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Abstract

Bioactive lipids are critical regulators of inflammation. Over the last 75 years, these diverse 

compounds have emerged as clinically-relevant mediators of allergic disease pathophysiology. 

Animal and human studies have demonstrated the importance of lipid mediators in the 

development of asthma, allergic rhinitis, urticaria, anaphylaxis, atopic dermatitis, and food allergy. 

Lipids are critical participants in cell signaling events which influence key physiologic 

(bronchoconstriction) and immune phenomena (degranulation, chemotaxis, sensitization). Lipid-

mediated cellular mechanisms including: (1) formation of structural support platforms (lipid rafts) 

for receptor signaling complexes, (2) activation of a diverse family of G-protein coupled receptors, 

and (3) mediating intracellular signaling cascades by acting as second messengers. Here, we 

review four classes of bioactive lipids (platelet activating factor, the leukotrienes, the prostanoids, 

and the sphingolipids) with special emphasis on lipid synthesis pathways and signaling, atopic 

disease pathology, and the ongoing development of atopy treatments targeting lipid mediator 

pathways.
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Introduction

Approximately 5 % of eukaryotic genes encode proteins which synthesize and remodel the 

cellular lipid repertoire [1]. In addition to energy storage and membrane formation, certain 

lipids mediate cell signaling events. Lipids influence signaling via multiple mechanisms 

including (1) by concentrating signal transduction complexes into topologically-constrained 

“lipid rafts,” (2) by transducing signals as primary/secondary messengers, and (3) by acting 

as kinase/ phosphatase co-factors [2]. Beginning in the 1940s, the pioneering studies of 

Kellaway and Trethewie first recognized the bronchoconstrictive effects of substances later 

identified as leukotrienes (LTs) [3]. Over time, the role of lipids in the pathogenesis of 

allergic disease has continued to expand with each generation of investigators, driven by 

ever more sophisticated techniques capable of identifying and quantifying diverse lipid 

mediators. New systems biology-based technologies, including mass spectrometry-based 

lipidomics, have facilitated a growing appreciation for the dynamic nature of lipid 

metabolism during immune activation and the linkage of lipid regulating genes with 

immune-mediated human disease [4–6]. Herein, we review the basic biology and clinical 

relevance of four classes of immune-modulating lipids (platelet activating factor, the 

leukotrienes, prostanoids, and the sphingolipids) with a focus on how these molecules 

influence the pathogenesis of allergic disease.

Platelet-Activating Factor

Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) (Fig. 1) is 

a potent pro-inflammatory and coagulation-inducing phospholipid mediator first identified 

in basophils by Jacques Benveniste in 1972 [7]. PAF enhances inflammation via immune 

cell chemotaxis, triggering of de-granulation, and immune cell adhesion to the vascular 

endothelium [8].

Synthesis, Metabolism, and Signaling

Although PAF can be produced via a de novo pathway, the majority of cellular PAF is 

generated via remodeling of membrane phospholipids (most commonly 

phosphatidylcholine, PC) by phospholipase A2 (PLA2), generating arachidonic acid (AA) 

and lysophosphatidylcholine (LPC) (Fig. 2). LPC is subsequently converted to PAF by the 

activity of LPC acetyl-transferase (LPCAT) [9]. PAF is inactivated by PAF-acetylhydrolase 

(PAF-AH) enzymes (plasma and cytoplasmic PAF-AH) and has a short half-life of ~3–13 

min [10]. PAF signals via the G-protein coupled receptor (GPCR) PAF receptor (PAFR) 

which initiates a signaling cascade resulting in Ca2+-induced protein kinase C (PKC) 

activation. Most cells that produce PAF also express PAFR, suggesting autocrine signaling 

may mediate many of PAF’s effects [11].

