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Abstract Samples of multiple complete genome sequences contain vast amounts of information

about the evolutionary history of populations, much of it in the associations among polymorphisms

at different loci. We introduce a method, Minimal-Assumption Genomic Inference of Coalescence

(MAGIC), that reconstructs key features of the evolutionary history, including the distribution of

coalescence times, by integrating information across genomic length scales without using an

explicit model of coalescence or recombination, allowing it to analyze arbitrarily large samples

without phasing while making no assumptions about ancestral structure, linked selection, or gene

conversion. Using simulated data, we show that the performance of MAGIC is comparable to that

of PSMC’ even on single diploid samples generated with standard coalescent and recombination

models. Applying MAGIC to a sample of human genomes reveals evidence of non-demographic

factors driving coalescence.

DOI: 10.7554/eLife.24836.001

Introduction
The continuing progress in genetic sequencing technology is enabling the collection of vast amounts

of data on the genomic diversity of populations. These data are potentially our richest source of new

information on evolutionary history. The challenge now is to figure out how to extract this informa-

tion – how to learn as much as possible about the history of populations from modern data sets of

many densely-sequenced individuals.

Perhaps the best-established approach to historical inference from genetic data is to fit demo-

graphic models to the site frequency spectrum (SFS) (e.g., Gutenkunst et al. (2009); Excoffier et al.

(2013); Liu and Fu (2015)). The SFS is easy to calculate, even from very large samples, and demo-

graphic models can be fit to it without a specific model of recombination, but it neglects all informa-

tion about how diversity is distributed across the genome, treating each site independently. This is a

natural approximation for samples sequenced only at a sparse set of weakly-linked loci, but in large

whole-genome samples much of the information is contained in associations among different poly-

morphisms. Because SFS-based approaches cannot use this information, the number of model

parameters they can reliably estimate is limited by the sample size, regardless of how much of the

genome is sequenced (Myers et al., 2008; Bhaskar and Song, 2014).

Recently, an alternative approach has been developed in which a hidden Markov model is used

to explicitly model recombination along the genome (the ‘sequential Markovian coalescent’, SMC or

SMC’, McVean and Cardin (2005); Marjoram and Wall (2006); Paul et al. (2011)), vastly increasing

the amount of information that can be gleaned from samples of a small number of individuals

(Hobolth et al., 2007; Li and Durbin, 2011; Harris and Nielsen, 2013; Sheehan et al., 2013;

Schiffels and Durbin, 2014; Steinrücken et al., 2015). But this requires modeling coalescence and

recombination throughout the analysis, and as a result becomes computationally intractable for large

samples (while still being far less computationally intensive than modeling the full ancestral
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recombination graph). Additionally, for an increasing number of populations, we have multiple geno-

mic sequences but know almost nothing about their natural histories, including plausible historical

demographies and patterns of recombination and selection; this is true even for some model organ-

isms (see Alfred and Baldwin (2015) and other articles in series). It is generally unclear how devia-

tions from the underlying models, e.g., past population structure or gene conversion, affect the

inferences of these methods.

Here we present a method for Minimal-Assumption Genomic Inference of Coalescence (MAGIC)

that infers the patterns of ancestry and recombination in an arbitrarily large sample of genomes

while making only minimal, generic assumptions about recombination, selection, and demography.

MAGIC finds approximate distributions of times to different common ancestors of the sample. These

distributions can then be used to fit and test potential models for the history of the population,

including the simplest model of a single time-dependent ‘effective population size’, NeðtÞ. MAGIC

strikes a balance between the SFS- and SMC-based approaches, using the distribution of diversity

across genomic windows of varying size to generate a description of the single-locus coalescent pro-

cess that contains far more information than the simple SFS without using a detailed model for

recombination.

Results

Approach
The key fact underlying MAGIC is that the relationship between the population parameters (such as

recombination rates, historical demography, and selection) and genomic data is entirely mediated

by the coalescent history of the sample (Figure 1a). We therefore take it as our goal to learn the

coalescence time distribution directly from the data without needing a model for the population

dynamics. Once one knows the coalescent history, the genomic data typically contains no additional

information about the population parameters (unless, e.g., the selective values of different alleles

are known), and one can fit or evaluate a wide range of models without having to re-analyze the full

data set every time. In simple cases, such as when the population is described by a single effective

population size, NeðtÞ, this can be done analytically (Gattepaille et al., 2016), while in general it can

be done via Approximate Bayesian Computation (ABC).

Essentially, MAGIC uses the variability in the density of polymorphisms across a wide range of

length scales to learn the genome-wide distribution of coalescent histories. This technique is inspired

by Li and Durbin (2011)’s method, PSMC, and its successor MSMC (Schiffels and Durbin, 2014),

which use the fact that SNPs tend to be dense in regions with a long time to the most recent com-

mon ancestor (TMRCA), and sparse in regions with short TMRCAs (Figure 1, top left and middle

left). Thus, the distribution of SNPs across the genome can be used to infer the distribution of local

coalescence times. But while PSMC and MSMC use models for coalescence and recombination to

assign a coalescence time to each locus, MAGIC estimates the genomic distribution of times directly,

bypassing the need for explicit modeling. To do this, MAGIC first splits the genome into windows

and finds the distribution of genetic diversity across windows, that is, the histogram of the number

of polymorphic sites per window of a given length (Figure 1, bottom left; Figure 6, top left). (This

can be seen as a simplified version of the ‘blockwise counts of SFS types (bSFS)’ introduced by

(Bunnefeld et al., 2015).) This histogram is then used to estimate the distribution of window-aver-

aged coalescence times (Figure 1, bottom right; Figure 6, bottom). For small windows, these times

are essentially the true single-locus coalescence times, but the inference is noisy due to the small

number of mutations in each window. For large windows, the inference of the window-averaged dis-

tribution is more precise, but this distribution is far from the single-locus distribution because win-

dows typically span multiple segments with different coalescence histories. The basic trick of MAGIC

is that rather than choosing one window length, it integrates the information gathered from a wide

range of different window lengths to find the small-length limit – the true single-locus distribution

(Figure 1, center right).

