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Abstract

Most biomolecular modeling energy functions for structure prediction, sequence design, and 

molecular docking, have been parameterized using existing macromolecular structural data; this 

contrasts molecular mechanics force fields which are largely optimized using small-molecule data. 

In this study, we describe an integrated method that enables optimization of a biomolecular 

modeling energy function simultaneously against small-molecule thermodynamic data and high-

resolution macromolecular structural data. We use this approach to develop a next-generation 

Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved 

electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably 

improved in their ability to describe large-scale energy landscapes by incorporating both small-

molecule and macromolecule data. The energy function improves performance in a wide range of 

protein structure prediction challenges, including monomeric structure prediction, protein-protein 

and protein-ligand docking, protein sequence design, and prediction of the free energy changes by 

mutation, while reasonably recapitulating small-molecule thermodynamic properties.
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INTRODUCTION

Accurate biomolecular energy functions are important for a wide range of challenges in 

computational structural biology, including protein structure prediction, protein structure 

determination from sparse data, protein design, protein small molecule docking and 

simulation of protein folding1–6. Energy functions play a central role in guiding 

conformational search and providing quantitative estimation of the likelihood of sampled 

conformations. Achieving high precision for biomolecular energy functions is one of the 

long-standing challenges in the area, as other challenges, particularly conformational search, 

are being addressed with advances in computing technology7–9.

Full first principle quantum chemistry calculations on macromolecular systems are 

infeasible, and hence classical mechanics approximations are almost always used in which 

the energy is written as a sum of generally pairwise additive functions representing different 

interactions. Two quite different approaches have been taken to setting the values for the 

parameters in these functions. In the first approach, typically adopted in the development of 

molecular mechanics force fields, small molecule data is used to guide parameter 

optimization. The parameters in these molecular mechanics force fields are obtained by 

fitting thermodynamic and spectroscopic data on small molecules, and by attempting to 

match quantum chemistry results on small molecule systems10–12. The second approach 

uses the large number of experimentally determined ground states of biomolecules that have 

been determined by X-ray crystallography and NMR to guide parameter optimization13–15. 

Parameters are set such that the experimentally observed state (both structure and sequence) 

has lower energy than other states. This approach has been used to develop energy functions 

for biomolecular modeling studies such as protein structure prediction or docking.

Both approaches have limitations in applicability to macromolecule modeling studies. 

Molecular mechanics force fields derived by fitting to small molecule properties are limited 

by the accuracy of the approximations required for computational tractability16–19; 

additionally, it is not clear how transferable an approximate energy model derived from 

small model systems is to macromolecules17,20. However, structure-based approaches also 

have weaknesses: observed structural data only show relative preference for conformations, 

and do not give quantitative estimations of energy differences, and in parameter fitting, data 

sparseness — particularly when large numbers of parameters are optimized — may lead to 

incorrect estimation and over-fitting. Therefore, it is also obvious that macromolecule data 

alone is insufficient for deriving an energy function for macromolecular modeling.

In this study, we show that an approach integrating both sources of data in biomolecular 

energy function optimization can bring significant improvements to its performances on 

various protein structure prediction tasks. Our new optimization framework is capable of 

robust optimization of over hundred parameters with respect to a large set of 

computationally expensive tasks, and is used to derive a next-generation Rosetta21,22 energy 

function for general protein structure prediction tasks, with improvements in the Lennard-

Jones, implicit solvation, and electrostatic models. Similar ideas have been suggested to the 

development of modern molecular mechanics force fields16,23,24 for molecular dynamics 

simulations. However, to our knowledge, it is first time this approach has been used in the 
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context of general structure prediction problems; furthermore, we show the applicability of 

this approach by testing on a variety of challenging structure prediction tasks including 

monomeric structure discrimination or conformational search, protein homology modeling, 

protein-protein and protein-ligand docking, sequence prediction at protein core, protein-

protein, and protein-ligand interfaces, and prediction of free energy changes brought about 

by mutations (ΔΔG), supported by massive amount of state-of-the-art structural modeling 

techniques. Finally, we show the robustness of this optimization, even when fitting >100 

parameters, which allows us to assess the tightness of convergence of atomic-level 

parameters.

METHODS

Overview of the approach

We set out to parameterize an energy function based on experimental thermodynamic data of 

small molecules, and high-resolution structural data of macromolecules (shortly “structural 

data”), with the broader aim of better recapitulating the large-scale energy landscape of 

protein folding or complex formation, high-resolution structural features, and the balance 

between natural amino acid preferences. The experimental thermodynamic data consists of 

the liquid properties of small molecules containing functional groups from natural amino 

acids12 and vapor-to-water transfer free energies of protein side-chain analogs25. The 

structural data consists of large numbers (> 1000 cluster centers) of alternative 

conformations (decoys) for protein structures and complexes of known structure, and high-

resolution crystallographic data. The agreement of an energy function with these data is 

represented by a target function Ftotal:

[1]

where the target functions Fthermodynamic and Fstructural are functionals of a biomolecular 

energy function E(Θ), which is a function of a set of parameters Θ (see the sections below 

for the details of E(Θ) in the study), and their relative contributions are adjusted by weights 

w. Fthermodynamic[E(Θ)] and Fstructural[E(Θ)] are themselves a weighted linear sum of target 

functions evaluating performance on specific tasks; their exact composition varies depending 

on the aim of optimization, and is described in the following paragraphs and sections.

The energy parameters Θ subject to optimization consist of atom-type-dependent 

parameters, for example, the Lennard-Jones (LJ) radius and well-depth of each atom type. 

