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Text Categorization Models for High-Quality Article
Retrieval in Internal Medicine

YINDALON APHINYANAPHONGS, MS, IOANNIS TSAMARDINOS, PHD, ALEXANDER STATNIKOV, MS,
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A b s t r a c t Objective: Finding the best scientific evidence that applies to a patient problem is becoming
exceedingly difficult due to the exponential growth of medical publications. The objective of this study was to apply
machine learning techniques to automatically identify high-quality, content-specific articles for one time period in
internalmedicineand compare theirperformancewithpreviousBoolean-basedPubMedclinical queryfilters ofHaynes et al.

Design: The selection criteria of the ACP Journal Club for articles in internal medicine were the basis for identifying
high-quality articles in the areas of etiology, prognosis, diagnosis, and treatment. Naı̈ve Bayes, a specialized AdaBoost
algorithm, and linear and polynomial support vector machines were applied to identify these articles.

Measurements: The machine learning models were compared in each category with each other and with the clinical
query filters using area under the receiver operating characteristic curves, 11-point average recall precision, and
a sensitivity/specificity match method.

Results: In most categories, the data-induced models have better or comparable sensitivity, specificity, and precision
than the clinical query filters. The polynomial support vector machine models perform the best among all learning
methods in ranking the articles as evaluated by area under the receiver operating curve and 11-point average recall
precision.

Conclusion: This research shows that, using machine learning methods, it is possible to automatically build models for
retrieving high-quality, content-specific articles using inclusion or citation by the ACP Journal Club as a gold standard in
a given time period in internal medicine that perform better than the 1994 PubMed clinical query filters.
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Introduction
Evidence-based-medicine (EBM) is an important develop-
ment in clinical practice and scholarly research. The aim of
EBM is to provide better care with better outcomes by basing
clinical decisions on solid scientific evidence. EBM involves
three distinct steps: (a) identification of evidence from the sci-
entific literature that pertains to a clinical question, (b) evalu-
ation of this evidence, and (c) application of the evidence to
the clinical problem.1

In practice, the application and adoption of EBM to real-life
clinical questions is challenging. Insufficient time for search-
ing, inadequate skills to appraise the literature, and limited
access to relevant evidence are among the most cited ob-
stacles. Coupled with the scientific literature’s exponential
growth, applying EBM in daily practice proves a challenging
and daunting task.2 This article addresses the barriers to EBM
by improving physician access to the best scientific evidence
(i.e., the first step of EBM).

We hypothesize that by using powerful text categorization
techniques and a suitably constructed, high-quality, and
content-labeled article collection for training, we can auto-
matically construct quality filters to identify articles in the
content areas of treatment, prognosis, diagnosis, and etiology
in internal medicine that perform with better sensitivity, spec-
ificity, and precision than current Boolean methods. We note
that throughout this article, references are made to both
full-text articles and MEDLINE records. We clarify that (a)
our filters make judgments about articles and (b) these judg-
ments are made using the MEDLINE records (i.e., titles, ab-
stracts, journal, MeSH terms, and publication types) as the
latter are provided by PubMed. Hence, when the context is
about processing the records, we use ‘‘MEDLINE records,’’
whereas when we discuss making judgments about the ar-
ticles we use the term ‘‘articles.’’

The Background section describes previous approaches for
identifying the best scientific evidence. The Methods section
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describes corpus construction, the representation of an article
(i.e., as a MEDLINE record), articles that meet rigorous EBM
standards (high quality) and those that do not, and the learn-
ing methods applied to differentiate high-quality articles
from articles that do not meet EBM criteria. In the Results
and Discussion sections, we compare the machine learning
methods with each other using receiver operating characteris-
tic (ROC) curve analysis and 11-point precision recall and
with current methods with standard sensitivity, specificity,
and precision metrics and a sensitivity/specificity match
method. We further discuss advantages, limitations, and ex-
tensions of this work. We conclude with a broad overview
of the findings of this study.

Background
Specialized sources for high-quality scientific evidence in-
clude the Cochrane Collaboration’s Library, Evidence-Based
Medicine, and theACP Journal Club.3–5 Each group and journal
bring together expert reviewers who routinely review the lit-
erature and select articles that warrant attention by clinicians.
These articles are either cited by the Cochrane Collaboration
or republished with additional commentary as in Evidence-
Based Medicine and the ACP Journal Club.

These manual methods are labor intensive, and the reporting
of high-quality articles is slow due to the expert review pro-
cess. In light of these limitations, more recent approaches
address finding high-quality, content-specific articles as a clas-
sification problem. The problem is to classify documents as
both high quality and content specific or not.

In 1994, Haynes and colleagues6 used the classification ap-
proach to find high-quality articles (as represented by their
MEDLINE record) in internal medicine. Evaluating articles
in ten journals from 1986 and 1991, three research assistants
defined high-quality articles by constructing a gold standard
according to content and methodological criteria. The content
areas included etiology, prognosis, diagnosis, and treatment,
and the methodological criteria were similar to the criteria
currently used by the ACP Journal Club.7 The authors selected
terms that would most likely return high-quality articles in
these content categories based on interviews with expert li-
brarians and clinicians. Valid MeSH terms, publication types,
and wild-carded word roots (i.e., random* matching random-
ize and randomly) in the title and abstract were collected.