MAGIC’s accuracy is comparable to the state-of-the-art model-driven method MSMC

(Schiffels and Durbin, 2014) on small data sets that conform to MSMC’s assumptions (see ‘Single

diploid samples’ in ‘Results’). More importantly, it can also analyze larger samples, and can be useful

in analyzing data from populations with features (such as gene conversion, ancestral structure, or
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linked selection) that violate MSMC’s assumptions, either as a stand-alone inference method or as a

way of testing models inferred by other methods that include these features. MAGIC’s algorithm,

described in ‘Methods’ below, is designed to be as simple and modular as possible, allowing one to

incorporate additional assumptions in situations where more information is available. This also ena-

bles the inference of a wide range of parameters, including the distribution of map lengths of blocks

of identity-by-descent across the genome (Ralph and Coop, 2013). Finally, MAGIC can use the

dependence of the window-averaged distributions on window size to learn about the rate of recom-

bination and the variation in recombination rate and the coalescent process across the genome. The

variation in the coalescent process is particularly interesting because it is a signature of the effects of

non-demographic forces.
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Figure 1. Outline of approach. (a) Concept: we would like to infer the history of the population (top) from the sequence data (bottom), but the causal

connection between the two is entirely mediated by the coalescent history of the sample (middle). This suggests that it should be possible to extract

much of the coalescent information from the data without making strong assumptions about the population dynamics. (b) Schematic algorithm: MAGIC

first splits the sample into small windows and counts the polymorphisms within each window, then progressively merges pairs of adjacent windows

together (bottom left). For each window length L, the histogram of window diversity is used to estimate parameters of the distribution of the window-

averaged coalescence time TL (bottom right). Taking the limit of these as L goes to 1 gives the parameters of the distribution of the true coalescence

time T (top right), which are then used to fit and test models for the underlying dynamics.

DOI: 10.7554/eLife.24836.002
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Representing coalescence time distributions
For single diploid samples, the coalescent history is completely described by a single time at each

locus. Thus the pairwise coalescence time distribution could equivalently be described by the hazard

function (the pairwise coalescence rate, as in Schiffels and Durbin (2014)) or its reciprocal (the

‘effective population size’ NeðtÞ, as in Li and Durbin (2011)). However, when estimating the distribu-

tion from noisy data, the procedure that minimizes the error for one description will not in general

minimize the error for the others. We focus on estimating the coalescence time distribution itself

(rather than its hazard function or NeðtÞ), primarily because it naturally generalizes to arbitrary sets of

coalescent tree branch lengths for larger samples (see below). This also lets us emphasize that the

idea that the full coalescent can be described by a single NeðtÞ is a model that can be tested (as in

Figure 3 and the right panel of Figure 4). For plotting results from analyzing simulations (Figure 2

and Figure 3), we show cumulative distributions rather than densities so that we can plot the actual

coalescent histories of samples (black curves in Figure 2 and left panels of Figure 3), which consist

of discrete sets of events, and also because the density estimates are very poorly constrained by the

data (Ralph and Coop, 2013). For the analysis of human data, we plot the more familiar NeðtÞ (Fig-

ure 4, left panel).

We must also choose how to summarize coalescence time distributions within MAGIC’s analysis

(Figure 1, right-hand side). We will use the Laplace transform of the density, ~ptðzÞ. For a formal defi-

nition of this quantity and how we estimate it, see the section ‘Laplace transforms’ of the Methods

below. Intuitively, ~ptðzÞ represents what the homozygosity would be if the mutation rate had been

larger by a factor of z, e.g., ~ptð1Þ is the observed homozygosity, and ~ptð2Þ is what it would have been

if the mutation rate had been twice as high (Lohse et al., 2011). This means that ~ptðzÞ very roughly

corresponds to the probability of coalescing within ~ 1=ðz�Þ generations, where � is the mutation

rate, that is, large z tell us about the recent past while small z tell us about the distant past. The

mean coalescence time corresponds to z~ 1=bp, where bp is the observed heterozygosity of the sam-

ple. We choose this statistic both because of this natural interpretation and because it can be

obtained from the observed diversity distribution directly with only very weak assumptions, allowing

us to delay introducing stronger assumptions until the very last step of the analysis, when we invert

the transform to find the full coalescence time distribution (see Materials and methods below).

Single diploid samples
To validate our approach, we have tested MAGIC on single diploid samples generated under a

range of coalescent models simulated with ms (Hudson, 2002). MAGIC accurately infers the distri-

bution of coalescent times from samples with map length and polymorphism density similar to that

of a human genome (Figure 2, top two rows, solid curves; see Figure 9 and Methods for detailed

parameters and additional tests). MAGIC performs nearly as well as MSMC (Kolmogorov-Smirnov

distance to the true distribution of 5� 11% for the simulations shown, compared to 4� 11% for

MSMC). Both methods tend to smooth out sharp transitions in the coalescence distribution as a con-

sequence of regularization. The distribution of map lengths of blocks of identity by descent (IBD)

can be inferred with very high accuracy (Figure 2, top two rows, dotted curves), improving on

MSMC, which sometimes overestimates the amount of very deep coalescence, and correspondingly

erroneously estimates a large number of very short blocks. The part of the block-length distribution

estimated by MAGIC is complementary to the very long blocks that can be observed directly (as in,

e.g., Ralph and Coop (2013)). MAGIC is also accurate on genomes simulated with ms under a

model in which recombination is dominated by gene conversion (Figure 2, bottom row); this can be

seen as loosely corresponding to a primarily asexual population, with gene conversion representing

homologous recombination. In this case, MSMC’s recombination model breaks down and MAGIC’s

inferences are more reliable.

Larger samples
For samples of more than two haplotypes, the coalescent history at each locus is described by a

tree, rather than a single time. The space of possible trees grows very rapidly with the sample size,

so that even with long genomes it is impossible to directly estimate the full distribution. Instead,

MAGIC infers the distribution of some small set of features of the trees, such as mean pairwise dis-

tance and total branch length, chosen either because they are important in and of themselves or
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Figure 2. MAGIC accurately infers the distribution of coalescence times (solid curves) and lengths of blocks of identity-by-descent (IBD, dotted curves)

for pairwise data simulated with ms under several demographic scenarios (Figure 9): a single bottleneck (left column), repeated expansions and

contractions (middle), and recent admixture of two diverged populations (right). The coalescence time plots show the cumulative distribution, while the

IBD block-length plots show the survival function. When crossovers are frequent and gene conversion is rare (top two rows), MAGIC and MSMC are

comparably accurate for coalescence times. MAGIC very accurately infers the IBD block length distribution, while MSMC sometimes is inaccurate (e.g.,