The total number of parameters simultaneously optimized in a single run is on the order of 

100. A key advantage of the ability to simultaneously optimize a large number of parameters 

is that the introduction of significant changes to the physical models of energy terms (for 

example, an anisotropic solvation model, or change in LJ model of hydrogen atoms) may 

considerably shift the balance between the energy terms and require large-scale re-

parameterization. Optimization of these large parameter sets, with respect to a wide range of 

thermodynamic and structural data, is performed by a newly developed parameter 

optimization protocol named dualOptE that uses Nelder-Mead simplex optimization26 

(Figure 1, details in following section).
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We found several factors to be critical for energy function training to robustly transferrable 

to independent datasets. First, the training data need to be diverse; consequently, energy 

function performance is trained on a wide variety of sub-tasks, including recapitulation of 

sequence and side-chain rotamers, native monomeric structure discrimination, protein-

protein docking, and the aforementioned thermodynamic recapitulation tasks. Second, the 

structure discrimination training sets must be dynamic; it is all too easy to train an energy 

function to consistently recognize the native structure in a sea of static decoys, but much 

more challenging when all structures are relaxed in the new energy function27. In dualOptE, 

all tests involve some reoptimization against the current energy function: for example, the 

test measuring the ability to discriminate near-native monomeric conformations or protein-

protein interfaces first optimizes a pre-generated set of structures against the current 

parameterization before assessing discrimination quality. Third, each cycle of parameter 

optimization must be carried out in a limited amount of computer time. Since we need to 

assess hundred or thousands of parameterizations in the course of an optimization trajectory, 

each test has to run on the order of several minutes. For example, during parameter 

optimization, a full liquid MC simulation to estimate liquid phase properties of small 

molecules at each step is not computationally tractable; we instead use static sets of 

snapshots from MC simulations. Following completion of a given parameter optimization 

run we carried out full liquid MC simulations and found that the static approximation was 

fairly accurate as long as there were not large changes in the energy function.

We employed multiple iterations of this dual energy function optimization approach. The 

first iteration, yielding the energy function opt-july15, introduced a new anisotropic implicit 

solvent model into the Rosetta energy function. Rosetta has previously used the Lazaridis-

Karplus (LK) isotropic occlusion-based implicit solvation model28, where the occluded 

volume of each atom is proportional to the fractional desolvation energy. The new 

anisotropic solvation model combines the isotropic part from the original LK model with a 

ne wly introduced anisotropic polar term29, which accounts for anisotropic interactions 

between polar heavy atoms and solvent: occlusion of water binding sites is made more 

energetically disfavorable than occlusion away from such sites. A second series of 

optimizations follows introduction of attractive dispersion forces to hydrogens (originally 

pseudo-united-atom) as well as a reworked electrostatic model, yielded the energy function 

opt-nov15. For both energy function “snapshots”, following optimization, the resulting 

energy functions were validated on a set of independent structure prediction tasks too 

computationally intensive to be used in optimization30. Details of energy functions (opt-
july15 and opt-nov15) and energy terms, and a list of the tests used for optimization are 

described in following sections, a full list of atomic parameters determined by DualOptE 
appear in the Supplementary Tables S3–4, and details of the tests and datasets for 

optimization or independent validation in Supplementary Materials.

The resulting next-generation Rosetta energy function (opt-nov15) outperforms the previous 

energy function (talaris2014)13 on a wide range of structure prediction tests independent of 

the training set data. In contrast to opt-nov15, talaris2014 had been optimized solely relying 

on similar set of structural data we incorporate in the study without the use of small 

molecule data. We briefly summarize the energy function changes; full details are again 

provided below. First, there are changes in the physical models, notably the new anisotropic 
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solvation model, a sigmoidal dielectric model, and explicit modeling of the effects of proline 

on the backbone torsion angles of the preceding residue. Second, there are changes in the 

representation; in previous Rosetta energy functions hydrogens are purely repulsive to speed 

computation (much shorter range distance cutoffs were required), whereas in the new energy 

function hydrogens make attractive LJ interactions. Third, there are changes in the overall 

balance of forces: compared to talaris2014, both solvation and electrostatic forces are 

considerably stronger relative to other non-bonded interactions. Fourth, there are changes in 

many energy function parameters: the attractive interactions of sulfur and aliphatic carbons 

are stronger (which bring better agreement with small-molecule liquid phase data), and the 

partial charges of charged chemical groups are more evenly distributed (rather than being 

primarily on the tip atoms).

Parameter optimization using dualOptE

The aim of the parameter optimization method dualOptE is to explore a high (100+) 

dimensional parameter space, identifying a parameter setting that minimizes a target 

function (e.g. Eqn. 1). Parameters to be optimized generally consist of atomic parameters 

from multiple energy terms, resulting in a parameter space of dimension around 100. Given 

the relatively large number of parameters and the complexity of the target function, the most 

reasonable choice of optimization method is a derivative-free approach. In this study, 

Nelder-Mead simplex optimization26 is applied. The method has several desirable features: 

it is derivative-free and generally requires relatively few function evaluations to converge.

The overall minimization process took around 5 days for opt-july15 and opt-nov15 using 

hundreds of computer cores in parallel (typically 160 cores in the study). Each minimization 

step took ~12 minutes, and the process was terminated when optimization converged; this 

generally occurred after ~600 iterations. To keep the optimization computationally tractable, 

each individual test needed to run in, at most, 4–6 minutes total. In doing so, this allowed the 

roughly 800 individual tests to run on a cluster in ~12 minutes.

