directions.

Structural analysis can identify properties that are conserved
during execution of the modeled system. Such properties in-
clude the following:

1. Liveness: Checking that all processes that are modeled can
be executed.

2. Boundedness: Checking that there is no infinite accumula-
tion of tokens in a place. This may correspond to an accu-
mulation of a metabolite at toxic concentration.

3. Place invariants: Identifying a set of places in which the
total amount of tokens is constant. When modeling a large
number of reactions that occur in an organism, identifica-
tion of place invariants may identify reactions that consti-
tute a pathway.

4. Circuits: Flux conservation is achieved when the rate at
which tokens are being produced equals the rate at which
tokens are being consumed. When the flux for a given fir-
ing sequence starts and ends at the same point, it is called
a circuit. An algorithm for identifying cycles in metabolic
pathways has been described.5

5. T-Invariants: Identifying a set of transitions that have to fire
from some initial marking to return the PN to that mark-
ing. T-invariants indicate the presence of cycles that are
in a state of continuous operation.

6. Reachability: Deciding whether a certain marking (state) is
reachable from another marking. This type of analysis can
be used to determine whether certain outcomes are possi-
ble, given a modeled net and an initial marking (initial
state), or to determine whether certain states are reachable
when specific reactions are inhibited.

Structural analysis may provide insights to biologists. For ex-
ample, pathways may be automatically constructed from
data residing in metabolic and sequence databases. By com-
paring pathways in different organisms, gaps in specific path-
ways were identified.4 In Zevedei-Oaneca and Schuster,3

structural analysis explained a surprising finding that indi-
cated that an enzyme (triose-phosphate isomerase) is neces-
sary for the glycolysis pathway, although it seemed possible
for this pathway to proceed without it.

Petri Nets have also been used to model ecological and evo-
lutionary processes and to analyze different modes of evolu-
tion.6 In this work, ecological niches were defined as
a structural property of PNs: a set of interconnected autono-
mous places. A niche does not produce any indispensable
resource for another niche. Recently, an approach to automat-
ically generate PNs was used to construct PN models of pen-
etrance of a disease given a particular combination of
genotypes that was inherited.7 The approach is based on tak-
ing a language that is specified as a grammar and subse-
quently producing code from it, in any language. The

F i g u r e 1. TimeNet’s representation of the malaria exam-
ple and the results of kinetic experiments, corresponding to
this Petri Net (PN). Places are represented as circles and
transitions as squares. The number 10 written inside the place
P65 represents a marking of ten tokens that correspond to ten
malaria parasites (merozoites). In this marking of the PN,
only the transition MerozoiteInBlood is enabled because there
are tokens in all its input places (in the case of this transition,
there is only one input place: P65). When this transition fires,
a token is passed from the input place P65 to all the output
places. In this case, there is only one output place: P6. Tokens
that reach place P1 may flow either through the transition
Invasion or the transition ImmuneResponse. In the graph shown
below the PN, the y-axis shows the values of the performance
measures (average number of tokens at certain places) from
time zero to a given time on the x-axis. These kinetic curves
use a smoothing function, which does not measure the
number of tokens at a given time but rather the average
number of tokens over a time interval. R5 is a hyperbolic
curve showing sink places that accumulate all the tokens in
the system. The curve corresponds to place P66. R2 and R3 are
parabolic curves showing transient stages. Tokens gradually
enter these stages, stay there for a while, and then transition
to the next stage. The curves correspond to places P5 and P7,

respectively. R1 and R4 are curves showing stages that start
with many tokens and lose them over time. The curves
correspond to places P1 and P2, respectively.
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approach is called ‘‘genetic evolution’’ because, using the
grammar, a binary string written in the language to be trans-
lated (the ‘‘genome’’) is translated into code, which is analo-
gous to a phenotype.

The expressive power of basic PNs is limited. Not surprisingly,
a number of PN extensions have been defined.8 These exten-
sions add expressive power, allowing more elaborate models
to be developed. On the other hand, the added features make
the representation more complex. The PN formalisms that we
evaluated in this study are reviewed below. Although previous
studies have evaluated the use of PN tools formodeling biolog-
ical processes,3,9–11 they have concentrated on either structural
analysis or quantitative simulation, usually of a single tool.
The goal of our assessment was to explore the range of capabil-
ities of PN tools and the types of biological questions that PN
tools allow us to explore, whether they are structural or behav-
ioral, and not to recommend particular tools.

High-Level Petri Nets
High-level PNs include extensions for representing hierarchy,
time, and data.12 Hierarchical PNs have been used tomodel bi-
ological processes at different levels of granularity, starting
from high-level processes, such as a malaria parasite invading
a host’s red blood cell and hierarchically decomposing pro-
cesses into processes of lower granularity, ending at molecu-
lar-level processes, such as protein phosphorylation.8 Colored
hierarchical PNs were used to study effects of mutations in
tRNA on the process of protein translation.13 Color was used
to distinguish among molecules that share some aspects (e.g.,
they are all tRNAmolecules) but are different in other aspects,
suchas the type of amino acid that they carry or amutation that
they exhibit. Colored PNs (CPNs) were also used to perform
steady-state analysis of metabolic pathways.9 In this work,
color was used to separate out places that may be involved in
conflicting paths, enabling rigorous symbolic analysis.

Hybrid Petri Nets
Hybrid PNs contain places and transitions that may be
discrete or continuous, allowing representation of continu-
ous processes.14 Hybrid PNs have been used to model gene-
regulatory networks,11,14 biochemical pathways,10 and signal
transduction.11 Hybrid PNs can be used to create quantitative
models using continuous transitions whose rate is a differen-
tial equation that may depend on place markings. In this way,
transitions may have rates that correspond to concentrations
of reactants and may be used to model kinetics of enzymatic
reactions, binding reactions, and diffusion transportation.10

Hybrid PNs also support inhibitory and test arcs.11 An inhib-
itory arc connects an input place to a transition. When tokens
are present in that input place, the transition is inhibited. This
feature is very useful for modeling repressors in gene regula-
tion. Test arcs do not consume the tokens in an input place but
only test the presence of tokens there. Test arcs have been
used to model the transcription process when mRNA is not
consumed.11 Chen and Hofestaedt10 outlined a process for
taking a biological system and modeling it using a hybrid
PN. The process includes a stage of tuning the model so
that it behaves like the real system. A similar process was de-
scribed by Doi and colleagues.15

Stochastic Extensions to Petri Nets
Stochastic PNs may contain timed transitions that have expo-
lynomially distributed firing delays (i.e., firing delays that can

be piecewise defined by exponential polynomials) in addition
to instantaneous transitions.16 Colored-stochastic PNs have
been used to model mechanisms of infectious disease.17 The
simulation results were consistent with other stochastic
epidemiologic models.

Stochastic activity networks (SANs) may contain timed tran-
sitions (activities) with time distribution functions. Stochastic
activity networks introduce another kind of uncertainty, in
the form of activity cases. Transitions that have identical input
places are represented as a single activity with several cases.
Each case has a probability distribution.18 SANs use input
and output gates to flexibly define enabling and completion
rules for activities. Input gates link input places to an activity.
They have enabling predicates and function. Enabling predi-
cates are Boolean functions on the marking of the places con-
nected to the input gate that have to be evaluated to true for
the activity to be enabled. The function of an input gate de-
scribes the resulting marking of the input places connected
to the input gate, which will be achieved on the completion
of the activity to which the input gate is connected. Output
gates link an activity to a set of output places. They have func-
tions that describe the resulting marking of the output places
of the gate, which will be executed on the completion of the
activity leading to the output gate.

SANs have been used to create qualitative and quantitative
models of molecular pathways.18–20 The simulation results
of the quantitative model were very similar to experimental
results of the biological systems that had been modeled,
which confirmed the completeness of the model.18

The Work Flow Model of the Workflow
Management Coalition
The Workflow Management Coalition defined a work flow
model for modeling business processes,21 consisting of a pro-
cess model and an organizational model. As has been shown
by van der Aalst,22 this work flow model can be mapped to
PN, which can be analyzed for correctness. We found that
the work flowmodel can be mapped to biological systems.8,13

In the following definitions, the biological analogous enti-
ties are given in parentheses. The Process Model provides a
dynamic and functional model that consists of a network of
activities (i.e., logical steps in the process), and their relation-
ships (i.e., whether they are done concurrently or are mutu-
ally exclusive), criteria to indicate the start and termination
of the process, and information about the participants of indi-
vidual activities (e.g., enzyme). Activities are connected to
each other using transitions, which may contain conditions
(conditional transition). Four types of activities can be ex-
pressed: (1) activities that are used for routing and do not con-
tain process definitions (route activity), (2) activities that are
hierarchical and can be nested into subflows (high-level pro-
cesses, such as protein translation), (3) loop activities, and
(4) generic activities that do not contain subflows and loops
(low-level processes, such as amino acid acylation). The
Organizational Model (Participants/Role Model) represents the
relationships among participants (e.g., protein complexes
have component proteins) and the roles that participants
play in processes (e.g., a protein has enzymic function: phos-
phorylation). We used the Workflow model as a biological
process model by mapping workflow activities to biological
processes, organizational units to biomolecular complexes,
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humans (individuals) to biopolymers, and roles to biological
processes and functions. We defined the biological compo-
nents of the model by using codes from controlled biological
and medical ontologies. Mapping from workflows to PNs
translates every workflow process into a PN, where every
workflow activity is translated into a PN transition, and sin-
gle or multiple places are inserted between a transition and its
consecutive transition(s) depending on whether the consecu-
tive transitions are concurrent or mutually exclusive.22

Limits on Petri Nets for Modeling Biological
Systems
Petri Nets are not suitable for studying systems exhibiting
continuous dynamic behavior that: (1) cannot be described
by a set of discrete states, (2) cannot be broken down to
atomic processes, or (3) are dependent on spatial properties.
Examples include fluid dynamics and protein folding.