Using the above gold standard and the selected terms, they
ran an exhaustive search of all disjunctive Boolean set term
models of four to five terms and evaluated each disjunctive
set on an independent document set according to sensitivity,
specificity, and precision of returning high-quality articles.
The optimal Boolean sets (Table 1) were shown to have
high sensitivity, specificity, and precision and are currently
featured in the clinical queries link in PubMed.8 This method
required interviewing to select terms, a gold standard con-
structed by an ad hoc review panel of expert clinicians, and
reliance on National Library of Medicine (NLM) assigned
terms. The learning method also relied on a search of term
disjunctions that grow exponentially with the number of
search terms.

Other researchers have applied a similar methodology to de-
veloping sets of search terms for controlled trials, systematic
reviews, and diagnostic articles.9–14

The common methodological features of these studies are as
follows: (a) that the search term sets are selected through in-
terviews or article inspection by health professionals and/or
librarians and (b) the search is conducted via Boolean queries
involving combinations of MeSH qualifiers, MeSH terms,
publication types, and text words. The selection of a gold
standard varies with more recent research utilizing reproduc-
ible, expert-derived gold standards. In the present research,
we follow an expert-derived, publisher-based methodology
for gold standard construction while automating term selec-
tion from the corpus. Additionally, we use more sophisticated
classifiers to build models for high-quality, content-specific
article retrieval.

Methods
Definitions
In this paper, we chose not to build new criteria to define
quality but instead we build on existing criteria8 that the
ACP Journal Club uses to evaluate full-text articles.15

The ACP Journal Club is a highly rated meta-publication.
Every month expert clinicians review a broad set of journals7

in internal medicine and select articles in these journals
according to specific criteria7 in the content areas of: treat-
ment, diagnosis, etiology, prognosis, quality improvement, clinical
prediction guide, and economics. Selected articles are further

Table 1 j Clinical Query Filters Described in the ‘‘Filter Table’’ Used in the Clinical Queries Link in PubMed 3

Category
Optimized

for PubMed equivalent

Therapy Sensitivity ‘‘Randomized controlled trial’’ [PTYP] OR ‘‘drug therapy’’ [SH] OR ‘‘therapeutic use’’ [SH:NOEXP] OR
‘‘random*’’ [WORD]

Specificity (Double [WORD] AND blind * [WORD]) OR placebo [WORD]

Diagnosis Sensitivity ‘‘Sensitivity and specificity’’ [MESH] OR ‘‘sensitivity’’ [WORD] OR ‘‘diagnosis’’ [SH] OR ‘‘diagnostic use’’ [SH]
OR ‘‘specificity’’ [WORD]

Specificity ‘‘Sensitivity and specificity’’ [MESH] OR (‘‘predictive’’ [WORD] AND ‘‘value*’’ [WORD])

Etiology Sensitivity ‘‘Cohort studies’’ [MESH] OR ‘‘risk’’ [MESH] OR (‘‘odds’’ [WORD] AND ‘‘ratio*’’ [WORD]) OR (‘‘relative’’
[WORD] AND ‘‘risk’’ [WORD]) OR ‘‘case’’ control *’’ [WORD] OR case-control studies [MESH]

Specificity ‘‘Case-control studies’’ [MH:NOEXP] OR ‘‘cohort studies’’ [MH:NOEXP]

Prognosis Sensitivity ‘‘Incidence’’ [MESH] OR ‘‘mortality’’ [MESH] OR ‘‘follow-up studies’’ [MESH] OR ‘‘mortality’’ [SH] OR
prognos* [WORD] OR predict * [WORD] OR course [WORD]

Specificity Prognosis [MH:NOEXP] OR ‘‘survival analysis’’ [MH:NOEXP]

These Boolean filters were run on the gold standard corpus, and sensitivity, specificity, and precision were measured.
PTYP = publication type; MESH = MeSH main heading; SH = MeSH subheading; NOEXP = MeSH subtree for the term is not exploded.
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subdivided into articles that are summarized and abstracted
by the ACP Journal Club because of their ‘‘clinical impor-
tance’’15 and those that are only cited because they meet all
the quality selection criteria but may not pertain to vitally
‘‘important clinical areas.’’15 For the purposes of the present
study, abstracted and cited articles published in the ACP
Journal Club for a given year are considered high quality
and are denoted as ACP1; all other MEDLINE articles not ab-
stracted or cited in the ACP Journal Club but present in the
journals reviewed by the ACP Journal Club, are denoted as
ACP2. By using articles abstracted and cited by the ACP
Journal Club as our gold standard, we capitalize on an exist-
ing, focused quality review that is highly regarded and uses
stable explicit quality criteria.