While developing the dualOptE protocol, a key computational challenge related to the 

sequence recovery test was to synchronize amino-acid type reference weights with the 

current energy function parameterization at every single iteration. Reference weights in the 

energy model balances relative occurrences of amino acids, hence, are very specific for a 

particular parameterization of the energy function. Adding reference weights as additional 

parameters to optimization adds significant complexity to the parameter space. To address 

this issue, we developed a method that fits reference energies on-the-fly at each iteration, 

treating them as independent implicit parameters from the optimization. Given a set of target 

structures, the method considers each possible mutation at each position. For each mutation, 

all sidechain rotamers within 8Å of the mutated residue are re-optimized, and a reference-

energy-free score is computed. Then the same Nelder-Mead simplex optimization is used to 

find the reference weights that maximize sequence recovery. Because all energies are pre-

computed, this is very quick to evaluate, taking about 45 seconds total.
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Optimization procedure

As an initial proof of concept, we applied our optimization scheme dualOptE to the current 

energy function, talaris2014. Optimization allowed per-atom-type solvation model and 

Lennard-Jones parameters to change, as well as a small set of parameters related to the 

electrostatic model. The total number of parameters for this initial experiment was about 80. 

The target optimization function (Ftotal), which is functional of energy function E(Θ), used 

took the form:

[2]

The first two terms evaluate the energy function against small molecule thermodynamic 

data, while the remainders are guided by high-resolution protein structural data. More 

specifically, staticliquid evaluates thermodynamic liquid properties12 using static “snapshot” 

evaluation; water-to-vapor recapitulates the solvation free-energy change of side-chain 

analogs upon transferring from vapor to water25; sidechain-core and sidechain-interface 
predict the rotameric state of side-chains at the core and interfaces of native proteins, 

respectively; sequence predicts the amino acid identity of core residues of natural wild-type 

proteins; monomer, static and monomer, min evaluate monomeric structure discrimination 

on a pre-sampled conformation set, both before and after a short energy minimization, 

respectively; protein-protein evaluates the discrimination of pre-sampled protein-protein 

complex conformations; and atompair evaluates the atom-pair distance distribution observed 

from crystal structures. Further details of individual tests, including protocols for using 

small-molecule thermodynamic data for the parameterization, are described in 

Supplementary Methods.

This initial optimization revealed improvements on all tests, however, the improvements 

were quite subtle. Generally, the changes tended to slightly increase the contribution of 

solvation energy compared to other non-bonded energies. However, the small magnitude of 

improvement suggests that the current energy function, which has been heavily developed 

over the past dozen years, is close to optimally parameterized. Thus, it seems likely that the 

introduction of more dramatic changes to the energy model are necessary to see 

improvements in both structure prediction and recovery of small molecule thermodynamic 

properties.

Consequently, our next optimization experiment introduced several broad improvements to 

the underlying physical model, most notably, the introduction of anisotropy to the implicit 

solvation model29, and a sigmoidal dielectric Coulombic model31. Additionally, we 

introduce a few more minor changes, outlined in the Supplementary Methods section. The 
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parameters optimized are the same as before: i) two LJ parameters (radius and well-depth) 

for all LJ atom types, ii) one parameter (ΔGfree) for all solvation atom types28, iii) hydrogen 

bonding weights for individual donor or acceptor types, and iv) three parameters describing 

the shape of the dielectric as a function of distance. Prior to the dualOptE run, we manually 

adjusted the initial LJ parameters for certain atom types (CH3, CH2, CH1, and S) to improve 

the agreement with the liquid property data. Several rounds of optimization were carried out, 

first optimizing polar parameters (~50), than optimizing all parameters (~100). The resulting 

optimized energy function is referred to as opt-july15.

In the second round of optimization, we further extended the energy function by introducing 

several more large-scale changes and subsequently re-optimizing. First, we introduce 

Erama_prepro as a replacement of Erama to take into account of specific ɸ/ѱ angle preferences 

of pre-Proline residues. Second, we incorporated a more reasonable description of LJ 

interactions by converting our previous pseudo-united atom representation (where hydrogens 

only have a short-ranged repulsive contribution) to an all-atom representation. The LJ 

parameters for affected atoms were initially borrowed from the OPLS force field12 followed 

by manual adjustment (due to difference in LJ model) using liquid simulations prior to 

optimization. The parameter set subject to optimization consists of all the parameters 

optimized in the first round, plus a set of parameters describing the partial charges of all 

amino acids, for a total of ~115 parameters. While optimizing atomic partial charges, we 

applied a grouped optimization scheme: partial charges are grouped together based on their 

physical relations (similar to the grouped charge concept in CHARMM force fields10) and 

their magnitudes are scaled such that the overall strength of a group changes but its net 

charge does not vary. This scheme is advantageous not only in reducing the number of 

parameters, but also in keeping partial charges within a physically reasonable range (e.g. 

maintaining balance between atoms with a dipole). Nonpolar groups were scaled together, 

leading to a total of 17 group parameters describing partial charges. Drawing off expertise 

from our first experiments, the target function for second run was modified:

[3]

Compared to the previous optimization (Eqn. 2), one test (staticliquid) was dropped while 

another (xtal-grad) was added. The reason for dropping the static evaluation test of liquid 

properties is that: a) unlike the previous optimization, the initial model shows relatively good 

agreement with these properties, b) the test was relatively time-consuming computationally, 

and c) the accuracy of the estimation using static snapshots was limited. We decided instead 

to use liquid properties as an independent validation measure. Meanwhile, a new test, xtal-
grad was added, which assesses the magnitude of energy-function gradients following 

crystallographic refinement, enhancing the accuracy of the energy function at high 

resolution.
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Following optimization with the non-bonded parameters above, optimization was also 

carried out on bonded parameters (spring constants for bond distance, angle, and improper 

torsion angles) while other parameters were fixed. Similar to partial charge optimization, 

parameters were grouped into about 29 sets and each set was scaled together. We applied a 

simpler target function here, as changes in bonded parameters are expected to give minimal 

effects to the excluded tests:

[4]

The final optimized energy function E(Θ) using this target optimization function is referred 

to as opt-nov15.