Other Methods Exist for Modeling and Simulating
Dynamic Biological Systems
The most widespread formalism is differential equations (or-
dinary and partial), which describe the rate of production of
a system component as a function of concentrations of other
system components. Differential equations have been used
to model a variety of biological systems, ranging from deter-
ministic, coarse-grained models to fully detailed quantitative
models, such as E-CELL,23 which aim to model an entire cell,
inspired by the exponential increase in functional genomics
data. Many other modeling and simulation methods have
been used to model gene regulatory systems24 and/or meta-
bolic pathways, including directed graphs, Boolean networks,
Bayesian networks, qualitative differential equations, stochas-
tic equations, and rule-based formalisms.

The advantage of PNs over other modeling and simulation
methods is that they employ a very simple model that has
an intuitive graphical representation, can represent systems
at coarse- or fine-grained levels, and enables both qualitative
and quantitative analysis. In addition, the PN token game (in-
teractive animation) aids in system validation.

Design Objectives
We surveyed five PN formalisms and tools and compared
them based on their mathematical capabilities as well as on
their appropriateness to represent typical biological processes
and answer biological questions. The criteria for evaluation
are described in this section, and the evaluation results are
presented in the Status Report section.

Mathematical Capabilities for Modeling and
Analysis and Desired Technical Features
Table 1 summarizes the main features of each tool. They in-
clude modeling features, analysis types that the tools support,
and technical features such as the exchange format, operating
systems, quality of the user interface and technical support,
and whether the license is free to the public or for academic
use.

Biological Processes That Petri Nets Can Model
Examining biological systems that we have modeled in the
past while working with domain experts, other biological sys-
tems that are discussed in biological textbooks of biochemis-
try and cellular biology, and an extensive literature study of

PNmodels of biological systems,2–15,17–20 we defined features
that characterize biological processes. They include the
following:

1. Facts about biological processes are known at different
levels of granularity, ranging from organisms to organ
systems, cells, and molecular level details.

2. Biological processes may affect individuals or popula-
tions. For example, we may be interested in modeling
a single parasite infecting a single cell as well as a popula-
tion of parasites infecting a population of host cells.

3. Populations exhibit variation. For example, we need to be
able to represent different alleles and their effect on pro-
cesses as well as genetic drift, in which an allele gets es-
tablished in a population.

4. Metabolism is carried out by biochemical reactions,
which are characterized by participating substrates and
products with stoichiometric coefficients, catalysts, and
inhibitors or allosteric effectors.

5. Process inhibition may occur in (a) gene regulatory net-
works, where transcription of a gene may be inhibited
by a repressor or in (b) metabolic networks, where a reac-
tion rate may be slowed down by an allosteric effector.

6. Biological reactions usually have typical kinetic curves.
These include hyperbolic curves (typical of enzyme satu-
ration) and sigmoid curves (typical of allosteric effects).

7. Alternative pathways can be executed given some initial
condition of the system. These pathways contain compet-
itive reactions with different probabilities for their occur-
rence. For example, malaria parasites in a host’s blood
system can invade a host cell or can be cleared by the
immune system.

8. Processes in a biological system can occur concurrently.
9. Regulation of gene expression and the levels of resulting

protein in an organism involves a complex network (gene
regulatory network) controlled by complex interactions
between transcriptional regulation, translational control,
and mRNA and protein stability. DNA-binding proteins
are an important component of a gene regulatory net-
work. They respond to changes in the cellular environ-
ment by binding to DNA sequences and altering the
gene expression of relevant genes in the vicinity of their
binding sites.

10. The cell responds to outside signals that are converted
into a functional change within the cell (signal transduc-
tion). The signal, often a hormone (e.g., luteal hormone)
interacts with a receptor on the cell surface; this interac-
tion causes a change in a second messenger (such as cal-
cium) and eventually a change is triggered in the cell’s
function (e.g., luteal cell production of progesterone).

We defined a library of diverse test cases consisting of typical
biological processes, based on our experience in modeling
biological systems. The test cases are drawn from three
domains: malaria invasion of human host cells, effects of
mutations in tRNA on protein translation, and the pathway
of the drug gemcitabine in a human cell. The collection of
the three test cases possesses most of the features of the bio-
logical systems that we defined above. Thus, they are com-
prehensive enough for the purpose of this study. The test
cases do not cover the last two features of biological systems
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Table 1 j The Five Petri Net (PN) Tools and Their Mathematical and Usability Capabilities

Mobius TimeNET Design/CPN Genomic Object Net Woflan

Formalism SAN EDSPN HLPN Hybrid PN PN

Modeling features

Hierarchy (transition decomposed into a net
of [sub]processes)

+

Composition (several copies of a net interact) +

Process duration is stochastic (e.g., exponential
rate)

+ +

Process duration is constant, >1 + + + +

Continuous transitions (transition expressed as a
differential equation)

+

Probabilities of conflicting processes (e.g., 80%
of the time a malaria parasite pursues a non-
sexual life cycle; 20% sexual)

+ Not
working

Not
directly

Not
working

Inhibition arcs linking a place to a transition
represent transitions that are disabled when there
are tokens in the linked input places

+ +

Test arcs are like inhibition arcs, but firing the
transition does not consume the tokens in the input
places

+

Arc weight requires more than one item to flow
from/to a place when a transition fires (e.g., 2P1 + P2/P3)

Can be modeled
by gates

+ + +

Gates can be used to express complex marking changes
when transitions fire

+

Colored tokens have data values; transitions in the net
depend on these values

+

Analysis types

Boundedness (no infinite token accumulation); liveness
(all transitions may fire)

+

Place invariants (set of places in which the total amount
of tokens is constant); Conflicting transitions (enabled under
same conditions)

+ +

State space (number of different states) +

Traps (once a token enters a trap place, it does not leave it) +

Siphons (once a token leaves a siphon, it does not return to it)

Token game (interactive simulation of tokens moving in net) + + +

Performance measures + simulation/numerical analysis + + Not
directly

+

Plots of simulation results + Not
directly

+

Reachability (is a marking reachable from initial marking) Not
working

Technical features

Exchange format + + + +

Operating system Windows,
Solaris,
Linux

Linux,
Solaris

Solaris,
Linux, HP-
UX SGI-Irix

Mac,
Windows,
Solaris

Windows

User interface ++++ +++ ++ ++++ +++

Technical support ++++ +++ +++ +++

License Free acd Free acd Free Free Free

EDSPN = extended deterministic and stochastic Petri Nets (immediate or expolynomially timed transitions in which at most one expolynomially
timed transition may be enabled in each marking); SAN = stochastic activity networks; CPN = colored Petri Net; HLPN = high-level Petri Nets
(color, hierarchy, time); acd = academic; Not directly = functions that can be defined in code but are not supported directly. The number
of + signs indicates the level of support.
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described above: gene regulation and signal transduction.
These features are discussed in the Status Report section.

The invasion of human host erythrocytes by the malaria par-
asite Plasmodium falciparum25 is a cellular level process that in-
volves populations of parasites and host cells. As shown in
Figure 1, at the start of the invasion process, the malaria par-
asite is at the developmental stage called merozoite and ap-
pears in the host’s bloodstream. The merozoites can be
cleared by the host immune system or can invade host red
blood cells. After invasion, the merozoites can follow two al-
ternative life cycles: undergo sexual development or undergo
asexual development and be released as merozoites into the
bloodstream. The invasion process (details not shown in the
figure) includes cellular level as well as molecular level met-
abolic activities that can be inhibited with inhibitors. Some ac-
tivities are done in parallel, whereas others are alternatives.
The system’s behavior over time can be followed by kinetic
curves. Figures 1 to 3 present PN models and analysis results
of the malaria example.