Effects on Cellular Mediators of Allergic Disease

PAF is produced and released by a variety of cells including neutrophils, eosinophils, mast 

cells (MCs), endothelial cells, fibroblasts, epithelial cells, and endothelial cells [8]. PAF 

induces platelet aggregation and leukocyte degranulation and adhesion. In the airways, PAF 

has multiple effects, serving as a potent chemoattractant for neutrophils and eosinophils 
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[12•, 13], promoting vascular permeability and edema [8] and, inducing bronchoconstriction 

via effects on airway smooth muscle [14, 15].

Eosinophils—Eosinophils are central effector cells in the majority of Th2-mediated 

diseases, releasing a broad range of cytotoxic inflammatory mediators that can damage 

infiltrated end-organs [16]. PAF influences eosinophil chemotaxis, vascular adhesion, and 

activation. Eosinophils produce PAF upon activation while also responding to PAF release 

via their PAFRs. PAF-mediated eosinophil chemotaxis occurs by two distinct signaling 

pathways (monomeric and dimeric PAFR signaling). Monomeric PAFR signaling drives 

eosinophil chemotaxis whereas the dimeric receptor induces degranulation [17]. PAF also 

increases production of LTC4, and induces eosinophil release of multiple cytokines 

including interleukin 13 (IL-13), eotaxin-1, basic fibroblast growth factor, CCL5/RANTES, 

and platelet-derived growth factor (PDGF) [18].

Mast Cells—MCs are myeloid-derived, tissue-resident immune effector cells that mediate 

IgE-driven immune responses in most allergic disease processes [19]. All MCs subtypes 

appear to produce PAF upon activation; however, MC PAFR expression varies in a tissue-

specific manner. Lung and peripheral blood MCs express PAFR while dermal MCs do not, 

however, dermal MCs do express the MRGX2 neuropeptide receptor. Furthermore, in vitro 

studies have shown PAF induces histamine release from cultured lung and peripheral blood-

derived MCs, but not from dermal MCs [12•]. Intriguingly, cutaneous microdialysis studies 

show cutaneous histamine release following intradermal PAF injection, but this effect was 

significantly reduced by nerve blockade [20], suggesting that in vivo PAF may indirectly 

trigger MC degranulation via peripheral nerve release of MC-activating neuropeptides.

Association with Allergic Disease

Asthma—PAF mediates airway hyperresponsiveness (AHR), inflammation, and 

remodeling. Lung MCs released histamine in response to PAF in a dose-dependent manner 

[12•]. PAF has been demonstrated to increase airway hyperactivity with blockade of PAF 

preventing responsiveness of the airway smooth muscle [15]. PAF also drives airway 

inflammation during both infection and allergen exposure by increasing LTB4 production. In 

addition, PAF has a proposed role in airway remodeling including specific effects on smooth 

muscle proliferation. A provocative recent report indicated that short acting beta 2 agonist 

(SABA) bronchodilators induce PAF release, possibly contributing to long-term airway 

inflammation and smooth muscle changes [21].

Anaphylaxis—PAF is a mediator in the pathophysiology of anaphylaxis and is found at 

significantly higher concentration in patients post-anaphylaxis than in healthy controls 

[22••]. Plasma PAF-AH activity varies between individuals. Lower activity of PAF-AH was 

associated with peanut allergy-induced severe anaphylaxis [22••]. Comparing serum 

histamine, tryptase and PAF levels after anaphylaxis shows that serum PAF is the most 

specific indicator of the three mediators, as it correlates most accurately with severity of 

anaphylactic reaction. PAF is elevated in 100 % of patients with severe anaphylaxis; 

histamine and tryptase were 61 and 75 % respectively [23]. Approximately 70 % of serum 

PAF-AH is bound to low-density lipoprotein (LDL) and 30 % is bound to high-density 
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lipoprotein (HDL). Decreasing levels of LDL are associated with prolonged PAF half-life. 

Theoretically, medical therapy to reduce LDL levels could increase the risk of anaphylaxis 

[24].