‘Bottleneck’ scenario), but otherwise produces a curve nearly indistinguishable from MAGIC’s. For frequent gene conversion and rare crossovers

(bottom row), the details of the gene conversion process have a strong effect on the IBD block lengths, and neither method can infer their distribution,

but MAGIC can still infer the coalescence times. All simulations are of a genome consisting of 100 independent chromosomes, each 10
7 base pairs

long, with per-base mutation rate � and present population size N0 such that N0� ¼ 10
�3. Recombination is via crossovers occurring at rate � per base,

Figure 2 continued on next page
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because they are sufficient statistics for some model of the coalescent process. For example, MAGIC

can fit the basic time-dependent effective population size model by estimating the distribution of

pairwise coalescence times, and then check whether the fitted model correctly predicts the
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Figure 3. Coalescence time distributions and their Laplace transforms for a simulated population with ancestral structure, as inferred from samples of

intermediate and large size. Top row: sample size n ¼ 6 haplotypes. MAGIC accurately estimates the distribution of the pairwise coalescence time (top

left), and the Laplace transforms of the distributions of the total branch length and the lengths of the tips of the branches (top right, green and blue,

respectively). The gap between the estimated Laplace transforms (circles) and that obtained by simulating the NeðtÞ estimated from the pairwise

coalescence time distribution (green and blue dashed curves) suggests that the NeðtÞ model is inaccurate. The pairwise Laplace transforms are shown in

gray for comparison. MSMC’s inferences are less accurate. Bottom row: sample size n ¼ 100 haplotypes (too large for MSMC). The gap remains

between the estimated Laplace transform of the total branch length distribution and that derived from the pairwise NeðtÞ, showing that the coalescent

process cannot be described by a single NeðtÞ. However, the tip length distribution matches that predicted from the pairwise comparisons, showing

that the NeðtÞ model has predictive power for recent times.

DOI: 10.7554/eLife.24836.004
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distributions of other tree features. MAGIC is particularly suited for model-checking, since for all the

features beyond the basic pairwise coalescence time one can skip the final, most difficult step in the

algorithm – inverting the Laplace transforms – and simply compare the distributions at the level of

Laplace transforms.

We test this approach on a sample of six haplotypes from a recently admixed population simu-

lated with ms (demographic parameters in the last column of Figure 2 and Figure 9). MAGIC accu-

rately estimates the distributions of pairwise coalescence times, while MSMC is relatively inaccurate

(Figure 3, top left). MAGIC also accurately infers the Laplace transforms of the distributions of the

total branch lengths and the lengths of the tips of the full coalescent trees (Figure 3, top right).

Comparing these inferences to the predictions of the NeðtÞ models corresponding to the pairwise

inferences shows that MAGIC is more accurate than MSMC but is still missing features of the tree

distributions, indicating that the model is not a good description of the population history. (The dif-

ferences appear small in the plot, but are far larger than the uncertainties in the inferences and cor-

respond to substantial differences in the actual distributions.) This failure of the NeðtÞ may be why

MSMC is inaccurate in this case.

MAGIC’s running time on large samples is dominated by the time to read all the data through

memory, so it grows only linearly with sample size, meaning that the method can be run on essen-

tially arbitrarily large samples. MAGIC accurately estimates the distribution of pairwise times and the

Laplace transforms of the total branch length and tip length distributions in a sample of 100 haplo-

types from the same admixed population (Figure 3, bottom row). (Curves are not shown for MSMC

because it cannot analyze large samples; a sample size of eight from this population caused it to

crash.) The total branch length Laplace transform remains different from that predicted by the effec-

tive population size model, but the tip Laplace transform matches almost exactly, indicating that the

NeðtÞ model is accurately describing recent times (post-admixture, �t<10�4, roughly corresponding

to z>~ 10
4) but not ancient times (pre-admixture, �t>10�4, roughly corresponding to z <~ 10

4 ), as

expected.
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Figure 4. Inferred evolutionary history of Yoruban individuals. Left: Inferred ‘effective population size’ NeðtÞ for the nine unrelated Yoruban individuals

from the 69 Genomes data set (Drmanac et al., 2010). MAGIC’s inference from the full sample is similar to MSMC’s inference from each individual,

differing mostly in the distant past where there is limited data. Dotted lines show inference from samples simulated under the inferred NeðtÞ’s,

indicating that MAGIC’s inference in the distant past is likely to be more accurate than MSMC’s, but that its inference of the fine-scale structure in NeðtÞ

is unreliable. Right: Laplace transforms of the distributions of different coalescence times for the same sample. The pairwise coalescence time

(corresponding to Ne in the left plot) is in gray, while the total branch length is in green and the distribution of tip lengths is in blue. Points show the

values inferred directly by MAGIC, while solid and dashed curves show the results of simulations based on the NeðtÞ curves inferred by MAGIC and

MSMC, respectively. The pairwise NeðtÞ accurately describes the distribution of total branch lengths, but overestimates the tip length Laplace transform

(i.e., underestimates the tip lengths). MAGIC’s overestimate roughly corresponds to a ~ 10% underestimate of the median tip length, while MSMC’s

corresponds to a ~ 30% underestimate, indicating that both underestimate recent NeðtÞ from pairwise data.
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In the example above, we have only inferred the distributions (or their Laplace transforms) of pair-

wise coalescence times, total branch lengths, and tip lengths. But to be able to consider a wide

range of models for the population, one must be able to estimate a wide range of parameters.

MAGIC can infer the distribution of the total length of any specified set of tree branches. For a given

set, MAGIC first filters the polymorphisms in the original data for those that correspond to mutations

on the desired branches, and then proceeds with the same analysis as in the basic case of a single

diploid sample. For example, to find the distribution of total branch length, MAGIC analyzes the

genomic distribution of all polymorphic sites, while to find the distribution of tip lengths, it only

looks at singletons on specific haplotypes. For data with no linkage information, the tree features

that can be estimated correspond to components of the site-frequency spectrum (SFS), but while

the SFS just gives estimates of the means of the lengths of different sets of branches, MAGIC infers

full distributions.

Human data
We used MAGIC to analyze the nine diploid sequences from unrelated Yoruban individuals in Com-

plete Genomics’ ‘69 genomes’ data set (Drmanac et al., 2010). The pairwise coalescence time distri-

bution inferred from the heterozygosity distribution was similar to that obtained with MSMC run on

individual samples. These distributions are plotted in the left panel of Figure 4 as ‘effective popula-

tion sizes’ (solid lines), while the underlying Laplace transform estimate is plotted in the right panel.