Opt-nov15 energy model

The Rosetta energy model is specialized for macromolecular modeling studies, which means 

there are relatively strict requirements on functional representation and efficiency. An 

implicit description of solvent molecules (as opposed to explicit solvent representation) is 

necessary for instantaneous evaluation of the energetics of a single conformation. 

Additionally, solvation and electrostatics, which generally are the rate-limiting steps in total 

energy-function evaluation, are restricted to be pair-wise decomposable at the residue level, 

ensuring that rotamer and sequence optimization can be carried out efficiently; these terms 

must also be evaluated in a runtime that is of similar order-of-magnitude to Lennard-Jones 

(LJ) interactions.

The energy models used in this study (opt-july15 and opt-nov15) are represented as 

weighted linear sum of multiple energy terms meeting the aforementioned restrictions:

[5]

For each component, “w” and “E” represents weight and energy value of each component, 

respectively. In this study, non-bonded terms shown in first row of Eqn. 5 (LJ_atr, Coulomb, 
Hbond, solv_iso, solv_aniso) are weight-less except for LJ repulsion; its weight (wLJ_rep) is 

fixed to 0.55 to address the overestimation of the exclusion effect by the 12th-order repulsive 

term. In Rosetta energy function torsion terms (dun, rama, p_aa_pp) are derived from 

statistics of macromolecule data hence have arbitrary units with respect to non-bonded terms 

having physical interpretations. Their weights are used by adjusting values from talaris2014: 
wdun= 0.7, wrama= 0.45, and wp_aa_pp = 0.6. Many of the energy components share the same 

functional form with talaris2014 energy function13, including LJ (LJ_atr and LJ_rep, except 
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that hydrogens only have repulsive part in talaris2014), isotropic Lazaridis-Karplus (LK) 

solvation model (solv_iso)28, orientation-dependent hydrogen bonding (Hbond)32, bonded 

terms (bonded), and amino acid reference weight term (ref). For these terms, a subset of 

parameters are optimized, while maintaining the original functional form. For backbone-

dependent side-chain torsion preference (dun) and preference of amino acid given ɸ/ѱ 
angles (p_aa_pp), we brought a more-recent parameterization14. Other terms, either newly 

introduced (solv_aniso) or with change in energy models (Coulomb and rama), are described 

in Supplementary Methods.

RESULTS

Improvements in monomeric structure prediction

We describe the improved performance of the new energy function on a battery of protein 

and small molecule tests evaluated on a set of proteins distinct from those used in 
optimization, as compared to the current Rosetta energy function, talaris2014. All results are 

summarized in Table 1, which shows energy function performance using two different 

metrics: a “weighted evaluation metric” that estimates the Boltzmann probability of the 

native-like conformations, and a “success-rate based” metric, which simply measures if the 

lowest-energy conformation is near-native (details of metrics are in Supplementary 

Methods). The most striking improvement was seen in monomeric structure prediction tasks, 

particularly in three sub-tests: near-native structure discrimination following reoptimization 

(Figure 2), structure prediction with parallel loophash sampling (PLS)30, and homology 

modeling with RosettaCM2.

The first of these tests, decoy discrimination in Table 1, evaluates the ability of the energy 

function to pick out near-native structures (up to 200 residues in length) from a set of pre-

sampled compact structures broadly covering conformational space33. In order to address 

the dynamic aspect of the energy landscape (that is, local energy minima may vary greatly 

following parameter changes), a structural relaxation is carried out with a given energy 

function prior to evaluation. The test is further divided into structures for which the native 

conformation was used in optimization (set1) and structures for which the native was not 

seen by optimization (set2). Remarkable and consistent improvement is found as 

optimization proceeds from talaris2014 to opt-july15 to opt-nov15 (Figure 2A), increasing 

the success rate of decoy discrimination by 20.8% (36.3% to 57.1%) and 14.1% (53.1% to 

67.2%) on set1 and set2, respectively, when compared between talaris2014 and opt-nov15; 

the fact that the improvement is consistent on set2 (containing structures independent of 

those used in optimization) suggests that the energy function is not simply memorizing 

features from a small set of native structures. A few examples of energy landscapes and 

structures in Figure 3 show that improvements happen in various ways, discriminating 

structural variations from subtle local level (1aaj, 1xmt, blue in 1luz and 1igd) to secondary 

structure orientations (2i4s, 1l8r, 1ifb, yellow in 1igd) to different fold-level (2y4x, orange in 

1luz). Also, improved secondary structure balance is observed in many cases (1aaj, 1luz, 
1igd).

As relaxation of pre-sampled structures may still limit the conformational space considered, 

we ran a more extensive validation where the new energy function is directly used to guide 
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fold-level conformational sampling. The test is carried out using the parallel loophash 
sampling (PLS) protocol30. This highly parallelized and CPU-intensive protocol maintains a 

pool of low-energy structures, which it continually perturbs by replacing local portions of 

each protein with fragments randomly taken from alternate structures; new low-energy 

structures are continually added to the pool as they are discovered. Our previous studies have 

shown that the protocol serves as a powerful tool for identifying local minima of a given 

energy function. As shown in Figure 2B, the results of the PLS conformational sampling 

search follow a similar trend to that of decoy discrimination; the average Boltzmann-

weighted discrimination over 36 targets improves from 0.639 to 0.752 and success rates 

from 30.6% to 63.9%, after running PLS with talaris2014 and opt-nov15, respectively.