Urticaria and Chronic Rhinitis—MC-mediated diseases such as urticaria and rhinitis are 

also affected by PAF. [25] As noted earlier, while dermal MCs do not appear to directly 

respond to PAF in vitro, in vivo PAF indirectly activates dermal MCs via neurogenic 

activation [12•, 20]. In addition, PAF may amplify skin and mucosal inflammation via its 

chemotactic properties. In individuals with allergic disease, PAFR is significantly 

upregulated in epithelial and immune system cells. In allergic rhinitis, rhinorrhea and 

mucous secretion are associated with the increased vascular permeability caused by PAF. In 

addition, PAF promotes the rapid translocation of inflammatory cells into nasal tissues [17].

Therapeutics—During the 1990s, multiple PAF antagonists (modipafant, WEB2086, 

SR27417, UK74,505) were evaluated in asthma clinical trials, but none demonstrated 

clinical efficacy [26]. In contrast, rupatadine, a dual second-generation H1 antihistamine and 

PAFR blocker has proven clinically efficacious in urticaria, allergic rhinitis, and 

rhinoconjunctivitis [17, 27]. Randomized trials comparing rupatadine and levocetirizine 

demonstrate that rupatadine is better tolerated and more effective for chronic urticaria (Table 

1) [41, 42]. Rupatadine currently is not available in the USA.

Leukotrienes

Leukotrienes (LTs) (Fig. 1), also known as “slow-reacting substance of anaphylaxis”, are a 

class of immune-modulating eicosanoids that have emerged as useful clinical targets for the 

treatment of allergic disease [17, 43, 44, 45•]. Like PAF, LTs are not preformed, but rather 

are rapidly synthesized in response to various stimuli [46–48]. As these molecules were first 

detected in leukocytes and they share a carbon backbone containing three covalent double 

bonds (a triene), the substances were dubbed “leukotrienes”—a term credited to Swedish 

biochemist Bengt Samuelsson [49]. There are two distinct classes of LTs based on structure: 

(1) dihydroxyl LTs and (2) cysteinyl LTs (cysLTs). LTs play a key role in the pathogenesis of 

allergic rhinitis [48, 50, 51], asthma [43, 52, 53], and aspirin-exacerbated respiratory disease 

(AERD) [54, 55].

Synthesis

LTs are synthesized (Fig. 2) de novo from AA in activated leukocytes including eosinophils, 

MCs, tissue macrophages, and basophils. Activation-mediated calcium transients induce the 

translocation of the 5-lipoxygenase enzyme (5-LO) to the perinuclear membrane, where it 

associates with the 5(five)-lipoxygenase-activating protein (FLAP). FLAP, a perinuclear 

membrane protein, transfers free AA to 5-LO, which converts the fatty acid into the short-

lived intermediate LTA4. LTA4 is the common precursor for both classes of LTs. LTB4 is 

generated via LTA4 hydroxylase (LTA4H), and LTC4 is produced through the addition of a 

reduced glutathione to LTA4, a reaction catalyzed by LTC4 synthase (LTC4S). LTA4H is 

expressed by macrophages, MCs, and neutrophils, whereas LTC4S is expressed in 

eosinophils, basophils, MCs, and macrophages. The additional cystLTs are then generated 
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via sequential cleavage of residues from LTC4. LTC4 is converted to LTD4 by the 

extracellular enzyme γ-glutamyl transpeptidase, and the most stable and abundant cystLT, 

LTE4, is produced when a dipeptidase removes the terminal glycine residue from LTD4 [56].

Cysteinyl Leukotrienes—The cystLTs (LTC4, LTD4, LTE4) (Fig. 1) contain the amino 

acid cysteine in their structure. They are the most prevalent class of LTs synthesized in 

eosinophils and MCs and are highly relevant to pathogenesis of allergic disease [48, 57]. 