The distributions differ mainly in the distant past where the data is limited. The fact that MSMC finds

results from single individuals similar to those that MAGIC finds from the whole sample shows that

MSMC is the more powerful method in this case. (MAGIC does not consistently detect the hump in

Ne at 2�t ~ 3� 10
�4 when run on single individuals.)

We re-ran the analysis on samples simulated with ms using the inferred NeðtÞ trajectories; the

results are shown in the left panel of Figure 4 as dotted lines. These show that MAGIC’s results are

more accurate than MSMC’s for the distant past: MAGIC recaptures a simulated ancient decrease in

NeðtÞ (orange) and partially recaptures a large ancient NeðtÞ (blue), while MSMC misses the ancient

decrease in NeðtÞ (black). The fine-scale fluctuations that appear in MAGIC’s inferred Ne for 2�t ~ 2�

10
�4 are somewhat puzzling. The fact that MAGIC reproduces a smooth simulated trajectory (blue)

and that MSMC fails to capture simulated fluctuations (black) would seem to suggest that they are a

real feature of the data, but the fact that MAGIC also fails to capture simulated fluctuations (orange)

argues against this. Instead, the fluctuations may be an artifact caused by some non-demographic

feature of the real data that is missing in the simulations, potentially related to biases in sequencing

coverage or SNP-calling.

We also inferred the Laplace transforms of the distributions of two other coalescence times: the

total branch length, and the lengths of the tips of the coalescent trees (Figure 4, right), and com-

pared them to ms simulations of the inferred NeðtÞ demographies. The total branch length is close to

that predicted by pairwise NeðtÞ, but the tips of the trees are substantially longer. This is consistent

with the fact that the pairwise inferences do not detect the recent Yoruban population growth,

that is, underestimate the recent effective population size. (It could also be a signature of false-posi-

tive singleton SNPs.) Note that even if we did not know that the Yoruban population had been

recently increasing, MAGIC’s result for the tips would tell us that the estimates of the left tail of the

pairwise coalescence time distribution were inaccurate. To reconcile the results, one could try to find

an NeðtÞ trajectory that fits all the points in the right panel of Figure 4. This could be done via ABC

as in ABLE (Beeravolu Reddy et al., 2016), simulating the coalescent under different NeðtÞ and

accepting trajectories that fit better. Unlike in ABLE, all the points are single-locus statistics, so these

could be just single-locus simulations with no recombination, greatly reducing the computational

requirements. Alternatively, one could simply try another inference method that is better able to

resolve recent times (e.g., Terhorst et al. (2017)’s SMC++) and then check whether the resulting

NeðtÞ matches MAGIC’s inferences. Both of these approaches could also be generalized to include

coalescents that cannot be described by an NeðtÞ (e.g., for population structure, one could include it

in an ad hoc ABC model, or one could use an existing method such as ABLE and test its results).
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Inferring differences among chromosomes: recombination and
coalescence
MAGIC’s coalescence-time inference is designed to be robust to the form of recombination, but it

can also be used to learn about recombination. To do this, rather than simply taking the small-win-

dow limit of Laplace transforms of the window-averaged coalescence time, one can look at how they

change as a function of window size. In general, besides the small-window limit in which almost all

windows lie within IBD blocks, there should also be a long-window limit in which almost all windows

contain many IBD blocks. In between these two there is a transitional regime where the window

length lies within the bulk of the distribution of IBD block lengths; finding this transitional length

gives an estimate of the recombination rate.

Because the transition from the small-window to the large-window limit is not very sharp (Fig-

ure 6, bottom right), this estimate of the recombination rate is very rough. A more precise estima-

tion requires a specific model of recombination and coalescence, like the one used by MSMC. But

even if one does not have a good model for the dynamics of a population, one can make the

assumption that all autosomes are experiencing roughly the same dynamics, whatever they are. (This

assumption is implicit in all demographic inference from full genomes.) In that case, the dependence

of the Laplace transforms of the window-averaged coalescence time on window length should be

similar across autosomes, and differences in average recombination rates across chromosomes

should be detectable as rescalings of the window lengths. MAGIC can therefore use these rescalings

to precisely estimate relative recombination rates.

As an example of this approach, we analyze each autosome across the nine unrelated Yoruban

individuals in the data set. We find that the Laplace transforms of their window-averaged coales-

cence time distributions all show a similar dependence on window length (Figure 5, top left). Up to

a rescaling in length, the autosomes appear very similar (Figure 5, top center), with the exception of

19. The collapse of the remaining 21 autosomes suggests that they differ primarily in the amount of

very recent coalescence (rescaling the heterozygosity) and in average recombination rates (rescaling

the window lengths). The scaling factors for the window lengths therefore are an estimate of relative

recombination rates, and are indeed very close to values measured by Kong et al. (2002) (Figure 5,

bottom), with the exception of chromosome 19, as expected.

It is no surprise that chromosome 19 is an outlier in coalescence: it has a much higher gene den-

sity than the other chromosomes (Grimwood et al., 2004), and is therefore likely to have a much

higher fraction of loci under selection and affected by linked selection (Hernandez et al., 2011).

However, the other autosomes do not have identical gene densities, and there are several large

regions with unusual patterns of diversity, such as the MHC locus and flanking regions on chromo-

some 6. Indeed, even after rescaling, there is still more residual variation in coalescence across the

21 similar autosomes than would be expected by chance under the genomic coalescence time distri-

butions inferred by MAGIC and MSMC (Figure 5, top right). This variation must be due to non-

demographic factors driving coalescence; the fact that they are readily detectable suggests that one

should be cautious in interpreting the details of the results of model-based inference in terms of

demography.

Discussion
The MAGIC algorithm bridges the gap between fast but limited SFS-based approaches to demo-

graphic inference and model-based approaches that are limited to small sample sizes, allowing far

more information to be extracted from large, high-coverage samples. To see the difference between

MAGIC and an SFS-based approach, consider the information that can be gained from sites with sin-

gleton polymorphisms. Under an approach that treats sites independently, these can be summarized

by one number – their genomic frequency – which can only be used to estimate one number – the

mean total tip length of coalescent trees. MAGIC, in contrast, also considers how clustered the sites

are over a wide range of lengthscales, allowing it to estimate not just the mean, but the whole distri-

bution of total tip lengths.