The second test case involves the effect of mutations and ge-
netic variation in tRNA genes on molecular level functions in-
volved in protein translation, including metabolic reactions.13

Figure 4 shows part of this test case. tRNA genes are tran-
scribed into tRNA molecules that are folded. Most tRNAvar-
iants are acylated with amino acids, and some variants are
not. Depending on the type of tRNA molecule, tRNA mole-
cules form complexes with different translation factors (initi-
ation factors, elongation factors, or termination factors) and
with guanosine triphosphate (GTP). During the translation
process, different mutations of tRNA cause the translation
process to proceed abnormally, resulting inmisreading, frame
shifting, or halting.

The third example (Figs. 5–7) concerns the molecular level
biochemical and regulatory pathway of the drug gemcitabine
and of the endogenous nucleotide cytidine, for which gemci-
tabine is an analog. Cytidine participates in transcription and
in DNA replication, whereas its analog, which participates in
DNA replication, causes cell death. The pathway starts with
the drug’s intake by the cell and ends in its effect on cancerous

and rapidly dividing cells resulting in cell death. The path-
way shows cellular reactions that inactivate the drug and in-
hibition of the drug’s processing in the cell by deoxycytidine
triphosphate nucleotide (dCTP).

Biological Questions That Petri Nets Can Answer
In comparing PN formalisms and tools, wewere driven not by
themathematical capabilities of the tools but by the types of bi-
ological questions that could be analyzed by the PN tools. We
divided the typical biological questions into two categories:
those that depend on the static structure of the PNs and those
that depend on dynamic simulation using the PNs.

1. Qualitative questions that depend on the structure of
the net
A PN’s topology can be used to answer qualitative ques-
tions, such as determining the conditions under which
modeled processes are active or inhibited, identifying bio-
chemical pathways, and identifying states of the system
that may be reached in the course of system execution.
1.1. Active processes: Studying the conditions under which

processes are active or inhibited and the resulting sys-
tem states under normal conditions or in the presence
of inhibition of processes. Specifically, there are three
types of questions that can be analyzed topologically:
1.1.1. Does an inhibitor inhibit an entire high-level

process? This question can be answered by
reachability analysis (Table 1). Reachability
examines whether, given a certain state (mark-
ing) M of a PN, another state, M#, is reachable
from state M. For example, if we block the im-
mune system, can we still reach a state where
the parasite is cleared from the blood system?

1.1.2. Does inhibition of an activity cause a state in which
not all other activities can be activated? This ques-
tion can be answered by verifying the liveness
property of PNs (see Table 1 for a definition of
liveness). Liveness guarantees that all transi-
tions (biological processes and reactions) can
be enabled.

1.1.3. Is there accumulation of metabolites at toxic levels?
This question can be answered by verifying the
boundedness property of PNs (see Table 1 for a
definition of boundedness). Boundedness guar-
antees that in every place, the number of tokens
is always less than n. Tokensmay be used to rep-
resent amount of metabolites, where each me-
tabolite molecule is represented by one token.

1.2. Biochemical or regulatorynetwork structure:Analysis of the
PN’s structure can identify metabolites that are likely to
belong to a confined pathway as well as processes that
compete for the same set of metabolites. Four types of
such structural questions can be answered:

1.2.1. Can we identify parts of pathways? This can be
done through place invariants—sets of places
in which the total amount of tokens is constant.
Invariants may represent metabolites that exist
in invariant amounts, suggesting the existence
of a pathway.2

1.2.2. Can we identify sets of metabolites that are likely to
be affected by inhibition of a reaction? Locating
place invariants containing input/output

F i g u r e 2. Woflan’s verification of the malaria Petri Net
(PN). Woflan can be used to convert work flows in different
work flow tool formats into PNs. The diagnosis option of
Woflan verifies properties of the resulting PNs. Petri Nets can
also be directly entered into Woflan, without the need to start
from workflows. The properties that Woflan verifies are
transition liveness and place boundedness (no infinite
accumulation of tokens at places of the PN). Together, these
two properties are termed soundness.
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places of the inhibited reaction can identify
such sets.2 This directs biologists in confining
experiments to those places.

1.2.3. Can we identify conflicting transitions (i.e., pro-
cesses that are enabled under the same conditions)
and concurrent processes? This can be done
through analysis of the structure of the PN
(structural analysis).

1.2.4. Can we identify continuous operation and cycles?
This can be done through identification of T-
invariants—sets of transitions that have to fire,
from the initial marking M0, to return the PN
to M0.

1.3. Reachable states of the system: It is often interesting to an-
alyze possible states of the system that can be achieved
under different environmental conditions. Such ques-
tions can be answeredby reachability analysis.1 For ex-
ample, three specific questions can be analyzed:
1.3.1. Is a certain state of the system reachable from the ini-

tial state? It may be interesting to determine the
initial states from which a desired or undesired
system states can be reached.

1.3.2. If an activity is inhibited, can we still get to a speci-
fied state? This type of analysis helps us in find-
ing key activities whose inhibition may result in
reaching a desired state.

1.3.3. What are the key compounds necessary for a bio-
transformation? Some compounds or partici-
pants are generated by reactions in pathways,
whereas other participants must be made avail-
able to the system from external sources to al-
low reactions in the system to occur.

2. Qualitative results that depend on simulation
Although the questions discussed above are related to
the topology of the modeled system, many interesting
questions concern the dynamic behavior of the system.
These questions concern the examination of the flow of
tokens throughout the net, as well as in silico experi-
ments that we can perform by simulating the system
over a range of varying conditions. Other measures
that we can determine include the degree of process uti-
lization and whether the system reaches a state of equi-
librium.

2.1. Tracing possible execution paths in a network of reactions:
Exploration of the processes that are carried out when
the PN is activated and the movement of tokens helps
modelers in understanding a PN’s behavior over time.
Two questions can be asked.

2.1.1. Can we follow individual molecules through a path-
way/network? This can be done through an inter-
active simulation (‘‘token game’’), which
highlights enabled transitions (Fig. 4) and
markings, and lets the user step through the
transitions that are fired and the markings
that result.

2.1.2. Can we validate the network’s behavior? Carrying
out several interactive simulations under differ-
ent initial conditions allows modelers to exper-
iment with the network’s behavior, gaining
confidence in the model’s validity.

2.2. System behavior as a function of time: Performing kinet-
ics experiments and measuring the number of tokens
in a place over time to obtain results that answer the
following questions.

F i g u r e 3. A Mobius model of malaria parasites invading a human host. Mobius uses composition to compose several atomic
Petri Nets (PNs) into a composed model. Top: Shows a model composed of Rep1 copies of a Red_Blood_Cell PN (bottom left), Rep2
copies of the host’s immune system cells PN (middle bottom), and one copy of the host’s bloodstream PN (bottom right). The three
atomic nets have a shared place (Place1). In the atomic PNs, places are depicted by circles and timed transitions as vertical bars.
Small circles attached to a vertical bar depict transition cases (i.e., mutually exclusive processes that are all enabled by the same set
of input places). Triangle depicts output gate. The output gate shown in the figure produces an integer number of tokens (burst
size) in the output place to which it is linked, which allows the representation of several malaria parasites that are released from
the host cell at the end of asexual development.
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2.2.1. What is the kinetic profile of a local or global system
state? Can we identify bottlenecks where tokens
accumulate at a place before they are able to
flow through the following transitions?

2.2.2. Measurement of the time it takes for 50% of the
molecules to reach a specified state. This can be
done by simulation or numerical analysis.

2.3. Testing system behavior as a function of initial conditions:
Initial conditions include metabolite concentration, ab-
sence of reactions, probabilities of conflicted processes,
and process rates.

2.4. Measuring process utilization, i.e., the percentage of time in
which a process is operational.

2.5. Steady state: We are often interested in determining the
state of the system at the steady state.

Systems Descriptions
We selected PN formalisms and tools based on their avail-
ability, exchange format, and support for analysis and
simulation. The tools include Mobius26 (http://www.
crhc.uiuc.edu/PERFORM/) for SANs, TimeNET27 (http://
pdv.cs.tu-berlin.de/~timenet/) for stochastic PNs, Design/
CPN (http://www.daimi.au.dk/designCPN/)28 for high-
level PNs, Genomic Object Net15 (http://www.
genomicobject.net/member3/index.html) for hybrid PNs,
and Woflan29 (http://tmitwww.tm.tue.nl/research/woflan/
index.htm) for regular PNs. The tools are reviewed below,
and their main features are summarized in Table 1.