The cystLTs and their metabolites can be found in plasma, urine, sputum, bronchoalveolar 

lavage [58–60]. They exert their effects by binding to the GPCRs CysLT1 and CysLT2, with 

LTD4 and LTC4 having the greatest binding affinity for these receptors (LTE4 has relatively 

low affinity) [57]. CystLT1 is found on bronchial smooth muscle and myeloid cells 

including MCs and macrophages, whereas CystLT2 is found on these cells plus endothelial 

cells, adrenal medulla, brain and cardiac Purkinje cells. When activated by its ligand, the 

CystLT1 receptor induces bronchoconstriction, mucus secretion, and edema [57]. In 

contrast, CystLT2 does not participate in bronchoconstriction but appears to drive 

inflammation and edema by acting upon platelets, leukocytes, and vascular endothelium [61, 

62]. Since LTE4 is both a bronchoconstrictor and proinflammatory agent, yet has a low 

affinity for either CystLT1 or CystLT2, investigators have long hypothesized about the 

potential existence of additional unidentified LTE4-sensitive receptor(s) [57, 63•]. Recent 

studies have suggested that LT signaling is far more complex than previously envisioned, 

with an emerging immune modulatory role of P2Y purinergic receptors (P2Y2, P2Y6, 

P2Y12) and the identification of GPR99/OXGR1 (oxoglutarate receptor 1) as a direct LTE4 

receptor in vitro (mouse, human) and in vivo (mouse) [57, 63•, 64]. As LTE4 is the chief LT 

detected in inflamed tissues and biological fluids, the emergence of a new putative receptor 

that could be targeted pharmacologically has excited significant interest in the field [63•].

Dihydroxyl Leukotrienes—LTB4, the only known member of the dihydroxyl LTs, is 

primarily synthesized by neutrophils and macrophages (Figs. 1 and 2) [65, 66]. The 

biological effects of LTB4 are mediated through the BLT1 and BLT2 receptors. The BLT1 

receptor is differentially upregulated in response to stimuli such as LPS and TNFα [67]. 

Binding of this receptor results in chemotaxis of eosinophils, neutrophils, MC progenitors, 

CD4+, and CD8+ T lymphocytes [68]. It has been hypothesized that LTB4 may have a role in 

neutrophilic variant asthma, which is resistant to conventional glucocorticoids therapy [65, 

69]; however, a recent trial of the potent FLAP inhibitor GSK2190915 failed to affect 

sputum neutrophils despite significantly reducing LTB4 levels [69, 70].

Association with Allergic Disease

Asthma—LTs play multiple roles in the pathophysiology of asthma. They induce 

bronchoconstriction, recruit inflammatory cells, induce plasma extravasation, and drive 

tissue edema [71]. At a cellular level, LTs enhance allergen and IL-13-dependent allergic 

lung disease by amplifying levels of Th2-specific cytokines, CCL7 and CCL17, and 

increasing Th2 cell recruitment to the lungs [72]. They induce smooth muscle contraction, 

leading to bronchoconstriction [52] and have been found to stimulate airway remodeling 

[73]. CystLTs have also been implicated in mucous gland secretion and bronchovascular 

leakage [74], chemotaxis of leukocytes, and increased pro-inflammatory cytokine 
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production [48]. Sputum cystLT metabolite levels directly correlate with asthma severity and 

are increased in patients during exacerbations, following exercise, and during allergen 

challenge [53, 58].

Aspirin-Exacerbated Respiratory Disease (AERD)—AERD is classically described 

as a triad of asthma, chronic rhinosinusitis disease, and nasal polyps with worsening of 

symptoms with ingestion of non-steroidal anti-inflammatory drugs (NSAIDs). This disease 

is considered to be non-immunoglobulin E (IgE)-mediated (pseudoallergy). The mechanisms 

driving AERD pathology include: dysregulation of AA metabolism with increased 

production of LTs (specifically LTC4) from bronchial MCs [75], overexpression of CystLT1 

receptor on leukocytes in nasal mucosa, and reduced levels of prostaglandin E2 (PGE2), 

which suppresses LT production [76].