Corpus Construction
We constructed two corpora that reflect the progression of our
experiments. Corpus 1 has 15,786 MEDLINE records used
for high-quality treatment and etiology article prediction.
Corpus 2 has 34,938 MEDLINE records used for high-quality
prognosis and diagnosis article prediction. To learn high-
quality models, sufficient ACP1 articles must exist in each
category. For our initial experiments including treatment
and etiology, we selected a publication time period from
July 1998 to August 1999. This chosen period did not yield
sufficient ACP1 articles for the prognosis and diagnosis cat-
egories, so we obtained additional prognostic and diagnostic
articles by lengthening the selected publication time period
from July 1998 to August 2000. The resulting distribution of
positive/negative articles in each category is 379/15,407 in
treatment, 205/15,581 in etiology, 74/34,864 in prognosis,
and 102/34,836 in diagnosis.

We downloaded all the MEDLINE records in the respective
time periods andmarked the articles as ACP1. We used a cus-
tom script to match word for word the ACP1 title, authors,
and journal to the downloaded citations. Next, we down-
loaded all MEDLINE records from PubMed with abstracts
from the journals reviewed by the ACP Journal Club in the
publication period of July 1998 through August 1999 for cor-
pus 1 and July 1998 to August 2000 for corpus 2. Two condi-
tions motivated this period of time. As discussed above, each
selected time period provided sufficient ACP1 articles in
each category. Selecting a period of several years before the
start of the present study gave ample time for the ACP
Journal Club to review the published full-text articles for re-
publication in the ACP Journal Club. Thus, to ensure that no
ACP1 articles were missed, the ACP Journal Club was re-
viewed from the journal time periods of July 1998 to
December 2000 and July 1998 to December 2001 for each re-
spective corpus. From these two selected ACP journal time pe-
riods, we marked in the publication time periods any cited or
abstracted articles.

Furthermore, as stated before, we identified 49 journals7 ap-
pearing in the review lists of the table of contents of the first
ACP Journal Club in July 1998 to the last ACP Journal Club in
December 2001. By collating all articles from these select jour-
nal sources that the ACP Journal Club stated it used in prepar-
ing the metajournal, a complete set of references ( for the
purposes of the current study) was obtained.

At the time of this study, the Esearch and Efetch services of
PubMed did not exist.16 We instead created custom Python

scripts that simulated a user search session to download the
MEDLINE records. Each search was limited to the title of one
of the 49 journals and set to only retrieve recordswith abstracts
and during the publication period. These MEDLINE records
were downloaded in XML format, stored in a MySQL data-
base,17 and parsed for PubMedID, title, abstract, publication
type, originating journal, and MeSH terms with all qualifiers.

Corpus Preparation
We partitioned each corpus into n-fold cross-validation sets to
estimate the classification and error of the constructed mod-
els. Each cross-validation set had a train, validation, and
test split with the proportions of ACP1 and ACP2 articles
maintained in each split.

We chose the number n of n-fold cross-validation sets based
on the frequency of ACP1 high-quality articles. For all cate-
gories, we chose an n of 5. This choice for n provided suffi-
cient high-quality positive samples for training in each
category and provided sufficient article samples for the clas-
sifiers to learn the models in our preliminary experiments.

Specifically, the cross-validation sets were constructed as fol-
lows. First, each corpus was partitioned into five disjointed
‘‘test’’ subsets whose union is the complete corpus. For each
test split, the remaining 80% of the articles were further par-
titioned into a 70% ‘‘train’’ split and a 30% ‘‘validation’’ split.
In all cases, the train, validation, and test splits are chosen so
that the proportions of ACP1 articles and ACP2 articles are
as close as possible to the proportions in the corpus. The val-
idation split was used to optimize any specific learningmodel
parameters. We optimized the models using maximization of
area under the ROC curves (AUC).18

Article Preparation
The abstracts, titles, and originating journal were parsed into
tokens using the algorithm described below and weighted
for classifier input. Additionally, we extractedMeSH terms in-
cluding headings and subheadings and publication types for
each MEDLINE record and encoded these as phrases. For ex-
ample, the publication type case reports is encoded as a single
variable and, following the algorithm below, would be en-
codedas ‘‘pt_CaseReports.’’Next, individualwords in the title
and abstract were further processed by removal of stopwords
identified by PubMed19 such as ‘‘the,’’ ‘‘a,’’ and ‘‘other’’ that
are not likely to add semantic value to the classification. The
words were further stemmed by the Porter stemming algo-
rithm, which reduced words to their roots.20 Stemming in-
creases the effective sample by removing word forms that
oftendonot addadditional semantic value to the classification.