Mobius26 is a software tool for modeling and studying the re-
liability, availability, and performance of complex systems
that has been developed at the University of Illinois and is

F i g u r e 4. A Design/CPN model describing tRNA transcription and incorporation into proteins. The transition labeled as
‘‘Translation’’ is hierarchical and is expanded into a lower level Petri Net (not shown). Places are depicted as ovals and transitions
as squares. Enabled transitions have a bold contour. Circles with a number in them indicate place marking. To the right of the circles,
squares with text strings indicate the kind of tokens that mark a place. Each place has a color set (tRNA, mRNA, at the top left of
each place), defined by a set of allowed token types (e.g., Initiator_tRNA, Asn). The places ‘‘Gene containing tRNA’’ and ‘‘mRNA’’
(bottom right) are initially marked, as specified in the expression below the place. The arcs are marked with 1‘a and 1‘m
representing tokens belonging to the color sets tRNA and mRNA, respectively. The expressions in square brackets above
transitions represent guarding conditions that must be true for a transition to be enabled. Hierarchical transitions (e.g.,
Translation) are labeled by two squares to their right. Transitions with bold contours indicate transitions that are enabled in the
current marking. During the execution of the token game, one of the enabled transitions is randomly selected, and the tokens flow
to create a new marking.
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available at http://www.crhc.uiuc.edu/PERFORM. It is a
successor of the UltraSAN tool. Mobius supports multiple
high-level modeling formalisms, including stochastic exten-
sions to PNs, Markov chains and extensions, and stochastic
process algebras. Mobius models may support two types of
uncertainty: activity duration and the probabilities of occur-
rence of mutually exclusive activities. First, activities may
be associated with delays that have a distribution function.
The types of functions supported include exponential, normal,
gamma, binomial, geometric, and triangular distributions.
The distribution function may depend on the net’s marking.
If an activity has a distribution function that depends on the
state of the net, then the activity’s delay may be either eval-
uated when the activity is initially enabled or computed
continuously (reactivation). Activities that are mutually ex-
clusive can be represented as a single activity with several

mutually exclusive cases that result in different outcomes.
The probability of each of the cases can be specified and
may depend on marking. In Mobius, activities (transitions)
may be connected to places directly or via gates. Gates spec-
ify the marking required for the activity to be enabled and
the marking changes that will occur when the activity termi-
nates. These changes may be functions of marking. A unique
feature of Mobius is the ability to combine multiple copies of
different PNs to examine alternative system designs. Mobius
supports extended places, places that are typed, and whose
values can take on types, which can be data structures.
This feature allows many of the capabilities of CPNs.
Mobius (version 1.5) enables time- and space-efficient, dis-
crete-event simulation and numerical solution based on com-
pact MDD-based Markov processes and multiple solution
techniques. Measurements can be conducted at specific

F i g u r e 5. AMobius model of the gemcitabine model. Gemcitabine is a chemotherapeutic drug that is an analog of the normal
cytidine that participates in transcription and in DNA replication. The pathway starts from the drug’s intake by the cell and ends
in its effect on cancerous cells resulting in cell death. The pathway shows cellular reactions that inactivate the drug and negative
feedback of the drug’s processing by the cell, which is inhibited by normal deoxycytidine triphosphate nucleotide (dCTP). The
part of the PN that is shown in the figure represents transport of the cytidine or the drug analog into the cytoplasm, followed by
two phosphorylation steps or inactivation of these molecules. At the bottom, the Petri Net branches into two paths: one for cytidine
and one for the drug analog. dCTP downregulates the drug effect by inhibiting the first phosphorylation step of the drug (and
cytidine). This is represented in the model by the rate of the phosphorylation1 reaction, which is proportional to the concentration
of the phosphorylation substrate (Place19) and inversely proportional to the concentration of dCTP. The reactions are modeled as
activities with exponential time distribution function.
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time points, over periods of time, or when the system reaches
steady state. Performance measures that can be evaluated
may relate to the number of tokens in places or to the num-
ber of activity completions. Experiments can be performed
by varying the range of input parameters, including activity
delays, initial marking, and probabilities of transition cases
and running the simulation once to obtain results under dif-
ferent parameter values. Mobius uses several optimization
methods to reduce the complexity of its simulation algo-
rithm. For example, Mobius uses the fact that, in practice,
model events (activity completions) often have only a local
impact on a model’s state variables to achieve efficient simu-
lation. To do so, Mobius stores information about the rela-
tionships between a state variable and activities that are
related to them. Mobius can be run on Windows, Solaris,
and Linux operating systems. Mobius has superb technical
support from its development team.

TimeNET (Timed Net Evaluation Tool, version 3.0) is a soft-
ware package for the modeling and evaluation of stochastic
PNs with nonexponentially distributed firing times.27

TimeNET has been developed at the Technische Universitat
Berlin in several research projects and is available at
http://pdv.cs.tu-berlin.de/~timenet/. TimeNET supports the
specification of arc weights that allow passing multiple to-
kens simultaneously through transitions and inhibition arcs
that represent transitions that are disabled when there are

tokens in the linked input places. TimeNET runs on Sun and
Linux environments and supports different types of analy-
ses, including the detection of place invariants, conflicting
transitions (i.e., transitions that are enabled under the same
marking), estimation of the number of different states that
the system can reach (state space), traps (i.e., places that
once a token enters them it does not leave them), siphons
(i.e., places that once a token leaves them it does not return
to them), token game animation (i.e., interactive animation
of tokens moving in a net), simulation of the net, and evalu-
ation of performance measures. The types of performance
measures that can be defined are expressions relating to
the expected number of tokens in a place or to the probability
that some logical condition holds (e.g., the number of tokens
in Place 1 is greater than 5). The evaluation may be per-
formed in discrete or continuous time until a specified time
(transient) or in steady state. Different types of evaluation
are possible: numerical analysis with a full exploration of
the reachability graph or a standard Monte Carlo style simu-
lation approach. When tested on our examples, the only eval-
uation that functioned was transient simulation with
continuous time. Experiments can be run in which the
same algorithm is executed with different parameter values
and the model is evaluated automatically for all specified
values of one marking or delay parameter. The parameter
can be changed linearly or logarithmically. The results of

F i g u r e 6. Part of the Genomic Object Net’s Petri Net of the gemcitabine example shown in Figure 5 and some of the graphs
produced that follow the number of tokens at some places as a function of time. These graphs were produced by the Cell
Illustrator tool, version 1.02, which is a new version of Genomic Object Net, which has better capabilities but is not freely
available.
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the evaluation are plotted automatically. The complexity of
reachability analysis and other types of analyses performed
by the TimeNET tool are discussed in German et al.27

Reachability analysis is conducted by generating a reduced
reachability graph of a timed PN model after a decomposi-
tion of the net into subnets by removing the timed transi-
tions. The memory requirements of a reachability graph
generation algorithm should not exceed the main memory
available on a given workstation. If the estimated memory
requirements exceed the main memory on a given worksta-
tion, the space efficient variation is used.

Design/CPN (version 4.0) is a tool package supporting the
use of CPNs that is available at http://www.daimi.
au.dk/designCPN/.28 It is being developed at the Univer-
sity of Aarhus, Aarhus, Denmark. Design/CPN supports
CPN models with complex data types (color sets) and
complex data manipulations (arc expressions and activity
guard conditions that must be met for transitions to fire),
both specified in the functional programming language
standard machine language (ML).30 The package also sup-
ports hierarchical CPNs, net models that consist of a set of
separate subnets with well-defined interfaces. In Design/
CPN, tokens may be associated with numbers representing
time stamps. A timed token is not available for any purpose
whatever unless the clock time is greater than or equal to
the token’s time stamp. A typical industrial model often con-
sists of 50 to 200 modules, each with ten to 50 different places
and transitions. Design/CPN supports analysis by means of
simulation and construction and analysis of state spaces.
ML can be used to define performance measures, which are
assessed during activity operation, and to plot graphs of these
performance measures.

Design/CPN runs on Solaris, Linux, HP-UX, and SGI-Irix.
Design/CPN is being replaced by CPN Tools, which runs
on Windows operating systems. Design/CPN has excellent
technical support from its development team. The technical
support in the future will be given only to CPN tools users.

Genomic Object Net is a tool that supports hybrid functional
PNs and was developed at the University of Tokyo (http://
www.genomicobject.net/member3/index.html).15 In hybrid
functional PNs, transitions and places can be either discrete
or continuous. Any function, including marking-dependent
functions, can be assigned to arcs and transitions for con-
trolling the speed/condition of firing. Inhibition arcs can
be used to represent process inhibition in the presence of
metabolites that are represented by tokens in the input places
linked by inhibition links. A commercial version of Genomic
Object Net, named Cell Illustrator, is now available. Both
tools include a powerful graphical user interface realizing
more biological intuitions when designing PNs. The tools
support both animation and simulation. The kinetics behav-
ior of the system is measured by following the marking of in-
dividual places. The resulting behavior is automatically
plotted as graphs. Genomic Object Net is the only tool re-
viewed in this paper that does not have an exchange format.