Therapeutics

Pharmacologic targeting of the LT pathway has led to the successful development of two 

classes of clinically useful LT modifiers [43]. Montelukast, zafirlukast, and pranlukast 

(available only in Japan) are orally bioavailable cystLT1 receptor antagonists (leukotriene 

receptor anatgonists, LTRA) indicated for mild persistent asthma [43], allergic rhinitis, and 

persistent urticaria [29]. Zileuton (available only in US) inhibits the catalytic activity of 5-

LO and decreases both cystLTs and LTB4 levels. Pretreatment of people with asthma with 

CystLT1 antagonists or 5-LO inhibitors has been shown to decrease airflow obstruction 

provoked by allergen, aspirin [77], exercise [45•], and sulfur dioxide exposure [78] (Table 

1).

In patients with asthma, LTRAs are a first-line controller medication, and in clinical trials, 

they have proven superior to placebo for multiple clinical outcomes (lung function/

spirometry, symptomology, quality of life, beta agonist rescue medication, and frequency of 

asthma exacerbations) [30, 31•, 79]. When compared to inhaled glucocorticoids as a 

controller, however, clinical competitiveness studies show inhaled glucocorticoids are 

superior or equivalent depending on the study [80, 81]. In contrast, adherence with an oral, 

once-a-day medication (like montelukast) is superior to inhaled steroids [82], and there are 

potential additive or synergistic benefits to using both inhaled steroids and LT-modifying 

medications [83, 84]. Of note, mouse studies have shown that extended LTRA use reversed 

airway remodeling (smooth muscle hypertrophy, subepithelial collagen deposition), an effect 

not observed with dexamethasone use [85]. This finding underscores the heterogeneity of 

asthma pathogenesis and the potential benefits of multiple treatment modalities.

In patients with AERD, LT modifiers are effective in blocking or blunting the response to 

NSAIDs and in improving rhinosinusitis and asthma. Due to ease of treatment, LT receptor 

antagonists (montelukast) are considered first-line therapy. Zileuton therapy has shown to be 

highly effective therapy, although it requires liver monitoring and more frequent dosing and 

has more potential drug interactions [77].

These medications are well tolerated but a variety of adverse effects have been reported. 

Side effects of montelukast use include suicidal thinking/ideation, and behavioral changes 
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that have resulted in a black-box warning, but these reports were not supported in reviews of 

the clinical trial data or separate nested, case-control study of insurance claims. [86, 87]

Prostanoids

Prostanoids (PNs; prostaglandins and thromboxanes) are lipid-soluble eicosanoids with 

hormone-like physiological functions whose structure was first determined by Sune K. 

Bergström and colleagues in the 1960–1970s, for which they were awarded the Nobel Prize 

in Medicine in 1982. In addition to regulating blood pressure, coagulation, pain, and fever, 

PNs regulate the physiology of inflammatory and allergic responses [88, 89].

Synthesis and Signaling

PNs are synthesized by almost every cell type, and due to their chemical instability, they 

mostly act locally in a paracrine or autocrine way. Similar to LTs, PN synthesis (Fig. 2) also 

begins with cPLA2 activation, liberating AA from cell membrane phospholipids by 

hydrolysis of their sn2 ester bonds, thus providing a substrate for cyclooxygenases (COX-1 

and COX-2). COX-1 and COX-2 convert AA first into prostaglandin G2 (PGG2) and second 

into prostaglandin H2 (PGH2). Specific prostaglandin synthases transform the unstable 

intermediate PGH2 into five main derivatives, prostacyclin (PGI2), prostaglandin D2 (PGD2), 

prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α), and thromboxane A2 (TxA2).