We then encoded each term into a numerical value using
log frequency with redundancy (see online supplement at
www.jamia.org for mathematical details7). The log frequency
with redundancy scheme weights words based on their use-
fulness in making a classification because words that appear
frequently in many articles are assumed to be less helpful in
classification than (more selective) words that appear in
fewer articles. This weighting scheme was chosen due to
its superior classification performance in the text categoriza-
tion literature.21 In summary, the algorithm for processing
each article is described below:

For each article/MEDLINE record in the set

Extract original journal
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Extract MeSH terms
replace all punctuation and spaces with ’_’
associate main headings with each
subheading ||i.e., Migraine:etiology and Migraine:
therapy||

precede all terms with ’mh_’ *thus all MeSH terms are
encoded as single variables*

Extract publication types

precede all terms with ’pt_’
replace all punctuation with ’_’

For abstract and title words separately

if title word: precede term with �title_’
convert all words to lower case
remove all punctuation and replace with ’_’
remove MEDLINE stop words
Porter-stem all words
calculate weights using log frequency with redundancy21

calculate raw frequency occurrence of terms

For each encoded word

If the word appears in fewer than three documents, remove
it from the calculations.

Finally, we calculated the raw occurrence of terms in each ar-
ticle. Naı̈ve Bayes and the first version of the Boostexter algo-
rithm are designed to work with discrete data using
frequency of term occurrence as input. The second version
of Boostexter and support vector machines used the log fre-
quency with redundancy weighted terms as input.22 In all
cases, no term selection was employed, and each algorithm
used all available terms for learning.

Statistical and Machine Learning Methods

Naı̈ve Bayes
Naı̈ve Bayes is a common machine learning method used in
text categorization. The Naı̈ve Bayes classifier23 estimates the
probabilities of a class c given the raw terms w by using the
training data to estimate P(w|c). The class predicted by
the Naı̈ve Bayes classifier is the max a posteriori class.

We coded the algorithm in C as described in Mitchell 1997.24

No parameter optimization is necessary for Naı̈ve Bayes.
(See the online supplement at www.jamia.org for equations.7)

Text-specific Boosting
Boostexter is a collection of algorithms that apply boosting to
text categorization.22 The idea behind boosting is that many
simple and moderately inaccurate classification rules (called
the ‘‘weak learners’’) can be combined into a single, highly ac-
curate rule. The simple rules are created sequentially, and, for
each iteration, rules are created for examples that were more
difficult to classify with preceding rules. The prototypical al-
gorithm for boosting is AdaBoost.25 (See the online supple-
ment at www.jamia.org for mathematical details.7)

The AdaBoost.MR algorithm in the Boostexter suite uses
boosted trees to rank outputs with real values. AdaBoost.
MR attempts to put correctly labeled articles at the top of the
rankings. The algorithmminimizes the number of misordered
pairs, i.e., pairs where an incorrectly labeled article is higher in
the ranking than a correctly labeled article. The AdaBoost.MR
algorithm runswith real valuedweights anddiscrete counts of
word frequencies as inputs depending on the version.

Support Vector Machines
Support vector machines (SVMs) can function as both linear
and nonlinear classifiers for discrete and continuous outputs.
The type used in this study was the soft-margin hyperplane
classifier that calculates a separating plane by assigning
a cost to misclassified data points. The solution is found by
solving a constrained quadratic optimization problem. In ad-
dition, for the nonlinear case, the problem is solved by using
a ‘‘kernel’’ function to map the input space to a ‘‘feature’’
space where the classes are linearly separated. Linear separa-
tion in feature space results in a nonlinear boundary in the
original input space.26–28

For the text categorization task, the words were weighted us-
ing log frequency with redundancy and utilized as features
for the linear and polynomial SVMs. We use the soft-margin
implementation of SVMs in SVM-Light.29 For the linear
SVM, we used misclassification costs of {0.1, 0.2, 0.4, 0.7,
0.9, 1, 5, 10, 20, 100, 1000} for optimization on the validation
set. For the polynomial SVM, we used misclassification costs
of {0.1, 0.2, 0.4, 0.7, 0.9, 1, 5, 10, 20} and polynomial degrees of
{2, 3, 5, 8}. These costs and degrees were chosen based on pre-
vious empirical research30 because the theoretical literature
on domain characteristics as it relates to optimal parameter
selection is not yet well developed in this domain.
Combinations of both cost and degree were run exhaustively
on the validation set, and the optimal cost and degree were
applied to the test set in each fold cross-validation set. (See
the online supplement at www.jamia.org for the mathe-
matical details.7)

Clinical Query Filters
We ran the category-specific Boolean queries shown in Table 1
on the corresponding test sets. As described above, two sets
of Boolean queries exist (i.e., optimized separately for sensi-
tivity and specificity6). We measured the optimized sensitiv-
ity and specificity values independently for each cross-
validation set. For the best learning method, we fixed these
values in each fold and calculated the corresponding sensitiv-
ity, specificity, and precision. We report the average opti-
mized and matched values across all folds in Table 2.

Evaluation Criteria
We used four evaluation criteria: (a) area under the ROC
curve (AUC) of each method with statistical comparison be-
tween methods using the Delong paired ROC comparison
test,31 (b) 11-point precision-recall curves, (c) comparison
with the specificity of the clinical query filters at the point
of equal sensitivity, and (d) comparison with the sensitivity
of the clinical query filters at the point of equal specificity.
For (c) and (d), we used McNemar’s test to statistically com-
pare each method with the best learning method.