F i g u r e 7. The results of experiments performed by the
Mobius tool (plotted using Microsoft Excel). Whereas in
TimeNET and Genomic Object Net, a single experiment can
examine individual places (or sets of places in TimeNET) as
a function of time, a Mobius experiment measures the
number of tokens in a place or the number of times that
a transition was fired at a single point in time or the total or
average number over an interval of time. To generate a kinetic
profile in Mobius, several experiments need to be executed.
On the other hand, in a single experiment in Mobius, the user
can vary many structural parameters. However, plots are not
generated automatically by Mobius. A: The number of
transitions fired as a function of immune_probability with
burst size 50. This curve plots the number of two transitions
that were fired: Immune_Response and Asexual_Develop-
ment as a function of the probability of going in the path of an
immune response from Place1 of the composed model shown
in Figure 3, rather than executing the other transition that
uses Place1 as an input place (MerozoiteInBlood, left-hand
SAN in Fig. 3). The parameter burst size indicates the number
of tokens that are output by the output gate shown on the left-
hand side of Figure 3. B: Drug effect (cell death as a function
of drug dose). C: Inactive drug/drug effect as a function of
drug dose. B, C: Results that were generated from simulation
of the Gemcitabine model shown in Figure 5. The plots show
token markings as a function of time: the number of tokens at
a place that indicates drug effect (CellDeathPlace 1 Place13)
(B) and the ratio of the sum of tokens in the places that
indicate inactivated drug (DeactivatedC, DeactivationDrug,
InactiveDrug, marked by arrows in Figure 5) divided by the
number of tokens at the place that represents drug effect
(CellDeath 1 Place13) (C). Because the places that indicate
inactivated drug include two places that store both drug

tokens and cytidine tokens (DeactivatedC, Deactivation-
Drug), we multiplied the number of tokens stored in those
places by the ratio of drug concentration to the concentration
of cytidine 1 drug.
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It can export a PN representation but does not import PN rep-
resentations. This fact impedes the exchange of models be-
tween various PN tools. Genomic Object Net has excellent
technical support from its development team. It runs on
Windows�, Mac Intosh�, and Solaris� operating systems.

Woflan (version 2.3) is a verification tool for workflow
analysis, developed at the University of Eindhoven, the
Netherlands.29 Workflow models are converted into PNs
and verified for soundness (a combination of boundedness
and liveness). When soundness does not hold, the tool walks
the user through the verification steps, suggesting reasons
why the soundness property does not hold. These reasons
include:

1. Synchronization problems—synchronization problems
may occur when activities (transitions) that are executed
in parallel are synchronized by waiting for only one of
them to terminate or when activities that are mutually ex-
clusive are synchronized at an activity that waits for all the
mutually exclusive activities to terminate.

2. Mixing synchronization and choice—such mixing may oc-
cur by specifying several tasks that share some but not all
preconditions. In this case, confusion can occur if at least
one of the tasks synchronizes and there is a choice between
the tasks.

3. Improper termination—when biological processes have
one start condition and one termination condition, then
improper termination can be checked by identifying tran-
sitions that are active while the system has reached its ter-
mination condition. When improper termination is
detected, Woflan lists the sequence of activities that can
lead to improper states.

4. No termination state—when biological processes have one
start condition and one termination condition, Woflan can
check whether the process can reach the termination con-
dition and, if not, identify reachable states from which ter-
mination cannot be achieved.

5. Tasks that are not live.

The exact complexity of deciding whether a PN is sound (live-
ness and boundedness) is not known.31 From a practical point
of view, this is not an unconquerable problem. Woflan can
verify the soundness property for complex workflows en-
countered in practice.32 Woflan has a simple exchange format
for PN. Woflan runs onWindows operating systems. The ver-
ification results are displayed through a graphical user inter-
face. However, the PN itself is not shown graphically. Woflan
has excellent technical support from its development team.

A Tool for Converting Biological Work Flow
Models into Petri Nets in Various Formats
In most cases, we did not use the PN tools directly to compose
PNs. Instead, we created work flow models of biological sys-
tems using a biological process ontology8 that we developed
using the Protégé-2000 knowledge modeling environment.33

We wrote software that automatically translates work flow
models into PNs of three of the tools discussed in this article:
Woflan, Genomic Object Net, andMobius.34 The design of the
scripts that map the work flow model into a plain PN and
maps the plain PN format into TimeNET and Woflan, and
the mapping algorithm used by those scripts are discussed
elsewhere.34 The script for translating the plain PN model
into the Mobius formalism and tool was prepared especially

for this work. Its algorithm is shown in Appendix 1.
Genomic Object Net does not allow import of XML or text
files that store PN models. Therefore, we could not create
scripts to translate a PN model into a storage format for
that tool and had to manually create the model. We also cre-
ated manually the models in the Design/CPN tool.

Status Report
We found that PN formalisms and tools can model a variety
of biological systems characterized by the features enumer-
ated in the Design Objectives section as well as answer dif-
ferent biological questions based on their analysis and
simulation capabilities. When describing the modeling of
a feature, sometimes the formalism is mentioned and other
times the tool is mentioned. These tools are complete im-
plementations and representations of their formalisms.
Therefore, we use the name of a PN formalism and its sup-
porting tool interchangeably. Throughout the paper, when
we note that certain tools are not able to address certain fea-
tures and questions, it is a limitation of the formalisms that
they support rather than of the implementation.

Mathematical Capabilities for Modeling and
Analysis and Desired Technical Features
The extensions to PNs have special features that make them
more suitable to represent and analyze certain biological fea-
tures than regular PNs. These features are summarized in
Table 1. There are cases in which the tool does not adequately
support its formalism. These cases are noted as ‘‘not work-
ing’’ or ‘‘not directly’’ in Table 1.

The Way in Which Petri Nets Can Represent
Typical Features of Biological Systems
To show the diversity of the abilities of the tools, we imple-
mented the case study examples using subsets of the tools,
choosing to implement an example so that the different capa-
bilities of the tools could be demonstrated. Figures 1 to
3 show PN models and their analysis corresponding to
the malaria example. The PNs in the TimeNET format
(Fig. 1) and Woflan format were automatically derived from
a work flow model that we created and is available at
http://mis.hevra.haifa.ac.il/~morpeleg/NewProcessModel/
Malaria_PN_Example_Files.html.8 The full work flow model
includes ten work flow diagrams. For brevity, we only show
PNs corresponding to the top-level work flow diagram. The
bottom of Figure 1 shows the results of the kinetic profile
of the system, obtained by simulation performed using
TimeNET, whereas Figure 2 shows the analysis results ob-
tained by Woflan for the same PN structure as that of
Figure 1. We created the Mobius model, shown in Figure 3,
manually, using our judgment to split the PN into three
component PNs that are composed together, operating con-
currently. This allowed us to represent populations of red
blood cells and to model how each malaria parasite that occu-
pies the bloodstream can either be removed by the immune
system or invade populations of red blood cells and to study
the system’s behavior for the population of parasites. We ini-
tialized the PN with 20 copies of an ‘‘immune system’’ PN
and 80 copies of the red blood cell PN so that the 100 malaria
parasites in the bloodstream would compete for interaction
with these copies of immune system and red blood cells.
The Design/CPN and Genomic Object Net models of the
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malaria example are not shown in this report because they do
not show any characteristics not shown by the other PN
models presented.

The CPN in the Design/CPN format shown in Figure 4 shows
the second test case that models the effect of genetic variation
in tRNA genes on protein translation. This example was gen-
erated from a work flow model that we had previously cre-
ated.13 We used our software to automatically create PNs in
Woflan format from the work flow model and manually cre-
ated the Design/CPN model corresponding to the PN,
adding colored tokens. This tool is most appropriate for
modeling systems whose behavior differs for variants of par-
ticipating molecules. We did not create models of this system
using TimeNET, Genomic Object Net, or Mobius because
their unique capabilities were mainly demonstrated in the
first (for TimeNET and Mobius) and third test cases (for
Genomic Object Net and Mobius).

Figures 5 to 7 correspond to the third example representing
the molecular pathway of the drug gemcitabine. We modeled
the gemcitabine example as a workflow and automatically
converted it to PNs in the Mobius, TimeNET, and Woflan
formats. We manually created the corresponding Genomic
Object Net applying a direct mapping from the Mobius
model. We do not show the Woflan results because they are
similar to the results obtained by Woflan for the malaria ex-
ample. We did not create the Design/CPNmodel for the gem-
citabine example because it would not show capabilities of
this formalism and tool that were not demonstrated in the

tRNA example. We show some of the simulation results
obtained by Mobius and Genomic Object Net. The results
obtained by TimeNET are not shown, as explained in the
Limitations section of the Discussion.