Each of these molecules exerts its effects by binding to one or more PN-specific GPCRs 

[88]. To date, nine different PN GPCRs have been identified, and their gene expression 

patterns and the synthesis of their cognate PNs are cell-type specific and can be altered 

under inflammatory conditions, thus imparting specificity to the cellular responses induced 

by each prostaglandin [90]. For this reason and due to the instability of PNs in vivo, the PN 

signaling network has been difficult to analyze in detail with regard to its multiple 

physiological roles. Below each PN is discussed individually with a focus on their specific 

properties which are most relevant to atopic disease. Given PGF2α minimal relevance to 

atopic diseases, however, this PN will not be discussed further (PGF2α roles in reproduction, 

renal physiology, and modulating intraocular pressure are reviewed elsewhere) [91, 92].

PGD2

PGD2 (Figs. 1 and 2) is the major PN produced by allergen-specific IgE-coated MCs [93, 

94]. It is found in substantial amounts in tissues affected by allergic reactions (lung [95], 

skin [95, 96], and esophagus [97]) and binds to two structurally distinct GPCRs with a 

similar affinity [98]. Prostaglandin D2 receptor 1 (DP1), widely expressed in many tissues 

(brain [99], vasculature [100], eosinophils [101], basophils, DCs [102], T cells [103]), 

causes vasodilation and smooth muscle relaxation via the increase of cAMP [104]. The role 

of DP1 in allergic responses remains controversial as both pro- and anti-inflammatory 

functions (e.g., inhibiting dendritic cell migration [102], promoting T regulatory cells, 

decreased development of airway hyperreactivity in DP-deficient mice [105], increased 

mucus production induced by DP activation in vitro [106]) have been reported. In contrast, 

activation of prostaglandin D2 receptor 2/ chemokine receptor homologous molecule 

expressed on Th2 lymphocytes (DP2/CRTH2) by PGD2 induces eosinophil and Th2 T cell 
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chemotaxis to the site of allergic inflammation [107]. Notably, DP2/CRTH2 is the only PN 

receptor with homology to chemoattractant receptors like the formyl peptide (FMLP) 

receptor 1 in its function and structure [108].

Both innate lymphoid type 2 cells (ILC2s) and pathogenic effector Th2 cells (peTh2s) are 

phenotypically defined by the expression of DP2/CRTH2 on their surface. These cell 

populations release potent Th2 cytokines (IL-5, IL-13, IL-4) that mediate allergic disease 

pathology. Counts of peTh2 cells (CRTH2+, hPGDS+) correlate with blood eosinophil 

counts in patients with atopic dermatitis or eosinophilic gastrointestinal disease (EGID) 

[109, 110••]. ILC2s are elevated in nasal polyps of patients with chronic rhinosinusitis and 

regulate eosinophil homeostasis at basal conditions by providing a constant source of IL-5 

[111].

Several PGD2 receptor antagonists are currently under evaluation for their potential 

beneficial effects in allergic inflammation. Among them are the CRTH2 antagonists 

OC000459 [33, 34] and Bl671800 [112], AMG 853 (a dual DP1/CRTH2 antagonist) [113], 

and Ramatroban (a dual thromboxane receptor (TP)/CRTH2 antagonist effective in allergic 

rhinitis) (Table 1).

PGE2

PGE2 (Figs. 1 and 2) modulates cellular activity by binding one of the four prostaglandin E2 

receptors (EP1, EP2, EP3, and EP4). These receptor subtypes activate distinct second 

messenger molecules—EP2 and EP4 increase intracellular cAMP concentrations; EP1 and 

EP3 increase intracellular Ca2+ concentrations [114]. Depending on the receptor subtype 

expressed on a given target cell and the receptor’s binding affinity [115], PGE2 can either 

enhance the endothelial barrier function (via EP4) [116•], promote tumor angiogenesis (via 

EP2) [117], inhibit apoptosis of tumor cells [118], or increase survival of eosinophils [119]. 

PGE2 exerts both anti-inflammatory and bronchodilator activity in the lung [120]; therefore, 

EP4 receptor agonists are being considered as a potential treatment strategy in asthma and 

COPD [121]. In sputum from patients with asthma, PGE2 levels are increased when 

compared to those of healthy individuals, and these levels correlate with disease severity 

[59]. As an endogenous counterpart to pro-inflammatory mediators, PGE2 might protect 

from allergic responses and airway inflammation by inhibiting eosinophil [122, 123] and 

macrophage-functions [124].