We calculated the AUC and ROC for eachmethod in each fold
and calculated the averaged statistical significance of the dif-
ference of the best performing method over all folds to each of
the other methods using the Delong method.31 For a single
learning method, we estimated the statistical significance
across all cross-validation sets. We averaged the p-values
for all the sets to obtain an empirical mean. We statistically
evaluated this empirical mean by examining the distribution
of means obtained by randomly permuting a complete exper-
iment (i.e., in this case, randomly permuting five cross-valida-
tion sets for one method and obtaining a permuted mean) 500
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times. With the empirical mean and the distribution of means
created by the permutations, we report a significance value
for the empirical mean and thus conclude a statistical p-value
difference between the best learning method and the com-
pared method.

Note that although several parametric tests for comparing
mean p-values exist, they assume independence between
measurements.32 These independence assumptions do not
apply in an n-fold cross-validation setting; thus, we resorted
to a random permutation test here.

We compared the sensitivity and specificity of the machine
learning methods with the sensitivity and specificity of the re-
spective optimized Boolean clinical query filter. The query fil-
ters return articles with the query terms present, whereas the
learning algorithms return a score. To make the comparison,
in each fold, we fixed the sensitivity value returned by the
sensitivity-optimized filter and varied the threshold for the
scored articles until the sensitivity was matched. We report
the averaged fixed sensitivity and matched threshold in
Table 2. The same procedure was run for the specificity re-
turned by the optimized specificity filter.

We assessed the statistical significance of differences of sensi-
tivities (or specificities) between the best learningmethod and
the clinical query filter Boolean models using McNemar’s test
(calculated for each cross-validation set).33 To report the sig-
nificance across all cross-validation sets, we followed the
same procedure as described above in comparing ROC
curves. Instead of using the Delong method, we compared
the best learning method with the Boolean models with
McNemar’s test for all the sets to obtain an empirical mean.

We statistically evaluated this empirical mean by examining
the distribution of means obtained by randomly permuting
a complete experiment (i.e., in this case, randomly permut-
ing five cross-validation sets and obtaining a permuted
mean) 500 times.

Results
Area under the Receiver Operating Curve Analysis
The AUC for each category averaged over five folds are pre-
sented in Table 3. Values upward of 0.91 with ranges for the
best learning methods suggest that the corresponding learn-
ing methods can distinguish very well between positive
and negative class articles. The polynomial SVM turned out
best, and it was compared as a baseline with all other learning
methods and the clinical query filters. In the treatment and
etiology categories, in nearly all cases except Boostexter raw
in etiology, the difference of the polynomial SVM output to
the other methods was not due to chance. In contrast, in the
sample limited diagnosis category, the difference between
the polynomial SVM output and the Boostexter algorithms
and the linear SVM may be due to chance. Similarly, in the
sample limited prognosis category, the linear and polynomial
SVM difference may be due to chance as well.

The ROC curves for each category and learning method are
depicted in Figure 1. In all cases, the learning methods per-
form well with the exception of Naı̈ve Bayes in the prognosis
and diagnosis categories. Finally, in each ROC graph, the cor-
responding clinical query filter performances are shown by
small Xs. The leftmost symbol corresponds to fixed specificity
and the rightmost symbol corresponds to fixed sensitivity.

Table 2 j Best Learning Method Compared with Clinical Query Filters Fixed at Optimal Sensitivity and Specificity

Category Optimized for Method Sensitivity Specificity Precision

Treatment Sensitivity Query filters 0.75 (0.74–0.76) 0.09 (0.08–0.09)
0.96 (0.91–0.99)

Poly SVM 0.86 (0.68–0.93) 0.18 (0.07–0.25)
Specificity Query filters 0.4 (0.37–0.42) 0.19 (0.17–0.21)

0.96 (0.95–0.96)
Poly SVM 0.80 (0.74–0.83) 0.33 (0.31–0.34)

Etiology Sensitivity Query filters 0.85 (0.85–0.86) 0.06 (0.06–0.06)
0.70 (0.61–0.78)

Poly SVM 0.95 (0.92–0.97) 0.15 (0.11–0.21)
Specificity Query filters 0.28 (0.24–0.37) 0.05 (0.04–0.06)

0.93 (0.92–0.94)
Poly SVM 0.76 (0.68–0.78) 0.12 (0.12–0.12)

Prognosis Sensitivity Query filters 0.70 (0.70–0.71) 0.006 (0.006–0.007)
0.88 (0.80–0.93)

Poly SVM 0.71 (0.32–0.86) 0.009 (0.003–0.013)
Specificity Query filters 0.51 (0.33–0.80) 0.02 (0.011–0.026)

0.94 (0.94–0.94)
Poly SVM 0.62 (0.60–0.67) 0.20 (0.02–0.02)

Diagnosis Sensitivity Query filters 0.7 (0.69–71) 0.009 (0.009–0.010)
0.95 (0.86–1.0)