Finally, we show how the energy function performs on homology modeling, by using 

RosettaCM2 to predict protein conformations from a set of known high-resolution 

homologous structures. A comparison of the energy functions on 69 homology modeling 

cases since August 2014 of the CAMEO continuous evaluation benchmark34 is shown in 

Figure 2C. There is small but consistent improvement across this set with the new energy 

function; this is because structural sampling is strongly restricted by homologous 

information, hence improvements can be mostly found from high-resolution structural 

features like secondary structure packing.

Improvements in protein-protein and protein-ligand docking

The new energy function improves both protein-protein and protein-ligand docking (Figure 

4) on independent tests. The improvement in protein-ligand docking is particularly notable, 

as no tests of this nature are used in optimization, again suggesting that our optimized 

energy function has fundamentally improved the underlying physical model. Various pre-

sampled conformations using independent tools (Supplementary Materials) are relaxed in 

the same manner as in the monomeric tests prior to evaluation. Successful docking requires 

that: a) non-bonded interaction terms correctly estimate the magnitude of the attractive 

interactions upon complex formation, and b) they are properly balanced against the 

desolvation energy. Specific protein-protein (Figure 4A) and protein-ligand (Figure 4B) 

docking examples illustrate how opt-nov15 recovers this delicate balance. In the protein-

protein interaction case, talaris2014 favors a non-native conformation, with larger buried 

surface area but fewer highly favorable interactions (blue), over the native conformation with 

smaller buried surface area but a greater number of highly favorable interactions (green, 

inset in Figure 4A). The protein-ligand interaction example shows another balancing issue: 

the native interface is larger but features more electrostatically favorable interactions. In this 

example, talaris2014 fails because the strength of these favorable electrostatic interactions is 

not great enough to overcome the greater desolvation penalty incurred by the larger 

interface.

Improvements on protein design tasks

We tested the prediction ability of the energy function on independent protein design tasks 

by performing fixed-backbone sequence design27 and measuring the agreement to native 

sequence profiles. Evaluating ability of an energy function on design tasks is a critical part 

of our assessment as Rosetta suite has been broadly used for computational protein sequence 
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designs. These results (Table 1) suggest opt-nov15 also improves in balancing energetic 

preferences among different amino acids. This test is somewhat orthogonal to other structure 

prediction tasks in that every amino acid is considered at every context, so the penalty for 

burying for example an arginine has to be properly balanced against all other amino acids at 

that position. Two different types of test are considered: in the first (Protein monomer, 
Protein-protein interface, and Protein-ligand interface), each residue is designed 

independently while neighboring side-chains are only allowed to reorganize (not change 

identity); in the second (full sequence design), all sequence information is removed from the 

protein chain and full sequence optimization calculations are carried out. In both cases, both 

recovery rates and sequence-profile-weighted recovery metric values (see Supplementary 

Methods) see a consistent improvement of around 2%.

Free energy changes accompanying mutations

Computation of free energy change brought about by sequence mutations (ΔΔG) is both a 

fundamental test of modeling accuracy and an increasingly relevant problem as high-

throughput sequencing reveals sequence polymorphisms at an increasing rate36. This 

problem is related to design problems described above, but more challenging as it requires 

accurate prediction of changes in the structure resulting from single amino acid substitutions 

for successful estimation of the free energy changes. Despite efforts made in conformational 

sampling37–39, it is clear there is significant room for improvement in both problems. We 

used a previously published benchmark set37 containing 1211 mutations on monomeric 

proteins with high-resolution structural data available. We not only use the new energy 

function, also a new sampling protocol that takes advantage of recently developed Cartesian 

space sampling methods (more details in Supplementary Methods). Using this new protocol, 

the Pearson correlation between estimated versus experimentally measured ΔΔG improves 

from 0.703 to 0.743; classification accuracy of stabilizing/destabilizing mutations also 

improves from 71.3% to 72.9%, compared to talaris2014 (Figure S1). Compared to previous 

published protocols37, the combination of the new energy function and protocol produces a 

non-trivial improvement in correlation with comparable accuracy in simple classification.

Improvements in recapitulation of high-resolution structural information

We also measure the ability of the energy function to recapitulate high-resolution structural 

data, on a set of structures not used in optimization. Here, we use two metrics: the 

recapitulation of atom-pair distance distributions from high-resolution structures, and the 

energy function gradients following crystallographic refinement with the target energy 

function (see Supplementary Methods). Results are shown in Table 1 and Figure S2. The 

most significant improvement found in atom-pair distance distributions are from aliphatic 

carbons; for instance, the error (as assessed by KL-divergence) is reduced by half for CH2-

CH3 and CH3-CH3, the fourth and fifth most abundant atom pairs found in protein 

structures. Furthermore, the normalized energy function gradients following crystallographic 

refinement are reduced from 0.150 to 0.077, indicating that there are much weaker forces 

moving the structure away from a minimum consistent with high-resolution crystallographic 

data. These results are quite consistent; all 49 cases tested show a reduction in the 

normalized gradient.
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Agreement of the energy function to thermodynamic data