PGE2 has a complex, bimodal effect on human MCs, which is linked to the ratio of EP2:EP3 

receptor expression. EP2 activates MCs, whereas EP3 blocks cytokine transcription in 

human cord blood-derived MCs [125]. Hence, the EP2:EP3 ratio appears to fine-tune the 

positive or negative effect of PGE2 on MC degranulation in vivo [126].

PGI2

Produced mainly by the vascular endothelium [127, 128], PGI2 (prostacyclin) (Figs. 1 and 2) 

induces vasodilation [129], smooth muscle relaxation, and inhibition of platelet aggregation 

by binding the prostacyclin receptor (IP). Activated IP increases intracellular cAMP and 

activates protein kinase A [130, 131]. Both PGI2 and PGD2 are produced in the lung during 

acute antigen-induced anaphylactic reactions, and in mice, IP deficiency increases allergic 

Schauberger et al. Page 8

Curr Allergy Asthma Rep. Author manuscript; available in PMC 2017 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



airway inflammation [132, 133]. Due to their potent vasodilation capacity, prostacyclin 

analogues are used as a treatment for pulmonary hypertension [134]. Intriguingly, the 

prostacyclin analogue Cicaprost was recently shown to inhibit human ILC2 function by 

decreasing IL-33-induced IL-5 and IL-13 release. Similarly, Cicaprost treatment reduced 

IL-5+ and IL-13+ ILC2s in a fungal murine model in which mice were challenged with 

Alternaria alternata for four consecutive days [135].

TxA2

By binding the TP receptor on endothelial cells and platelets, TxA2 (thromboxane A2) (Figs. 

1 and 2) triggers vasoconstriction, platelet aggregation, and bronchoconstriction [136•] and 

hence can promote the pathology of allergic asthma. TP receptor activation has been 

implicated in the interaction between CD4+ cells and DCs, and both TP deficiency and the 

TP antagonist S-145 (administered during sensitization) enhance the inflammatory response 

in a murine model of contact hypersensitivity [137].

Therapeutics

The relevance of the AA metabolism is evidenced by the fact that the most common 

analgesic and anti-inflammatory drugs—NSAIDs, aspirin, and specific COX-2 inhibitors 

(coxibs)—inhibit PN synthesis. Corticosteroids, highly effective in symptom-based 

treatment of severe allergies, interfere with AA metabolism by the transcriptional 

downregulation of COX-2 and by enhancing the expression of annexin A1, which suppresses 

PLA2. PNs can act as either pro- or anti-inflammatory agents, and their function is highly 

dependent on the type and condition of the target cell. This complexity can lead to the 

undesirable off-target effects of certain COX inhibitors but also has fueled the development 

of a new generation of selective PN receptor agonists/antagonists for treating allergic 

diseases; several of these agonists/ antagonists are currently being tested in clinical trials 

(Table 1).

Sphingolipids

Sphingolipids, a ubiquitous and diverse class of cellular lipids defined by their aliphatic 

amino alcohol backbones (Fig. 1), were first identified by the German-born neurochemist 

J.L.W. Thudichum in 1884. Given their enigmatic function, they were named after the 

mysterious Egyptian Sphinx [138, 139]. Over the last two decades, sphingolipids have 

emerged as critical structural and signaling molecules that regulate a wide array of cellular 

activities including cell growth, survival, signal transduction, immune cell trafficking, and 

inflammation [140–142]. The sphingolipid class encompasses a large array of molecules, 

ranging from the simple sphingoid bases (single-carbon chain) to the ceramides (two-carbon 

chain) to the complex sphingolipids (such as sphingomyelin (SM), cerebrosides, 

gangliosides, and sulfatides), which are differentiated by their hundreds of different known 

head groups [143].