Poly SVM 0.53 (0.04–0.95) 0.015 (0.003–0.048)
Specificity Query filters 0.67 (0.48–0.80) 0.048 (0.034–0.056)

0.96 (0.96–0.96)
Poly SVM 0.77 (0.70–0.86) 0.055 (0.049–0.059)

The first number is the average across five folds. The numbers in parentheses report the minimum and maximum values across the five folds.
Cells in bold denote the performance for the filter optimized for sensitivity and specificity, respectively.
Poly SVM = polynomial support vector machine.
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11-Point Precision Recall
We further compared qualitatively the clinical query filters to
the best learning method (polynomial SVM) in each category
in Figure 2. For each category, we marked on the 11-point pre-
cision recall graph the corresponding precision-recall perfor-
mance for the optimized sensitivity and specificity clinical
query filters. The leftmost point is the filter optimized for
specificity and the rightmost point is the filter optimized for
sensitivity. For treatment, etiology, and diagnosis, the polyno-
mial SVM performed better than either optimized clinical
query filter using this metric. For prognosis, the polynomial
SVM performed as well as the clinical query filters using
this metric.

Comparison to Clinical Query Filters
For the most part, the learning methods outperformed the
query filters for each sensitivity, specificity, and precision
measure. Table 2 compares the best learning method by
AUC and the results of the clinical query filters fixed for sen-
sitivity and specificity respectively for each category. The
average with the ranges across five folds across all cross-
validation sets appear inside parentheses.

In comparison with the clinical query filters, the polynomial
SVM has better performance in the treatment and etiology
categories. In the prognosis category, the polynomial SVM
model and the clinical query filters perform similarly. In the
diagnosis category, the polynomial SVM performs better
than the specificity optimized filter but worse than the sensi-
tivity optimized filter (see Discussion). The polynomial SVM
model for treatment and etiology at a threshold that matches
the sensitivity of the sensitivity-optimized clinical query filter
has at least double precision compared with the clinical query
filters, although remaining below 20% in both categories.
Specificity of the polynomial SVMmodel is also better (by ap-
proximately 10% in both categories). Likewise, in the same
categories, the polynomial SVM model at a threshold that
matches the specificity of the specificity-optimized clinical
query filter has almost double precision compared with the

clinical query filters. Sensitivity of the polynomial SVM
model is also better (by 40% and 48%, respectively). For the
prognosis category, the polynomial SVM model performs
comparably with the sensitivity- and specificity-optimized
clinical query filters. For diagnosis, the polynomial SVM
model has a 10% improvement in sensitivity for the specific-
ity-optimized filter, but a 17% decline in specificity for the
sensitivity-optimized filter (see Discussion for details).

Table 4 compares statistically the polynomial SVM and the
clinical query filters using McNemar’s test. As described in
the Methods section, we report the average p-values across
all cross-validation sets and the significance using a random
permutation test.

When comparing the optimized sensitivity filters with the
polynomial SVM, the mean p-values are significant at the
0.05 level except for the sensitivity-optimized diagnosis filter
at the 0.07 level. Thus, the improvements compared with the
clinical query filters in both precision and specificity are not
due to chance.

When comparing the optimized specificity filter with the poly-
nomial SVM in etiology, prognosis, and diagnosis categories,
the mean p-values are not significant, whereas in the treat-
ment category, the polynomial SVM models are significant
at the 0.05 level. Hence, we conclude that the differences be-
tween the polynomial SVM fixed at optimized specificity
and the query filters are not due to chance in the treatment
category but may be due to chance in the other three catego-
ries. We speculate that in these three categories, nonsignifi-
cant differences are due to the low ratios of ACP1 to
ACP2 articles (i.e., low priors).

Discussion
We have shown that machine learning methods applied to
categorizing high-quality articles in internal medicine for
a given year perform better than the widely-used 1994
Boolean methods in most categories. This work is a step to-
ward efficient high-quality article retrieval in medicine.

Table 3 j Area under the Receiver Operating Curve (AUC) Performance of Each Machine Learning Method in
Each Category

Diagnosis Prognosis

Learning Method
Average
AUC*

Min
AUC*

Max
AUC*

Significancey
(Delong) Learning Method

Average
AUC*

Min
AUC*

Max
AUC*

Significance
(Delong)

Naı̈ve Bayes 0.82 0.80 0.84 0.001 (0) Naı̈ve Bayes 0.58 0.47 0.66 0 (0)
Boostexter, weighted 0.87 0.85 0.90 0.10 (0) Boostexter, weighted 0.71 0.56 0.86 0.01 (0)
Boostexter, raw frequency 0.94 0.91 0.97 0.43 (0.03) Boostexter, raw frequency 0.79 0.73 0.85 0.04 (0)
Linear SVM 0.95 0.93 0.97 0.11 (0) Linear SVM 0.91 0.86 0.94 0.39 (0.01)
Polynomial SVM 0.96 0.95 0.98 N/A Polynomial SVM 0.91 0.87 0.95 N/A