We now evaluate the tools according to the biological features
that the examples possess (summarized in the top of Table 2).

1. Abstractions that allow decomposing a biological system to
a set of PNs. Many biological systems are described hierar-
chically as components of subsystems. In Design/CPN,
complex processes are hierarchically decomposed into
atomic processes. This helps in managing complexity by
partitioning the system specification into different levels
of granularity. For example, Figure 4 shows a PN describ-
ing the processes of tRNA transcription and incorpora-
tion into proteins. The translation process, represented
by the bottom transition, is expanded into another PN
(not shown). In Mobius, several copies of atomic PNs
can be composed together to form a complex system.
This is very useful for modeling populations that share
mutual resources. For example, we have used this feature
to represent copies of red blood cells that may be infected
by a pool of malaria parasites that enter the bloodstream.
As shown in Figure 3, the system is composed of copies of
PNs representing the parasite life cycle in the human red
blood cells, human immune system clearing parasites,
and human bloodstream. These three PNs interact by
sharing a common place, Place1, which corresponds to
the parasites in the bloodstream. Therefore, the parasite

Table 2 j Petri Net Tools Characterized by the Typical Biological Systems That They Can Represent and by the
Biological Questions That They Can Answer

Mobius TimeNET Design/CPN Genomic Object Net Woflan

Typical process characteristics
Abstractions of complex processes 1 Composition 1 hierarchy
Populations 11 Composition

gates
1 Arc
weight

1 Arc weight 1 Arc weight

Genetic variation 1*
Substrates, products, catalysts 1 I/O place 1 I/O place 1 I/O place 1 I/O place 1 I/O place
Stoichiometric coefficients 1 1 1 1

Reaction rates 111 11 1 111

Inhibitors and allosteric effectors Competing cases 1 Inhibitory
arcs

Competing
transitions

Competing
transitions

Competing
transitions

Typical kinetic behavior 1 1 1 1

Competing reactions with different
probabilities

1 Probabilities
not working

Not directly
supported

Not working

Concurrent processes 1 1 1 1 1

Typical questions
Active processes 1*
Network structure 1*
Network behavior/interactive

simulation
1 1 1

Reachable states Not working
Kinetic profile 11 111 Not directly

supported
111

Process utilization 1 Not directly
supported

1

Equilibrium state 111 111 Not directly
supported

111

The number of 1 signs indicates the level of support.
CPN = Colored Petri Net; I/O = input or output.
*Features that are supported by at most a single tool.
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may enter any red blood cell or may be removed by the
host’s immune system.

2. Processes that affect individuals as well as populations.
Biological systems often deal with populations that are
studied both as aggregates and individually. Mobius
can use composition to create copies of SANs. Each
copy represents an individual. The number of individuals
in a population can be controlled by the number of copies
of a SAN in a composed model. For example, the model
of parasites infecting host cells, shown in Figure 3, allows
the user to follow a single parasite infecting a single cell as
well as a population of parasites infecting a population of
host cells. The other PN tools, except for Woflan, can treat
populations by multiple tokens. Arc weights can be used
to transfer multiple tokens, corresponding to multiple in-
dividuals of a population, from and to transitions.

3. Genetic variation. Individual molecules or organisms may
have small differences that must be modeled while retain-
ing fundamental biological similarities. The most suitable
for modeling genetic variation is Design/CPN, which
uses different colored tokens that belong to one color
set to represent variants. Figure 4 shows a Design/CPN
model of protein translation that is affected by different
tRNA molecules that are the products of normal and mu-
tated alleles. The tRNA molecules differ by the type of
amino acid that they carry and, in addition, by their nor-
mal versus mutated structure. In this model, transitions
have guarding conditions that ensure that reactions take
place only for certain tRNA alleles. The transition ‘‘tRNA
transcription and folding’’ occurs for all variants of tRNA
genes. The transition ‘‘amino acid acylation’’ occurs only
for tRNA molecules that are not terminator tRNA
molecules and are not mutated alleles of the lysine tRNA
molecule that causes halting of the translation process.
The Mobius tool has extended places that are typed and
whose values can take on types, which can be data struc-
tures. This feature allows many of the capabilities of
CPNs. However, extended places cannot be directly con-
nected to transitions (only via gates), and the gate func-
tions need to specify explicitly which type of tokens
should be passed to a transition. Therefore, unlike
CPNs, Mobius does not easily support a model that can
have reactions that depend on token type and at the
same time include other reactions that occur with any
type of token, where typed tokens are passed to and
from both types of reactions.

4. Biochemical reactions. Biological transformations are char-
acterized by participating substrates and products with
stoichiometric coefficients, catalysts, and inhibitors or
allosteric effectors. All the PN tools that we have assessed
can represent biochemical reactions. Reactions that con-
sume or produce more than one individual item, for
example, metabolites in biochemical reactions whose
stoichiometric coefficient is greater than one, or cell divi-
sion, which produces two cells, require the use of arc
weights or gates in Mobius.
In Mobius, TimeNET, and Genomic Object Net, the reac-
tions may have rates that depend on the concentrations of
participating molecules (marking). Figures 5 and 6 show
pathways related to metabolism of the drug gemcitabine.
We have followed the main metabolites of the pathways,
representing them as tokens in places. We have assumed

that currency metabolites, such as adenosine triphos-
phate and reduced nicotinamide adenine dinucleotide,
are abundant and therefore are not representing them in
the model. We chose to represent enzymes as the reac-
tions that change a substrate into a product.
Quantitative models can be created by relating kinetic
constants to transition rates.35,36 SANs and hybrid PNs al-
low the representation of reaction rates (enzymatic reac-
tions or transport reactions) that depend on substrate
concentrations. The rates of continuous transitions of hy-
brid PNs can be expressed by any function, which may be
marking dependent. In contrast, Mobius does not allow
any function to specify the rates of transitions. Rather,
the transition rates can be specified as a time distribution
function that specifies the time between firings of two
transitions. Many distribution functions are supported,
such as the exponential function, which may serve as an
approximation for the Michaelis-Menten equation. For
example, the exponentially distributed transitions ‘‘trans-
port of nucleosides into the cytoplasm,’’ shown at the top
of Figures 5 and 6, have a rate equal to Vmax* (marking of
input place)/(Km 1 marking of input place). In modeling
the gemcitabine case study, we had reaction rates for only
a few of the reactions modeled.
To use a quantitative model, we used these reaction rates
but had to estimate the rates of other reactions. The strat-
egy that we devised for specifying reaction rates was to
give all the other reaction rates that depend linearly on
the concentration of reaction substrates multiplied by
a constant that made these reaction rates of the same or-
der as the known reaction rates that biologists had pro-
vided us. Some transitions in the PN do not convey
biological information and serve for branching and syn-
chronization purposes. We gave these transition rates
that were proportional to the concentration of metabolites
that served as inputs to the transitions multiplied by a fac-
tor that caused these reactions to occur at a much higher
rate (1,000-fold) than the biologically relevant reactions.
In cases in which substrates needed to accumulate to pro-
duce an effect (e.g., in the negative regulation of gemcita-
bine phosphorylation by dCTP), we used a reaction rate
that was of the same order as the rates of reactions of
which we had biological information. We used the same
rates as the rates of the continuous transitions in the
Genomic Object Net model that we created. Qualitative
models can be created if rough estimates are used for
rates. Mounts and Liebman20 discuss an approach for
modeling transition rates that are marking dependent.
However, the authors note that this approach does not
scale well to large systems.

5. Process inhibition. Process inhibition can be modeled in
TimeNET and Cell Illustrator (the next generation of
Genomic Object Net) using inhibitory arcs. In Mobius,
in which inhibitory arcs are not part of the model, reac-
tion rates may be expressed as a function that is corre-
lated with the concentration (marking) of substrates and
negatively correlated with the concentration of the inhib-
itor. For example, the rate of the exponentially timed tran-
sition ‘‘phosphorylation 1,’’ shown in Figure 5, is equal to
the marking of its input place (Place19, which represents
a drug that had entered the cytoplasm) divided by
(1 1 100 times the marking of Place22), where Place22
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represents dCTP molecules that serve as negative regula-
tors of the phosphorylation process.

6. Kinetic curves. Reactions with typical kinetic curves can be
represented in PNs. These include hyperbolic curves,
which are typical of enzyme saturation (see R5 in Fig. 1)
and sigmoid curves, typical of allosteric effects. All the
PN tools reviewed, except for Woflan, support simulation
whose results could be plotted.