While this manuscript was in preparation, two other methods extending the SFS by using linkage

information were posted. Terhorst et al. (2017)’s SMC++ uses the SFS to augment the pairwise

coalescent inference approach of PSMC; Beeravolu Reddy et al., 2016’s ABLE uses ms to fit demo-

graphic models to Bunnefeld et al., 2015’s ‘blockwise SFS’ statistics. These methods share MAGIC’s
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Figure 5. Integrating diversity patterns across length scales allows to compare recombination rates among chromosomes and to test whether the

observed patterns can be explained by a single shared demographic history. Top left: One value of the Laplace transform of the window-averaged

coalescence time distribution as a function of window size for each autosome. The curves for most autosomes appear similar, but shifted both vertically

and horizontally. Top center: Much inter-autosomal variation can be explained by variation in recombination rates: the curves are similar under a

rescaling of window lengths (a horizontal shift such that the midpoints L� of the curves align), except for chromosome 19 (yellow), which appears to

have a different pattern of coalescence. Top right: There is substantial variation in the asymptotes that cannot be explained by variation in

recombination rates, and is more than expected from intrinsic coalescent stochasticity. Plot shows the interquartile range (IQR) of the Laplace transform

Figure 5 continued on next page
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aim of taking advantage of linkage information for large samples, and as mentioned above, ABLE’s

initial summary of the genomic diversity is related to MAGIC’s. The fundamental difference is that

both SMC++ and ABLE use explicit coalescence and recombination processes (SMC’ for SMC++,

ms’s ancestral recombination graph for ABLE) to fit specified demographic models, while MAGIC

focuses on just estimating the coalescence time distributions.

MAGIC is designed to be complementary to the existing inference methods, which largely rely on

fitting simplified demographic models that neglect selection (Schraiber and Akey, 2015). Because

MAGIC makes no assumptions about whether coalescence is driven by demography or selection,

and only minimal assumptions about mutation and recombination, it can be used as a first-pass anal-

ysis of genomes from species whose natural histories are not already well-known, with its results

informing the choice of more detailed, model-based methods that use additional information out-

side of the sample sequences. Conversely, MAGIC can be used for a necessary final step missing in

many demographic inference projects: model checking. To evaluate a model produced by other

methods, one can use MAGIC to estimate additional parameters beyond those used to fit the

model, and then test whether the model reproduces those values. If it does, this can be a crucial

sign that the model is capturing important features of the underlying history, while if it does not, the

deviations can point to ways in which the model needs to be adjusted (as with the inferences of the

recent past of the Yoruban population above).

Finally, MAGIC’s estimated Laplace transforms could also be used directly to fit population mod-

els (including non-standard ones incorporating, for instance, linked selection, that are not imple-

mented in existing inference methods). Because MAGIC converts the genomic distribution of

diversity into the Laplace transforms of single-locus coalescent times, fitting models to its results

requires only single-locus coalescent simulations or calculations, which are much less computationally

intensive than multi-locus ones. They can thus reasonably be found analytically or via Approximate

Bayesian Computation for many models.

Even for populations for which there are good a priori models, the minimal-assumption approach

has advantages. Because MAGIC has a modular structure and is not tailored to a specific population

model, it can be used to quickly analyze many populations with very different dynamics, with each

population’s model incorporated in just the last step of the analysis. Similarly, for any given popula-

tion, MAGIC can estimate many different parameters describing coalescence and recombination to

answer multiple questions about the historical dynamics. Finally, not using any explicit model of coa-

lescence and recombination keeps MAGIC’s algorithm simple enough that it runs quickly even on

very large sample sizes, and that users familiar with Python can understand and modify it.

There are a number of potential modifications to MAGIC that users could make. At a minimum,

there are likely to be technical improvements to the estimation methods that would allow it to get

more information out of the data. More interestingly, the range of parameters estimated by MAGIC

could be extended. In particular, MAGIC currently infers the distributions of features of coalescent

trees that can be found from unphased, unpolarized polymorphism data, but it could be extended

to take advantage of this extra information when available. It would also be possible to extend

MAGIC so that it would infer joint distributions of different coalescence times, rather than just all the

marginal distributions. This would greatly increase the amount of information that could be

extracted from extremely large data sets such as are likely to be available in the near future.

Figure 5 continued

of the coalescence time distribution across chromosomes for the actual data as well as simulations of the pairwise coalescent histories inferred by

MAGIC and MSMC (Figure 4). (Note that IQR, unlike variance, is insensitive to outliers.) Bottom: The rescaling of window sizes needed to align the

different autosomes gives an estimate of their relative recombination rates which is very close to the values obtained by Kong et al. (2002) (‘True’). For

chromosomes other than 22, the inferred error bars are smaller than the size of the markers.

DOI: 10.7554/eLife.24836.006
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Materials and methods

Diversity across genomic windows
A sample set of genomes will comprise many blocks of sequence with different coalescent histories;

by looking at the distribution of genetic diversity across blocks, one can estimate the coalescence

time distribution of the population the sample was drawn from. Li and Durbin (2011) and
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Figure 6. Example of converting the distribution of SNPs to the coalescence time distribution. Data are from the simulated ‘bottleneck’ demography

(Figure 2 and Figure 9, left columns). Top left: Distribution of SNP densities across windows of different lengths, normalized by the heterozygosity

bp » 1:3� 10
�3. The width of a bar represents the fraction of windows with a given SNP density. The densities are shown on an arcsinh scale

(approximately logarithmic for large values but linear for small values). At short lengths, the distribution is concentrated at zero, while at long lengths it

is bunched near the mean, with the best spread in between. Top right: The Laplace transform ~ptL ðz=LÞ of the window-averaged coalescence time

distribution ptL as a function of window length L and Laplace transform variable z. Points show the estimates derived from the SNP density distribution

(using Equation 3, with error bars given by Equation 4), curves are sigmoid fits (Equation 5). For small z (long times), small windows can be used to

estimate the left asymptote ~ptðzÞ, while for large z (short times), the estimates from small windows diverge (missing points with L � z)) and longer

windows need to be used. Typical coalescence times correspond to bpz~ 1 (blue-green). Bottom left: Laplace transform of the coalescence time

distribution. Points are the left asymptotes of the ~ptL ðz=LÞ curves in the top right panel. Black curve shows the true transform, magenta curve shows

MAGIC’s fitted distributions (the gamma mixture and piecewise exponential forms give indistinguishable curves), cyan curve shows the Laplace

transform of MSMC’s estimated coalescence time distribution. All the curves are close, but differ slightly for very large z, corresponding to very recent

times, with MSMC also differing for small z (ancient times). Bottom right: Same as top right, rescaled to show that as z increases, longer windows are

sufficient to accurately estimate ~ptðzÞ. But the increase in the minimum sufficient window length is slower than the increase in the minimum length for

which ~ptL ðz=LÞ can be accurately estimated (top right, leftmost points), putting a limit on the maximum z for ~ptðzÞ can be estimated (bottom left,

rightmost point).