Treatment Etiology

MLmethod
Average
AUC

Min
AUC

Max
AUC

Significance
(Delong) MLmethod

Average
AUC

Min
AUC

Max
AUC

Significance
(Delong)

Naı̈ve Bayes 0.95 0.94 0.95 0.01 (0) Naı̈ve Bayes 0.86 0.84 0.88 0.02 (0)
Boostexter, weighted 0.94 0.92 0.95 0.03 (0) Boostexter, weighted 0.85 0.83 0.87 0.01 (0)
Boostexter, raw frequency 0.94 0.93 0.96 0.01 (0) Boostexter, raw frequency 0.90 0.88 0.93 0.25 (0)
Linear SVM 0.96 0.95 0.97 0.03 (0) Linear SVM 0.91 0.86 0.93 0.03 (0)
Polynomial SVM 0.97 0.96 0.98 N/A Polynomial SVM 0.94 0.89 0.95 N/A

*Average, minimum (min), and maximum (max), AUC across the respective number of folds for each category.
yMean significance using the Delong method across all folds comparing the best learning method in each category (polynomial support vector
machine [SVM]) with each other learning method. The number in parentheses is the significance produced by random permutation test as
described in the Methods section under Evaluation Criteria.
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Performance in the Diagnosis Category
In light of the comparable or superior performance of the
SVM model over the clinical query filters in treatment, etiol-
ogy, and prognosis, the lower performance of the diagnosis
polynomial SVM versus the sensitivity-optimized query filter
warranted further attention.

Recall that we match the sensitivity returned from the opti-
mized diagnosis Boolean query to the sensitivity produced
by varying the threshold for the SVM output. Because the
number of positive articles in the diagnosis category is very
small (and even smaller within the splits of cross-validation),
and because the clinical query filters exhibit very high sensi-
tivity in the content category, even a small number of outliers
(i.e., MEDLINE documents receiving a low score), in terms of
SVMmodel scores, will result in a significant reduction of the
specificity once we set the SVM threshold to match the near-
perfect sensitivity of the clinical filters.

Indeed, we identified such outliers and verified that they
were the source of the reduced performance in the diagnosis
category once we fixed the thresholds to match the clinical
query filter sensitivity. On close examination, we found that
the ACP1 articles scored low because the terms used to iden-
tify these articles were not used in training of the SVMmodel.

More specifically, MeSH subheadings were not encoded indi-
vidually. For example, one of the ACP1 articles scoring low
was identified by the diagnosis clinical query filters with
the MeSH subheading ‘‘diagnosis’’ (Table 1). Recall from the
article preparation procedure in the Methods section that
MeSH subheadings are not encoded explicitly but only as
part of the matching major heading. Thus, ‘‘diagnosis’’ would
not be encoded individually, but only as part of the major
heading as in ‘‘Migraine:diagnosis.’’ If the ACP1 article
was encoded as ‘‘Pneumonia:diagnosis,’’ it would not score
high. The SVM classifiers did not have sufficient information
to give some ACP1 articles a high score because none of these
words were found in the text.

It is evident that this problem can be fixed simply by encod-
ing the subheadings individually in future versions of the
models discussed here. However, we do note that in such cir-
cumstances, using the human assigned MeSH indexing terms
provides a slight edge over not using them.

Implicit Selection Bias
A potential drawback of the constructed models is that they
may reflect implicit selection biases by the editors of the
ACP Journal Club, and the high-quality articles selected
by the models are not based on sound methodology. For

F i g u r e 1. Receiver operating characteristic (ROC) curves for each category. X is clinical query filter performance at optimized
sensitivity (right-most x) and specificity (left-most x). SVM = support vector machine.
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example, it is conceivable that editors for a particular year
could have a favorable bias toward a particular subject, and
the subject rather than the methodology causes a high-quality
classification.

We answer this concern through cross-validation and
a method previously described34 to convert the models to
Boolean queries. Specifically, we built Boolean models using
an approximate Markov blanket feature selection technique34

modified from Aliferis et al.35 to obtain the set of minimal
terms and a decision tree to build the corresponding
Boolean query. The feature selection/decision tree method7

shows that the models emphasize methodological words in
nature rather than topic specific ones.

Labor Reduction
The machine learning–based methods may significantly re-
duce labor through automated term selection; reliance on
an existing, publisher-based, expert-derived gold standard;
and a reduced feature set, without manually assigned
MeSH terms and publication types, that has equivalent per-
formance to the full set with terms and types.

Recall from the Background section the strategy for develop-
ment of the clinical query filters.7 In the Haynes approach,
significant time is spent interviewing people for the selected
terms, building the gold standard, and running an exhaustive

search through the space of term disjunctions. In addition, the
filters rely on MeSH terms and publication types that must be
assigned before the filters can be used.