7. Competitive reactions. Different reactions may occur under
the same conditions or compete for the same substrates.
Sometimes we have information on the probabilities of
such competitive reactions. Competitive reactions are
modeled in PNs as transitions that have the same set of in-
put places and occur under the same guarding conditions.
For example, in Figure 4, the transitions ‘‘formation of ter-
nary complex’’ and ‘‘formation of initiation complex’’
have the same set of input places but are not competitive
because they have mutually exclusive guarding condi-
tions regarding the type of participating tRNA molecule.
All the PN tools can represent competing transitions, but
only in SANs can the probabilities of the competing tran-
sitions be expressed. In SANs, competitive reactions are
modeled as single transitions that have multiple cases, as
shown in Figure 3. In that example, the transition labeled
as ‘‘XOR’’ controls whether a token will follow asexual
or sexual development. Controllingprobability of conflict-
ing transitions is useful because this is more realistic and
we may have that kind of data available. For example, in
the gemcitabine model, shown in Figure 5, the transition
DrugVsCTP splits the pathway into a branch that follows
reactions of the normal cytidine only and a branch that fol-
lows only the drug gemcitabine. This transition has two
cases (nondrug and drug), each with its own probability.
By experimenting with different rates of drug probabili-
ties, we can obtain graphs that depict the system’s behav-
ior as a function of drug dose (Fig. 7b,c). Similarly, as
shown in the left part of Figure 3, there are two competing
reactions shown in theMobiusmodel of themalaria exam-
ple: asexual and sexual development. InMobius,we could
specify different probabilities for these competing reac-
tions, reflecting current biological knowledge on the oc-
currence of these life cycle processes.

8. Concurrent processes are represented in all the PN tools by
transitions that produce tokens in several output places.
This enables more than one thread of control to be active.

9. Regulation of gene expression and
10. Signal transduction are not covered by our case study ex-

amples but have been previously modeled using hybrid
PNs and the Genomic Object Net tool11,14 as well as by
SANs.18 We briefly explain how these features can be
(or have been) modeled using the different PN formal-
isms that we discuss without providing our models for
these features. Modeling of signal transduction and ge-
netic regulation involves response to levels of molecules
(hormones, second messengers). This cannot be easily
done using regular PNs or CPNs but can be modeled us-
ing test arcs in Genomic Object Net or the dependence of
the rate of molecular level functions on the time during
a hormonal cycle in Mobius and in TimeNET. The third
example in our study, described in item 5 above, includes
downregulation of the phosphorylation reaction (phos-
phorylation1) carried out by the enzyme dCK.

The Way in Which Petri Nets Can Answer
Biological Questions
In the Design Objectives section, we defined types of biolog-
ical questions that are of interest to researchers. In this section,
we discuss the way in which the different tools can answer
these questions and summarize the results in the lower half
of Table 2.

Qualitative questions that depend on the structure of the net
can be answered by the Woflan and TimeNET tools. These
questions fall into three categories, numbered by the same
numbers used in the Design Objectives section:

1.1. Active processes: Studying the conditions under which
processes are active or inhibited and the resulting system
states under normal conditions or in the presence of inhi-
bition of processes can be analyzed by the Woflan tool.
We performed liveness analysis using Woflan for the
malaria example to show that an inhibitor (neuramini-
dase) can inhibit the entire invasion process, by which
the parasite invades host red blood cells. We verified live-
ness and boundedness by Woflan for all three case study
examples. Figure 2 shows an example of liveness and
boundedness verification. In the malaria example, we
showed that an inhibition of the tight junction formation
activity results in the PN not being live.

1.2. Biochemical or regulatory network structure: Analysis of the
PN’s structure to identify metabolites that are likely to
belong to a confined pathway as well as processes that
compete for the same set of metabolites can be done by
the TimeNET tool. We performed place-invariant analy-
sis for the malaria example to find the sets of places in
which the total amount of tokens is constant and ob-
tained a trivial result consisting of all the places in the
PN, limiting us from identifying key metabolites that
are likely to be affected by inhibition of a reaction. We
showed for the malaria example (Fig. 1) that conflicting
transitions include invasion and immune response as
well as asexual development and sexual development.

1.3. Reachable states of the system: Analyzing possible states of
the system that can be achieved under different environ-
mental conditions can be answered by reachability anal-
ysis, which is described as being supported by the
TimeNET tool (it was not functional when we tried to im-
plement it in our test cases, but this is a limitation of the
tool and not of the formalism that it supports). We man-
ually performed reachability analysis for the malaria
example to find reachable states with and without inhibi-
tion of activities, as discussed elsewhere.8 For the gemci-
tabine example, we manually showed that the drug must
be introduced externally for the system to reach the cell
death state.

Qualitative results that depend on simulation can be obtained
by Mobius, TimeNET, Design/CPN, and Genomic Object
Net. They include the following:

2.1. Tracing possible execution paths in a network of reactions:We
performed interactive simulation (‘‘token game’’) and
checked the validity of models by Genomic Object Net
for the malaria and gemcitabine examples, by TimeNET
for the malaria example, and by Design/CPN for the
tRNA example (Fig. 4).
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2.2. System behavior as a function of time: We performed kinet-
ics experiments to determine the kinetic profile and the
time that it takes for 50% of the molecules to reach a spec-
ified state using Genomic Object Net, Mobius, and
TimeNET. Design/CPN does not support directly the
generation of quantitative simulation results. However,
code can be written inside PN transitions to calculate
the number of tokens that pass through a transition to
produce quantitative results. Kinetic profiles are shown
in Figures 1, 6, and 7. Curves R2 and R3 in Figure 1
show places that act as bottlenecks. Curve R5 in Figure
1 shows that it takes roughly 40 time units for the level
of tokens (molecules) to reach a value of 2.5, which is
50% of their maximum value.

2.3. Testing system behavior as a function of initial conditions:We
performed this analysis using Genomic Object Net,
Mobius, and TimeNET. Design/CPN can produce such
results by writing code inside transitions. Figure 7B,C
shows behavior measured as a function of initial mark-
ing representing drug dose.

2.4. Measuring process utilization (i.e., the percentage of time in
which a process is operational): The Mobius tool can define
this type of performance measure. For example, in Figure
7A, the percentage of time in which the processes (tran-
sitions) immune response and asexual burst (i.e., follow-
ing asexual life cycle development) are active is
measured as a function of the probability of following
the immune response path rather than the asexual
path. Kinetic results can be obtained by Genomic
Object Net and Mobius. Design/CPN can produce
such results by writing code inside transitions.

2.5. Steady state: Steady-state analysis can be performed
using Genomic Object Net, Mobius, and TimeNET.
Design/CPN can produce such results by writing code
inside transitions.

Discussion
Significance
Previous studies have evaluated the use of PN tools for mod-
eling biological processes.3,9–11 However, these studies have
concentrated on either structural analysis or quantitative sim-
ulation. Their focus was on demonstrating the utility of a sim-
ulation technique rather than comparing techniques and tools.
The goal of our assessment was to explore the range of capa-
bilities of PN tools and the types of biological questions that
PNs can explore, whether they are structural or behavioral.

We took a pragmatic approach, motivated by modeling three
different biological processes and exploring a range of biolog-
ical questions that can be answered. We found that there is
not a single tool that can be used to answer all the biological
questions that we identified as of potential interest. Instead,
tools must be chosen based on the types of questions that
are most interesting to researchers and on the characteristics
of the process to be modeled. There are constraints of model-
ing a given biological system into different formalisms; the
plain PN model, without extensions, cannot model all possi-
ble biological features. For example, to create a model that
represents both normal and mutant alleles, Design/CPN is
most suitable because it is the only model that uses colored
tokens. Design/CPN is also the only model that allows de-
composing a high-level process into a network of lower level

processes, allowing complexity management. On the other
hand, SAN, used by Mobius, is the only model/tool that
can compose models of systems (e.g., blood system) from sev-
eral copies of component subsystems (e.g., blood cells), mod-
eled as PNs acting in parallel. In addition, SAN/Mobius is the
only model/tool that can model uncertainty on the probabil-
ity of competing processes allowing modeling of the percent-
age of time that different completing reactions take place
when the exact mechanism that controls the execution of
these reactions in unknown.

The different tools also vary in terms of questions that they
can answer. For example, to detect place invariants that
may indicate biochemical pathways in large PNs and to
find sets of processes that occur under the same conditions,
TimeNET is the tool that provides this functionality. To verify
that all the modeled processes can be executed, Woflan is the
tool of choice. Reachability is very useful for answering ques-
tions about states (markings) that are reachable from a given
initial state of the system. It is especially interesting to find
conditions under which a state is not reachable (e.g., when
a certain reaction is blocked). Of the tools that we evaluated,
TimeNET is the only one that has a function for checking
reachability. However, we were unable to make this function
operate in our PN examples.