DOI: 10.7554/eLife.24836.007
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Schiffels and Durbin (2014) try to do this by considering all possible boundaries between the blocks

using a hidden Markov model. However, block boundaries are only easy to identify when mutation

rates are much larger than recombination rates, which is generally not the case, and describing every

possible block becomes impractical for larger sample sizes as the number of blocks proliferates.

Instead, we simply divide the genome into windows of a fixed length L, and consider the distribution

of histories of windows. MAGIC estimates the distribution of a single coalescence time (i.e., coales-

cent tree parameter) T across genomic positions x. For single diploid samples, TðxÞ is the total

branch length (twice the time to the most recent common ancestor at position x) and completely

characterizes the coalescent history. For larger samples, MAGIC can be used to estimate the distri-

butions of multiple statistics one at a time.

We assume the infinite sites model, in which each mutation occurs at a unique locus. Under this

model, the diversity (e.g., heterozygosity in a single diploid sample) in a window of length L starting

at position x0 has a distribution that depends only on the window-averaged coalescence time, TL
defined as

TL �
1

L

Xx0þL�1

x¼x0

TðxÞ: (1)

If L is smaller than most block lengths, then windows will typically lie within blocks, and the distri-

bution PTL of TL will be close to the distribution PT of T. For very large L, each window will average

over many blocks, and PTL will have a narrow support around the mean of PT . Usually, there will be a

wide range of intermediate values of L for which windows lie inside long blocks but cover multiple

short blocks. Ideally, we would like to use information from windows with lengths throughout this

range, preferentially selecting the ones that lie inside long blocks.

Given that PTL approaches PT , as L decreases, one might be tempted to take L to be as small as

possible, but the problem of course is that we cannot see TL directly; we need to infer it from the

number of SNPs in the window. Given TL, and assuming a constant mutation rate � per base, the

number of SNPs will be approximately Poisson-distributed with mean �LTL. (Here we are assuming

that �T is always small enough that each base has only a small chance of having mutated; this allows

us to approximate the underlying sum of binomially-distributed random variables with a Poisson that

depends only on TL.) The smaller L is, the lower the signal-to-noise ratio in the number of SNPS will

be and the less power we will have to distinguish different values of TL. Thus, we expect that we will

get the most information about PT from an intermediate value of L, and should be able to do better

still by integrating information from multiple values of L.

The total probability that there are n SNPs in a window of length L is the average of the Poisson

distribution over all possible values of TL:

PLðnÞ ¼ e�tLt
n
L


 �
tL
=n!; (2)

where tL is the window-averaged coalescence time scaled such that it is equal to the expected num-

ber of SNPs in the window: tL � �LTL:PL is a Poisson mixture distribution, with mixing distribution

given by PtL
, the cumulative distribution function of tL, i.e., the fraction of the genome that is

expected to have coalesced by a given scaled time. The observed SNP count distributions cPL thus

give us information about the window-averaged coalescence-time distributions PtL
. We could try to

estimate the full distribution PtL
, but we are primarily interested in the true single-locus coalescence-

time distribution Pt (where t� t1 � �T). We will therefore focus on estimating just features of PtL

that can then be combined to estimate Pt.

Laplace transforms
We need to choose which set of parameters describing PtL

to estimate. The Laplace transform

~ptLðzÞ � e�ztLh i, evaluated at a set of points fzjg, is a natural choice, as it is closely related to the

diversity distribution (Lohse et al., 2011): Equation 2 shows that ð�1ÞnPLðnÞ is the nth Taylor coeffi-

cient of ~ptLðzÞ about z ¼ 1. This has two implications. First, the similarity to the proportion of homozy-

gous windows PLð0Þ ¼ e�LtLh i means that the Laplace transform has a natural interpretation as an

estimate for the proportion of windows of length L that would be homozygous if the mutation rate
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were multiplied by z. (It is also closely related to the distribution of lengths of IBD blocks – see

below.) Second, we can quickly and easily estimate ~ptL using the plug-in estimator:

c~ptLðzÞ ¼
X¥

n¼0

cPLðnÞð1� zÞn: (3)

The estimate lt of the Equation 3 transform will be accurate for z close to 1, but will blow up for

large z – we cannot accurately estimate the amount of very recent coalescence. To make this precise,

we need to estimate the error in Equation 3 due to the stochastic mutation accumulation process.

But this depends on the unobserved distribution ptL , so we will need a rough estimate of this distri-

bution. We use Ghosh et al., 1983’s estimator d5 to estimate the value of tL for every window from

the observed number of SNPs n; roughly, this gives btLðnÞ»n, with a correction given by their Equa-

tion (2.17) that slightly shrinks the estimated values. (This shrinkage improves the estimate for small

values of n.) For n¼ 0, where d5 would give btL ¼ 0, implying that mutations could never occur, we

adjust the formula to btLð0Þ ¼ logð2Þ=K0, where K0 is the number of windows with 0 SNPs, to account

for the fact that coalescence times may not be exactly 0. We then calculate the standard error that

would be introduced by the stochastic mutation accumulation process under cPtL
:

cs2 c~ptLðzÞ
h i

¼
1

K
EcPtL

e�zð2�zÞtL � e�2ztL

h i
; (4)

where K is the total number of windows. The accuracy of Equation 3 and Equation 4 could be

improved by using more sophisticated estimators, but the current ones are the easiest to compute.