Although thermodynamic data from small molecules was largely used as a regularizer in our 

optimization, restricting optimization to a physically realistic subspace of the high-

dimensional parameter space, there were still significant improvements in the energy 

function’s ability to recapitulate thermodynamic data of small molecules; this is not 

surprising since this is first time to train our energy function on small-molecule 

thermodynamic data. Figure 5 summarizes the results comparing liquid phase properties 

computed using full Monte Carlo simulation (simulation details in Supplementary Methods) 

over experimentally measured data on a set of small molecules (Figure S3). Optimization 

reduces the relative error from 19.5% to 6.3% for Hvap (heat of vaporization), and from 5.7% 

to 5.1% for density. Interestingly, the error in Cp,l (latent heat capacity) — which was not 

used for optimization at any point — was also reduced from 14.6% to 11.3%. Errors found 

in Hvap estimation identify issues in the atomic parameters of talaris2014 the were not 

identified from the macromolecular tests alone, such as underestimation of non-bonded 

interaction strength of aliphatic and sulfur-containing functional groups, which led to 

underestimation of hydrophobic interactions and a bias to aromatic side-chains at the protein 

core. The errors are still larger than what are observed from molecular mechanics force 

fields; however, it is notable that reasonable estimation of liquid phase small molecule 

properties is possible while improving performance of the energy function on protein 

structure prediction tasks. Parameters could have been more tightly constrained to better 

match liquid properties, however, it is questionable whether a perfect fit to a limited set of 

liquid properties accurately reflects the accuracy of an energy model40,41. Finally, water-to-

vapor transfer energy of protein-sidechain analogs is in good agreement in all the energy 

functions (Figure S4). This is because in talaris2014 all the solvation parameters were 

directly brought from original LK model, while in opt-july15 and opt-nov15 the data was 

used as regularizer of parameterization.

DISCUSSION

A subspace of equivalently good parameterizations

Important questions arising are i) how closely the parameters optimized on structural data 

would match to those of molecular mechanics force field, and ii) how confident we can be of 

parameter sets following optimization in dualOptE for structure prediction tasks. To address 

these questions, we set up two additional experiments: opt-from-XX (with XX either 

CHARMM or OPLS), which runs optimization starting with the LJ and partial charge 

parameters from other molecular mechanics force fields; and opt-from-random, where we 

start optimization by randomly perturbing opt-nov15 parameters. Following optimization, all 

runs achieved similarly good scores on the target function, and showed similar performance 

on independent decoy discrimination tests (Supplementary Table S2), though the final 

parameter sets slightly differed from opt-nov15 as well as from each other. As shown in 

Table 2, each opt-from-MM parameter set converged on a slightly different optimum than 

opt-nov15 as well as from the values from CHARMM or OPLS; still, overall variation stays 

close to the variations observed among different molecular mechanics force fields. 

Regarding the second question, parameters obtained from multiple opt-from-random also 

show small deviations from opt-nov15; when 10 representative parameters are collected 
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from each of 3 independent runs (for a total of 30 equivalently good parameterizations), 

mean deviations from opt-nov15 are 0.018 in partial charges, 0.040 Å in LJ radii, 0.013 kcal/

mole in LJ well-depth, and 1.20 kcal/mole in solvation ΔGfree (per-parameter values and 

standard deviations reported in Supplementary Table S3-4). Measuring the correlation 

between parameters clarifies that deviations mainly originate from covariation of strongly 

coupled parameters rather than ambiguities within each of the values (Supplementary Table 

S5): for instance, LJ radii of aromatic hydrogen (Haro) and carbon (aroC) largely vary in a 

strongly coupled manner (Pearson correlation −0.866). The ability to systematically estimate 

the precision with which individual energy function parameters are determined is an 

advantage of our approach over conventional force field optimization approaches.

Combining two different data sources simultaneously helps parameter optimization in a 
complicated space

One of the most challenging parts in energy function optimization is maintaining the delicate 

balance between individual components of a composite energy function. We show that by 

training on a wide range of macromolecular data sets and challenges, together with small-

molecule thermodynamic data, we can robustly optimize on the order of 100 parameters, 

allowing both discovery and maintenance of this balance. The importance of this balance is 

illustrated through the results on individual structure prediction tests: balancing non-bonded 

and torsional interactions is key in avoiding secondary structure biases in structure 

prediction (Figure 3); balancing solvation energies with other non-bonded energies is 

important in protein-protein docking tests; and balancing Lennard-Jones and electrostatic 

contributions important in matching small molecule thermodynamic properties.

The effectiveness of our dual optimization approach in optimizing many hundreds of 

parameters without over-fitting likely stems from several factors. First, each of the small-

molecule tests constraints a different subset of parameters, and so, despite the large 

parameter space, each test conceptually subdivides parameter space into lower-dimensional 

subspaces, which leads to a tractable optimization process even though the overall 

dimensionality is quite high. Second, the relative sparsity of the small molecule features 

(compared to the number of parameters) leads to a large space of possible parameterizations 

satisfying the data40–42; this is additionally supported by variations found in atomic 

parameters among molecular mechanics force fields (Table 2). By optimizing in this space 

against the macromolecular structural data, we are less prone to get stuck in local minima of 

the structure-prediction target functions in physically unrealistic parts of parameter space. 

Indeed, optimized LJ parameters and partial charges stay similar to those of popular 

molecular mechanics force fields (Table 2). Finally, unlike previous approaches in energy 

function optimization27, our framework readily handles structure prediction tests of a more 

dynamic nature, ensuring the tests give reasonable results even as we move far away from 

the starting point in parameter space.

Our approach is more generalizable than previous efforts combining small molecule and 

macromolecular data in optimization. In modern molecular mechanics force fields, adaptive 

corrections derived from macromolecule simulations significantly enhanced the 

recapitulation of local structural features, such as backbone or side-chain torsional 
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preferences16,24, or folding energy landscapes of small proteins (less than 100 residues)43. 