To answer the most diverse set of questions, a combination of
tools is needed.We have developed code to translate a biolog-
ical work flow or plain PN model in Protégé-2000 format into
various PN formats. Admittedly, translation to multiple PN
formalisms is a somewhat difficult and redundant approach
and does not automatically make use of the special features
available in PN extensions, but it allows one to exploit the
useful analysis capabilities of each tool and provide a certain
degree of experimental quality control through redundant tri-
als. The automatically generated PN models can be extended
using special features of the different PN formalisms, as we
have done for the tRNA example.

Limitations
Some analysis capabilities are provided by more than one
tool. A troubling result that we have observed is that when
we modeled one biological system, under the same assump-
tions in different tools, we obtained apparently different sim-
ulation results. TimeNET evaluates the average number of
tokens that have accumulated until a time stamp has been
reached. It does not evaluate the number of tokens present
at a specified time stamp. This accounts for the difference in
simulation results between TimeNET and Mobius/Genomic
Object Net. However, for kinetic experiments, we are inter-
ested in the value of metabolites at a time stamp and less
often at the average number of tokens until a specified time
stamp. Mobius and Genomic Object Net have produced re-
sults that differ quantitatively but follow the same qualitative
trends when the same model was simulated. After discussion
with the development teams of these tools, we concluded that
the different simulation behavior is due to differences be-
tween the PN models, not their supporting tools. While
hybrid PNs allow fractions of tokens to flow continuously
through transitions whose rate is proportional to marking,
Mobius moves whole tokens after delays that have a time dis-
tribution function that is proportional to marking. Unlike
Genomic Objet Net, Mobius runs the simulation many times
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and reports an average of the performance measures (e.g.,
number of tokens in a place). When used in a straightforward
way, the two tools are appropriate for modeling different
types of biological systems; the SANmodel is more appropri-
ate for following single molecules (or single cells or organ-
isms) than the hybrid PN model, which uses continuous
transitions, whereas the hybrid PN model is more appropri-
ate for following populations (concentrations) of molecules.
For following small populations of molecules belonging to
interacting systems, Mobius can compose several copies of
SANs and follow the behavior of the composed model.
We note that it has been demonstrated that even in a
system with as few as 100 molecules, simulation results of a
deterministic method coincide closely with stochastic meth-
ods, suggesting that a deterministic approach may be a valid
one to use.37 The deterministic approach discussed above
uses the law of mass action, an empirical law that relates re-
action rates and molecular component concentrations.
Given initial molecular concentrations, the law of mass action
allows the calculation of the component concentrations at all
future time points. Although such results have not been dem-
onstrated in Cell Illustrator (the new generation of Genomic
Object Net), it may use discrete entities and processes with
random activities to simulate stochastic behavior as well as
the mass action approach. Similarly, it may be possible to sim-
ulate continuous processes in Mobius using gate functions
and places that hold floating point numbers of tokens.

Many of the PN formalisms supported by the different PN
tools share common constructs. It would be most valuable
to have a standard PN format. This would enable users to
use different PN tools to simulate and analyze their models,
without the need to use many proprietary PN formats.
There is a proposal for high-level PN Standard ISO/IEC
15909. Its adoption by the different groups who develop PN
tools would be very valuable to the biomedical informatics
community.

Petri Nets are most suitable for modeling systems that can be
described by finite sets of atomic processes and atomic states.
They are not appropriate for modeling systems that have
thousands of states, which depend on molecular sequences
or spatial configurations. Although PNs have been used to
model processes that work on genetic sequences,13 they do
not have built-in capabilities to represent sequences as sets
of places with initial marking. Longer biological sequences
can result in PNs of bigger size and complexity, which do
not scale up well. In addition, PNs have not been used to
model dynamics that depend on three-dimensional configu-
rations. Because PNs do not have built-in features for express-
ing spatial properties, each configuration has to be expressed
as a different system state, and transitions need to be defined
that move the system from each state to one of the next pos-
sible states. The size of the model does not scale up well when
the number of possible configurations is large.

Although PNs can be used to create quantitative models, they
require a large amount of information to gain accuracy. This
problem is common to many biological modeling methods.
For example, to specify a rate for a timed process (transition),
data need to be collected about concentrations of the process’
participants. It is difficult to specify a rate when partial infor-
mation is known (e.g., the average duration of a process). In
modeling the gemcitabine case study, we had reaction rates

for only a few of the reactions modeled. To use a quantitative
model, we used these reaction rates but had to estimate other
reaction rates. Partial information can lead to overly simplis-
tic models that fail to predict system behavior. Therefore, the
models produced must be compared with experimental re-
sults for corroboration.

Future Work
We developed three case studies representing typical biolog-
ical systems. We suggest that a library of such models would
catalyze progress in qualitative modeling via PNs. Another
direction of development is to generate scripts that would
map the generic PN model into the formalism and format
of Design/CPN. A third direction of research is to develop
learning algorithms to help in fine tuning the transition rates
in Mobius and Genomic Object Net models so that the simu-
lation results of the modeled systemwould match experimen-
tal results of the real system.

Conclusion
Despite their limitations, PNs provide a promising method of
modeling and simulating biological systems, given the ac-
ceptability of the associated assumptions. The extensions to
PNs provide much more modeling and analysis support than
basic PN. The value gained is generally greater than losses
due to simplicity of the representation and the increase in
computational complexity.

We have illustrated the kinds of biological questions and in-
sights that these models can address, discussing formaliza-
tion issues of: (1) active processes, (2) network structure, (3)
reachable system states, (4) validation of system behavior,
(5) system’s behavior as function of time, (6) system’s behav-
ior under different initial conditions, (7) process utilization,
and (8) steady state. Studying five PN tools, we found that
there is no single tool that can answer all these questions.
Most of the tools available (with the exception of TimeNET)
concentrate on either topological analysis or simulation, and
both of these capabilities are needed to study biological sys-
tems. Hence, the best tool (or combination of tools) to model
a system must be selected based on the questions posed or
multiple tools must be used. We have summarized formalism
and tool capabilities to assist researchers who need to choose
among the available tools in creating future models.
Researchers can use biological data found in the literature
(as we have done in the malaria and tRNA examples) as
well as a combination of published data with new experimen-
tal results obtained by a biological laboratory (as we have
done in the gemcitabine example) to create models of biolog-
ical systems. The application areas for using PNs to model
biological systems are wide and include areas such as
biochemical pathways, signal transduction, and gene regula-
tory networks.

Development and wide adoption of common formats
would enhance the field because it would enable researchers
to share models of systems and use different tools to
analyze and simulate the models without the need to con-
vert to proprietary formats. We have developed a library of
common biological test cases and a preliminary set of scripts
to translate from biological work flow and PN models in
Protégé-2000 format to various PN formalisms and tool
formats.
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APPENDIX 1
An Algorithm for Converting Petri Nets (PNs) to Stochastic Activity Networks (SANs)

The algorithm is described below. Steps 3–8 are illustrated by
the drawing.

1. Convert every PN Place to a SAN Place. Copy the name
and number of tokens.

2. Convert every PN transition to a timed activity with expo-
nential distribution. The rate of the transition = 1/(min_
transition_time 1 (max_transition_time–min_transition_
time)/2) if these parameters have values. Otherwise, the
rate is 1.

3. Convert a PN arc a that connects a transition to a place and
has no weight or a weight of 1 into the corresponding
straight line connector from transition to place (see Case
1 below).

4. Convert a PN arc that connects a transition to a place p and
has weight w into the corresponding straight line connec-
tor from transition to output gate. The gate function will
add w to the number of tokens at place p. Link the gate
to p (see Case 2 below).

5. Convert a PN arc a that connects a place to a transition and
has no weight or a weight of 1, and there is no other arc
whose :TO slot equals the :TO slot of a into the correspond-
ing straight line connector from place to transition (see
Case 3 below).

6. Convert a PN arc a that connects a place to a transition and
has weight w, and there is no other arc whose :TO slot

equals the :TO slot of a into the corresponding straight
line connector from place to input gate and set the function
of the gate to consume w tokens from :TO. Then link the
gate to the transition (see Case 4 below).

7. Convert a PN arc a that connects a place to a transition
and has no weight or a weight of 1, and there is another
arc whose :FROM slot equals the :FROM slot of a into
the corresponding straight line connector from place to
transition. This transition should have n cases, where n
equals the number of arcs on that PN whose :TO slot
equals the :TO of a. Link each case to a place. Give the
new transition and the new places dummy names. Each
case probability will be determined from the probability
of each arc. Link the new place that corresponds to the
case whose probability was determined from the arc’s
probability to the transition that is specified in that
arc’s :FROM slot. Do the same to all the other arcs that
share the same input place, remembering not to process
them again during the PN / SAN conversion (see
Case 5 below).

8. Modification of the previous step for arcs that have weight
w: instead of simply linking a new place to the corre-
sponding transition, place an input gate between the
two and update its function according to w (see Case 6
below).
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