Combining length scales
To combine information from different window lengths, we need to correct for the increase in win-

dow-wide mutation rate �L. We can therefore consider the quantity ~ptL ðz=LÞ as a function of L, hold-

ing z fixed, as shown in the bottom panels of Figure 6. When PTL is nearly independent of L, this

quantity should be nearly constant. (To see this, note that ~ptLðz=LÞ ¼ e�z�TLh i, with no explicit L

dependence.) This is the case for very large L, when each window averages over many coalescent

blocks, and for very small L, where each window falls within a coalescent block and PtL
approaches

Pt, the distribution we are interested in. We therefore fit a sigmoid curve (specifically, Richards’

curve) to c~ptL ðz=LÞ as a function of logðLÞ,

~ptLðz=LÞ»azþ
bz� az

1þ L=L�ð Þ�cz½ �
1=nz

;with az;bz 2 ½0;1�; cz;dz;nz > 0; L� > 1; (5)

and take the left asymptote az as an estimate of ~ptðzÞ. The right asymptote bz is the long-window

limit, and can therefore be estimated directly from the genomic density of SNPs bp : bz ¼ e�bpz. (bp is

the heterozygosity in the basic case when T=2 is the pairwise TMRCA, but more generally it is the

density of SNPs corresponding to the branch statistic being estimated.) To fit the remaining parame-

ters, we use the curve_fit function in SciPy’s optimize package on the lowest-L points that have small

estimated errors. curve_fit also returns a standard error cs2ð~ptðzÞÞ, estimated under the assumption

that the errors in c~ptLðz=LÞ are independent for different values of L. This is obviously not true (all esti-

mates are from the same set of mutations), but even for lengthscales that are only separated by fac-

tors of 2, the correlations in the error appear to be small in simulations, giving final error bars of

roughly the right magnitude. While az contains the information about the single-locus coalescent,

the values of other parameters, particularly L�, are informative about recombination – see ‘Inferring

recombination rates’ and Figure 5.

The sigmoid form sigmoid is flexible enough to fit all of the simulated and real data that we have

examined, but we only trust our estimate of ~ptðzÞ if the data are close enough to the left asymptote

so that the estimate is not very sensitive to the choice of functional form. Effectively, this means that

the estimate is close to c~ptLðz=LÞ for the smallest L for which the estimated error bars are small, with

corrections based on the next few higher lengthscales. But this smallest L depends on z, so while for

any given value of z only a few lengthscales are important, every lengthscale is important for estimat-

ing the Laplace transform for some z. Short lengthscales are useful for small z (i.e., long coalescence
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times), while long lengthscales are useful for large z (short coalescence times) (Figure 6, bottom pan-

els). To see why this is, recall that our estimate c~ptL is most accurate for arguments near 1, so for each

z our most accurate estimate of ~ptLðz=LÞ comes from windows of length L~ z. Our smallest window

size L0 therefore puts a lower limit on the values of z for which we can estimate ~ptðzÞ, that is, an

upper limit on the times we can characterize. Similarly, there is an upper limit on the z values (lower

limit on timescale) that we can resolve. This can occur at the value of z~ L at which the windows

become so large that we only have a few per chromosome and no longer have good statistics, or, as

in Figure 6, at values such that the windows are so long that even the most recently-coalesced ones

cover multiple recombination breakpoints, that is, ~ptLð1Þ is far from the asymptote ~ptðLÞ.

Figure 7. Comparison of the functional forms for the coalescence time distribution. The inferred piecewise exponential (solid magenta) and gamma

mixture (dashed purple) distributions are very similar, but where they differ, the piecewise exponential form is closer to the true distribution (black).

Simulations are the same as shown in Figure 2. The two forms’ predicted block-length distributions (dotted curves in Figure 2 are indistinguishable.

DOI: 10.7554/eLife.24836.008
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Figure 8. Limits on inferring the Laplace transform of simulated pairwise coalescence distributions. Symbols and colors are as in the bottom left panel

of Figure 6. Top: MAGIC can usually accurately infer the Laplace transform from 10
8 sequenced bases (top row), but often fails when the data is limited

to 10
7 bases (bottom row, right two panels). Even under limited data, the inferences that it does manage to make remain accurate (bottom row, left

panel). Other simulation parameters are as in the top row of Figure 2. Bottom: MAGIC can infer most of the Laplace transform when the crossover rate,

�, is less than the mutation rate, � (left two panels), but for � > � (right panel), it becomes limited to large z. Simulation parameters are as in the top left

panel of Figure 2, with � increased.
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Coalescence-time distributions
Once we have estimates for the Laplace transform of the coalescence time distribution at a set of

fzjgj¼1;...;J , we would like to invert the transform to obtain pt. The moments of t are trivial to find, sim-

ply by taking derivatives of ~ptðzÞ at z ¼ 0, but beyond the first moment these tend to be dominated

by rare, deep coalescence events and so are not informative about the bulk of the distribution.

Unfortunately, inverting Laplace transforms is a fundamentally hard problem (Epstein and

0.2

0.1

0.3

0.1

0.2

0.2

0.2

0.2

0.2

0.1

1.9

Bottleneck Repeated bottlenecks Admixture

Figure 9. Demographic scenarios simulated. All time intervals are in units of 4N0. In the ‘bottleneck’ and ‘repeated bottlenecks’ scenarios, the

population grows and shrinks exponentially at rate 10=ð4N0Þ.
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Schotland, 2008), and we need to assume some kind of parametric form for pt. We have imple-

mented two possibilities in MAGIC.

First, one can assume that pt can be written as a mixture of gamma distributions:

pGM
t

ðtÞ ¼
XbðJþ1Þ=3c

i¼1

ai
tki�1e�t=�i

GðkiÞ�
ki
i

; (6)

where
P

i ai ¼ 1 and all ai, ki, and �i are positive. This can also be extended to include a possible

point mass at t¼ 0 when estimating the distribution of features for which it is possible that some

trees will have a value of exactly 0. For instance, in a sample of 10 haplotypes, there will typically be

some loci for which the coalescent tree has no branches that are ancestral to exactly 5 loci. (More

generally, this should be considered when estimating the distribution of lengths of branches that are

ancestral to exactly k out of sample of n individuals, for any n > k > 3.) Alternatively, one can assume

that pt can be written as a piecewise-exponential function, as in MSMC and PSMC:

pPE
t
ðtÞ ¼ ciðtÞ exp �ciðtÞðt� tiðtÞÞ�

XiðtÞ�1

j¼0

cjðtjþ1 � tjÞ

" #
; (7)

where cj > 0, 0¼ t0 < t1 < � � � < tJ�1 < tJ ¼¥, and iðtÞ ¼maxfijti < tg. For pairwise coalescence times,

ciðtÞ has a natural interpretation as the instantaneous coalescence rate, that is, the inverse of NeðtÞ.