In contrast, the methods here are less labor intensive. First,
there is no selection of terms because these are implicit in
the training articles. Second, we have a framework for auto-
matic generation of a gold standard through the ACP
Journal Club that is reliable and reproducible. Manual review

F i g u r e 2. Eleven-point precision-recall curves compared with optimized sensitivity and specificity clinical query filters. X is
clinical query filter (right-most x) optimized for sensitivity and specificity (left-most x). DIAG = diagnosis; ETIO = etiology;
PPV = positive predictive value; PROG = prognosis; SVM = support vector machine.

Table 4 j McNemar’s Test p-Values Averaged over
Five Folds with Significance Tests

Category Filter Compared
Mean

p-Values
Permutation
Significance

Treatment Sensitivity ,0.0001 ,0.0001
Specificity 0.019 ,0.0001

Etiology Sensitivity ,0.0001 ,0.0001
Specificity 0.34 0.14

Prognosis Sensitivity ,0.0001 ,0.0001
Specificity 0.95 1.0

Diagnosis Sensitivity 0.07 ,0.0001
Specificity 0.90 1.0

The permutation significance is produced by random permutation
tests as described in the Methods section under Evaluation Criteria.
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is not needed as long as the ACP Journal Club is electronically
available. Finally, we use sophisticated classifiers that can
build models in four to eight hours (depending on model
and experiment design) on a Pentium IV, 2-GHz computer
with full term sets versus several days depending on the
number of selected terms with the exhaustive search of
term disjunctions.7

In an additional experiment, we compared the inclusion/
exclusion of manually assigned, labor-intensive MeSH terms
and publication types (NLM-assigned terms) as model input
features. We compared the ROC performance of a feature set
with inclusive NLM-assigned terms with a feature set with-
out both. The ROC curves in Figure 3 show that the reduced
feature set without NLM-assigned terms has ROC curves
comparable with those of the feature set inclusive of these
terms. Although we do not show the results here (see online
supplement at www.jamia.org for further details8), each aver-
age AUC was not significantly different for each feature set
using the Delong et al. method.31 The results suggested,
with our methods, we can make quality and content determi-
nations without the labor-intensive NLM term indexing pro-
cess. Note that we do not advocate abandoning human
indexing in general, but for this task, no additional benefit
is gained from manual term assignments.

Extensions
Another avenue to explore is the use of additional predictor
information. For example, we hypothesize that additional
information such as general word location, impact factors,
citation information, author locations, or user feedback infor-
mation may improve model performance.

We also plan to extend these models to areas outside internal
medicine. One approach is to build a gold standard that con-
siders articles in other specialties. Evidence-Based Medicine is
the sister journal of the ACP Journal Club that could be used
for a more general gold standard because its scope of review
covers all aspects of medicine.

Limitations
In general, the prognosis and diagnosis samples sizes are lim-
ited. We chose not to alter the ratio of positive to negative ar-
ticles to maintain the priors across all learning tasks and
produce realistic estimates of future performance. The small
priors for both these categories make learning difficult.
Nevertheless, with these sample sizes, our system performs
at least comparably with the clinical query filters in prognosis
and, in some cases, in diagnosis.

Another admitted limitation of our comparisons with the
clinical query filters is that the new models and filters were

F i g u r e 3. Title 1 abstract (TA) vs. Title 1 abstract 1 MeSH 1 publication types (TAM) performance comparisons. X is
clinical query filter performance at optimized sensitivity (right-most x) and specificity (left-most x). ROC = receiver operating
characteristic. SVM = support vector machine.
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built for the exact same goals but with different gold stan-
dards. Our comparisons simply show that the new models
implement the present gold standard better than the clinical
query filters. In the future, using an independent gold stan-
dard and evaluating both methods trained on independent
sets would strengthen this comparison.

A potential limitation of any information retrieval study is the
choice of gold standard. A gold standard is only as good as the
experts brought together to create it. Theuse of theACP Journal
Club articles meets our criteria, and we propose that currently
it is the best generalmethod to create such gold standards. The
ACP Journal Club articles are easily obtained from their Web
site, the cited articles are readily available for use by other re-
searchers, and the gold standard is created by recognized ex-
perts and editors in the field of internal medicine.

This work is a step toward more efficiently returning high-
quality articles. The work does not address explicitly the util-
ity of these models in a clinical setting or outside internal
medicine. Finally, the learning method’s built models are
constrained to one specific time period in internal medicine.

In Summary
Text categorization methods can learn models that identify
high-quality articles in specific content areas (etiology, treat-
ment, diagnosis, and prognosis) by analyzing MEDLINE
records in internal medicine using the operational gold
standard of articles that match the ACP Journal Club inclusion
criterion for methodological rigor. These learning methods
exhibit high discriminatory performance as measured by
the AUC. The performances are also comparable with or bet-
ter than the 1994 Boolean-based clinical query filters for each
category by direct comparisons of sensitivity, specificity, and
precision at fixed levels and by 11-point precision-recall com-
parisons. Polynomial SVMs had the best performance,
whereas linear SVMs came close in terms of AUC. We have
presented an efficient and improved means for identifying
high-quality articles in internal medicine.
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