Still, the impact of corrections to molecular mechanics force fields have been tested to a 

limited set of structure prediction tasks, not the global energy landscape properties over a 

broad set of protein structure prediction tasks considered in this manuscript. Our study from 

a structure prediction perspective is offering a complementary view to general biomolecular 

energy function optimization problem.

Finally, the presented optimization scheme is quite general, and allows for fast 

reparameterization following large-scale changes to the functional form of the energy 

function. One key weakness of the current energy function is the separation of hydrogen 

bonding and Coulomb electrostatics. While this offers some advantages, e.g. preventing the 

overestimation of LJ well-depth for hydrogen bonding atoms, its weakness arises from 

under-representation of electrostatics between non-hydrogen bonding partners such as 

electrostatic repulsion or multipole effects (e.g. π-π interaction), as supported by liquid 

simulation results (Figure 5). One future direction will be developing a unified electrostatic 

model that can address these issues. Another weakness concerns the solvation model; the 

current formulation has weakness describing the screening effect of electrostatic interactions 

by water or ions, in contrast to the more computationally expensive Poisson-Boltzmann (PB) 

or generalized Born (GB) solvation models. Incorporating such properties in an efficient 

pairwise decomposable manner is a difficult but potentially valuable future research effort44. 

Lastly, a more profound challenge in an implicit solvation model will be describing effects 

from well-ordered waters that form an essential part of biomolecular structures and 

interfaces.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A graphical overview of the parameter optimization procedure.
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Figure 2. 
Improvements in monomeric structure prediction from independent tests. In each scatter 

plot, a dot above diagonal line indicates improvement to a target. A) Decoy discrimination 

test. On the left, Boltzmann-weighted discrimination values are compared between 

talaris2014 (X-axis) and opt-nov15 (Y-axis) on 64 protein targets from validation set 2. B) 

Parallel loophash sampling (PLS) test. Boltzmann-weighted discrimination values are 

compared between talaris2014 (X-axis) and opt-nov15 (Y-axis) on 36 protein targets. C) 

Improved homology modeling on 69 CAMEO34 targets using RosettaCM2. A comparison of 

homology model global distance test — high accuracy (GDT-HA)35 from talaris2014 (X-

axis) and opt-nov15 is shown on the left. GDT-HA is a measure of agreement (in %) of a 

model to its native structure in high-resolution. An example of highlight target is shown on 

the right (pointed out as black arrow): the structures generated and selected by talaris2014 
(magenta) and opt-nov15 (blue) are overlaid on native (green) structure.
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Figure 3. 
Examples of proteins with successful recapitulation of energy landscapes. 8 cases from 

decoy discrimination set2 are shown (labeled in Figure 2A). For each case, energy 

landscapes by talaris2014 and opt-nov15 are shown on the left, talaris2014 on left and opt-
nov15 on right; at top of it Boltzmann-weighted discrimination values are shown with gray 

italic text. Each point in the energy landscape plots indicates a particular protein 

conformation, with the X-axis indicating the structural deviation from the native 

conformation, and the Y-axis indicating energy; in a good energy landscape the lowest 

energy conformations have lowest structural deviation. On the right, comparisons of 

conformations are shown with different colors: the near-native conformation in green, and 

low-energy false conformations in blue or orange. Energy values and RMSD for these 

conformations are shown as arrows with corresponding colors on the energy landscape.
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Figure 4. 
Improvements in docking energy landscape recovery from independent tests. In each scatter 

plot, a dot above diagonal line means improvement to a target. A) Protein-protein docking 

and B) protein-ligand docking. In each panel, a scatter plot of the Boltzmann-weighted 

discrimination values for targets are plotted on the top left; an example energy landscape is 

shown in the top right, talaris2014 on left and opt-nov15 on right; and the corresponding 

structure pointed out as black arrow is on the bottom. A) Protein receptor is colored in gray, 

and alternative conformations of the partners are colored in green (near-native) or blue (false 

conformer). Favorable native interactions are highlighted in the inset. B) Ligands are colored 

in gray, and protein in green or cyan.
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Figure 5. 
Our optimized energy function reasonably recapitulates thermodynamic liquid properties of 

small molecules. A, B) Fractional errors in heat of vaporization (A) and density (B). 

Negative values indicate underestimation of reference experimental value, and positive 

overestimation. Colors indicate the energy function used: talaris2014 (black), opt-july15 
(red), and opt-nov15 (blue). Each bar corresponds to a small molecule in Figures S3. Most 

of the molecules represent functional groups in natural amino acids: aliphatic (Group 1), 

aromatic (Group 2), alcohol (Group 3), sulfide or thiol (Group 4), and amide (Group 5); 

several polar molecules contain functional groups not found in natural amino acids (Group 

6).
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Table 1

Performance of the energy functions on various tasks independent from training. Shown are weighted metrics, 

ranging from 0 to 1 and greater the better, with success rates (in percent) in parentheses, unless specified. Best 

value in each of the tasks is shown in bold. Details of the independent tests are described in Supplementary 

Materials.