Both of these forms have the computational advantage of having analytic Laplace transforms:

~ptðzÞ ¼

PbðJþ1Þ=3c
i¼1

aið1þ �izÞ
ki ðgammamixtureÞ

PJ�1

i¼0
e
�zti�

Pi�1

j¼0
cj tjþ1�tjð Þ

1þ z
ci

� ��1

1� e� ciþzð Þ tiþ1�tið Þ
� �

ðpiecewiseexponentialÞ;
(8)

with an additional constant term if a point mass at t¼ 0 is included. This means that we can simply fit

Equation 8 to the values b~ptðzjÞ
n o

without having to deal with inverse Laplace transforms directly.

We use the basin-hopping optimization algorithm implemented in SciPy to find the parameters that

minimize the scaled squared error
P

j ~ptðzjÞ� d~ptðzjÞ
� �2

=cs2ð~pTðzjÞÞ. For the gamma mixture, we opti-

mize fci;ki; �ig. For the piecewise exponential, we fix the ftig to be evenly spread in log space

between 1=ð2zJÞ and 1=z� where ~ptðz�Þ»0:95 and optimize the rates fcig, with a quadratic penalty on

logðciþ1=ciÞ for regularization. These forms are flexible enough to fit all the data that we have tried

(see, e.g., Figure 6, bottom left – the two forms give indistinguishable curves). The piecewise-expo-

nential form is better-suited for estimating NeðtÞ from pairwise coalescence times, and appears to

tend to be more accurate in the tails of the distribution (Figure 7); we have used it in all curves

except the ones in Figure 7 specifically labeled as showing the gamma mixture form.

Block-length distributions
Identical-by-descent (IBD) blocks are stretches of the genome that have not undergone recombina-

tion since the common ancestor of the block. The distribution of block lengths can be used to infer

patterns of relatedness and ancestry (Li and Durbin, 2011; Ralph and Coop, 2013), but it is hard to

measure except for long blocks with very recent common ancestors, because the recombination

events are not directly observable. Under the standard assumptions that coalescence is mostly

driven by neutral processes (rather than linked selection) and that recombination primarily occurs via

crossovers, the distribution of the genetic map lengths of these blocks across the genome is closely

related to the Laplace transform of the coalescence time distribution:

Pðrblock>rÞ ¼�~p0TðrÞ=E T½ � ¼ ~p0TðrÞ=~p
0
Tð0Þ: (9)

We can estimate the block-length distribution in Morgans simply by approximating the derivative

of ~pT , a much easier problem than inverting the transform. If we want to convert map lengths to

numbers of bases, we need to estimate the crossover frequency per base. The dependence of ~ptL on

L (i.e., L� in Equation 5 above) provides a rough estimate; MSMC gives a more precise one. block-

length gives the distribution of lengths of blocks that are not interrupted by even ‘ghost’ recombina-

tion events where the coalescent tree does not change ([Marjoram and Wall, 2006]’s ‘R class’ of
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events). In the simplest case of a single diploid sample from a well-mixed population evolving neu-

trally under the Kingman coalescent, these ghost events can be ignored by simply scaling all recom-

bination rates by 2=3, but in general they must be included, even though they are not directly

observable.

Required sequence length and polymorphism density
For MAGIC to accurately estimate the probability of coalescence within a time interval, the underly-

ing genomic data must contain many regions that coalesced within that interval, and these regions

must have enough polymorphisms to put reasonable limits on their coalescence times. For these to

be true, there must be at least some minimum length of sequence, and recombination must not be

too frequent relative to mutation (or else regions short enough to have a single coalescent history

will not contain multiple polymorphisms). To explore this first condition, we tried decreasing the

amount of simulated data in Figure 2 from the original 109 bases. MAGIC was consistently able to

infer the Laplace transform (and therefore the probability distribution) when using only 10
8 bases

(i.e., approximately one human chromosome), but when using just 107 bases succeeded in only some

simulations (Figure 8, top). To explore the second condition, we re-simulated the ‘bottleneck’ his-

tory with increasing values of the crossover rate, � (and without gene conversion). MAGIC accurately

inferred the full Laplace transform until crossovers became more frequent than mutations, �>~� (Fig-

ure 8, bottom), at which point it was only able to infer for small values of z, where the inference pri-

marily depends on short windows (Figure 6, right panels).

Implementation
The code for MAGIC is written in Python and is available at https://github.com/weissmanlab/magic

(Weissman, 2017). It uses the same input format as MSMC and the msmc-tools suite. A copy is

archived at https://github.com/elifesciences-publications/magic.

Data processing
We use the 69 Genomes Diversity Panel from Complete Genomics (Drmanac et al., 2010), and use

msmc-tools (Schiffels and Durbin, 2014) to turn the data into a list of SNPs. We split the genome

into windows of 80 bp, count the number of SNPs in each window, and then repeatedly merge all

windows in pairs and re-count to get the SNP count distribution at successively larger length scales

(Figure 1, bottom left; Figure 6, top left). (To correct for uneven sequencing coverage across win-

dows, all windows with <80% coverage were dropped, and all with >80% coverage were down-sam-

pled to 80%.) This gives us SNP count distributions at a range of length scales for every chromosome

of every individual in the data set.

Simulated data
All coalescent simulations were done in ms (Hudson, 2002). To make the simulations computation-

ally tractable, genomes were assembled from independently simulated ‘chromosomes’ of 107 bases

each.

For the test demographic scenarios in Figure 2 and Figure 3, the per-base mutation rate was

� ¼ 10
�3=ð4N0Þ. (ms is parametrized in terms of the present population size, 2N0.) For the ‘bottle-

neck’ scenario, the demography was given by the command ‘-eG .3 10 -eG .4–10 -eG .6 0’; for

‘repeated bottlenecks’, by ‘-eG .1–10 -eG .3 10 -eG .5–10 -eG .7 10 -eG .9–10 -eG 1.1 10 ”; and for

‘admixture’, by ‘-es .1 1 .5 -ej 2 1 2’. See Figure 9 for schematics. For the pairwise simulations, each

sample consisted of 100 chromosomes with recombination rates as listed in Figure 2. For the larger-

sample simulations in Figure 3, each sample consisted of 10 chromosomes with per-base rate of

crossovers � ¼ �=5, and per-base rate of initiation of gene conversion g ¼ �=20 with mean tract

length l ¼ 1kb.
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