Tasks talaris2014 opt-july15 opt-nov15

Structure prediction Decoy discrimination, set11) 0.580 (36.3) 0.648 (45.5) 0.705 (57.1)

Decoy discrimination, set21) 0.686 (53.1) 0.725 (64.1) 0.781 (67.2)

Parallel loophash sampling1) 0.639 (30.6) 0.666 (47.2) 0.752 (63.9)

Homology modeling2) 63.9 — 65.1

Molecular docking Protein-protein docking1) 0.717 (73.0) 0.762 (76.0) 0.794 (81.0)

Protein-ligand docking1) 0.863 (82.1) 0.865 (88.1) 0.941 (92.5)

Sequence design Protein monomer3) 0.258 (45.1) 0.270 (46.3) 0.282 (47.0)

Protein-protein interface3) 0.283 (49.0) 0.304 (51.3) 0.316 (51.0)

Protein-ligand interface3) 0.390 (58.4) 0.411 (59.6) 0.425 (60.3)

Full sequence design4) 38.9 39.6 40.6

Mutational ΔΔG5) 0.704 (71.3) 0.750 (72.6) 0.743 (72.9)

High-resolution geometry Atom-pair distribution6) 0.00991 0.00972 0.00796

Xtal gradient7) 0.230 0.174 0.128

1)
Values are reported in average “Boltzmann-weighted discrimination” (see Supplementary Methods) over tested targets. Boltzmann-weighted 

discrimination measures the extent of discrimination of native-like conformation against non-native conformations, ranging from 0 (no 
discrimination) to 1 (complete discrimination).

2)
Values are reported in average GDT-HA (global distance test — high accuracy)35 of 69 tested targets.

3)
Values are reported in entropy-weighted profile recovery (see Supplementary Methods). Higher values indicate better performance.

4)
Success rate is shown only.

5)
Values are reported in Pearson correlation coefficients, with classification rates in parenthesis.

6)
KL-divergence of the atom-pair distance distribution after relaxation of structures against that from crystal structures. Weighted average for 93 

most frequent atom pairs are reported. Lower values indicate better agreement.

7)
Values are reported in normalized gradient (arbitrary unit). Lower values indicate better agreement. Data directly brought from optimization run.

J Chem Theory Comput. Author manuscript; available in PMC 2017 July 18.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Park et al. Page 23

Ta
b

le
 2

D
if

fe
re

nc
es

 in
 p

ar
tia

l c
ha

rg
es

, L
J 

ra
di

i, 
an

d 
w

el
l-

de
pt

hs
 b

et
w

ee
n 

va
ri

ou
s 

fo
rc

e 
fi

el
ds

. M
ea

n 
ab

so
lu

te
 d

if
fe

re
nc

es
 a

re
 r

ep
or

te
d.

P
ar

ti
al

 c
ha

rg
es

C
H

A
R

M
M

1)
op

t-
fr

om
-C

H
A

R
M

M
2)

O
P

L
S3

)
op

t-
fr

om
-O

P
L

S4
)

A
M

B
E

R
5)

op
t-

no
v1

5
0.

04
9

0.
03

8
0.

08
8

0.
04

9
0.

09
3

C
H

A
R

M
M

—
0.

02
0

0.
05

6
0.

08
0

0.
07

8

op
t-

fr
om

-C
H

A
R

M
M

—
—

0.
06

5
0.

05
7

0.
07

3

O
PL

S
—

—
—

0.
04

4
0.

11
8

op
t-

fr
om

-O
PL

S
—

—
—

—
0.

09
2

L
J 

ra
di

i

C
H

A
R

M
M

op
t-

fr
om

-C
H

A
R

M
M

O
PL

S
op

t-
fr

om
-O

PL
S

A
M

B
E

R

op
t-

no
v1

5
0.

06
2

0.
04

6
0.

06
1

0.
08

2
0.

07
1

C
H

A
R

M
M

—
0.

02
7

0.
06

6
0.

06
5

0.
09

6

op
t-

fr
om

-C
H

A
R

M
M

—
—

0.
04

7
0.

04
9

0.
07

7

O
PL

S
—

—
—

0.
08

1
0.

08
1

op
t-

fr
om

-O
PL

S
—

—
—

—
0.

12
2

L
J 

w
el

l-
de

pt
hs

C
H

A
R

M
M

op
t-

fr
om

-C
H

A
R

M
M

O
PL

S
op

t-
fr

om
-O

PL
S

A
M

B
E

R

op
t-

no
v1

5
0.

01
5

0.
00

9
0.

01
4

0.
01

3
0.

02
4

C
H

A
R

M
M

—
0.

01
8

0.
01

8
0.

02
5

0.
03

5

op
t-

fr
om

-C
H

A
R

M
M

—
—

0.
01

6
0.

01
1

0.
03

8

O
PL

S
—

—
—

0.
01

1
0.

02
4

op
t-

fr
om

-O
PL

S
—

—
—

—
0.

01
9

1)
C

H
A

R
M

M
36

16

2)
O

pt
im

iz
ed

 p
ar

am
et

er
s,

 s
ta

rt
ed

 f
ro

m
 C

H
A

R
M

M
36

 p
ar

tia
l c

ha
rg

es
 a

nd
 L

J 
pa

ra
m

et
er

s.

3)
O

PL
S-

al
la

to
m

12

4)
O

pt
im

iz
ed

 p
ar

am
et

er
s,

 s
ta

rt
ed

 f
ro

m
 O

PL
S-

al
la

to
m

 p
ar

tia
l c

ha
rg

es
 a

nd
 L

J 
pa

ra
m

et
er

s.

5)
A

M
B

E
R

14
ff

SB
24

J Chem Theory Comput. Author manuscript; available in PMC 2017 July 18.


	Abstract
	INTRODUCTION
	METHODS
	Overview of the approach
	Parameter optimization using dualOptE
	Optimization procedure
	Opt-nov15 energy model

	RESULTS
	Improvements in monomeric structure prediction
	Improvements in protein-protein and protein-ligand docking
	Improvements on protein design tasks
	Free energy changes accompanying mutations
	Improvements in recapitulation of high-resolution structural information
	Agreement of the energy function to thermodynamic data

	DISCUSSION
	A subspace of equivalently good parameterizations
	Combining two different data sources simultaneously helps parameter optimization in a complicated space

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2