Synthesis and Metabolism

Distinct sphingolipid species are asymmetrically distributed across the intracellular 

compartments (endoplasmic reticulum (ER), Golgi apparatus, lysosomes, plasma 
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membrane) and can self-assemble into detergent-resistant signaling structures termed lipid 

rafts [139]. Fluctuations in the distribution and concentrations of specific sphingolipids are 

associated with changes in cellular morphology (polarization), protein trafficking, and 

activation state [144, 145]. Rapid interconversion of sphingolipid metabolites mediate 

signaling cascades with myriad cell-specific effects. Mammalian cells and tissues contain 

very low concentrations of the two major free sphingoid bases (sphingosine (4-sphingenine), 

10–20 pmol/mg; dihydrosphingosine (sphinganine), 1–5 pmol/mg), whereas their 

phosphorylated forms (sphingosine 1-phosphate (S1P), 0.31 μM in serum; 

dihydrosphingosine 1-phosphate (dhS1P), 0.04 μM in serum) are more abundant, especially 

in the blood/ lymph [146–148]. Sphingoid bases are absorbed from various dietary sources, 

but in mammals, the majority of spingolipids appear to be synthesized endogenously (Fig. 2) 

[149]. Sphingolipid de novo synthesis occurs in the ER via the condensation of serine and 

palmitoyl CoA by serine palmitoyltransferase (SPT), a process regulated by the asthma-

linked ORMDL protein family [150, 151]. The resulting intermediate (3-ketosphinganine) is 

rapidly reduced to dihydrosphingosine and subsequently N-acylated by one of the six 

ceramide synthases (CerS1-CerS6) to dihydroceramide. Following dehydrogenation, the 

substrate is converted to the prototypical sphingolipid ceramide (N-acyl-sphingosine) [141]. 

Ceramides are at the center of sphingolipid metabolism. Once synthesized, de novo 

ceramides are exported throughout the cell, being elaborated into complex 

glycosphingolipids in the Golgi apparatus or deacylated to sphingosine by ceramidases at 

the plasma membrane or in lysosomes. Ceramides can also be generated at the plasma 

membrane via inducible sphingomyelinase activity, leading to direct effects on cell signaling 

(activation of PP2A phosphatase and PKCζ kinase), apoptosis, and Nlrp3 inflammmasome 

formation [140]. Ceramides and the sphingoid bases can also be phosphorylated by various 

kinases (sphingosine kinase-1,2 SphK1 SphK2; ceramide kinase, CerK) to generate the 

bioactive lipids S1P and ceramide-1-phosphate (C1P) [141]. Extracellular S1P, generated by 

erythrocytes and vascular endothelial cells and preferentially carried by apoM/HDL, is 

present at a high concentration in the blood and lymph but kept at low levels in the tissue by 

the activity of S1P lyase, thus creating a gradient that has a critical role in immune cell 

trafficking [152•, 153, 154]. Extracellular and membrane S1P acts a ligand for the five 

known GPCR S1P receptors (S1P1–5) with each receptor exerting unique effects via their 

distinct signaling cascades and cellular expression patterns (extensively reviewed in [155, 

156]). Receptor-independent intracellular S1P also is bioactive and has an emerging role in 

IL-1/IRF1-driven autoinflammatory mechanisms. [157] C1P is generated intra-cellularly 

within the trans-golgi network by CerK and directly binds and activates cPLA2α, thus 

driving eicosanoid production [158•, 159]. The broad diversity of sphingolipid-driven 

cellular processes is beyond the scope of this review; therefore, we will focus on the specific 

role of sphingolipids as they relate to allergic disease.

Effects on Cellular Mediators of Allergic Disease

Mast cells—Studies have highlighted a key role for multiple sphingolipids in regulating 

MC function [160]. Crosslinking of the IgE high-affinity receptor (FcεR1) on MCs induces 

activation and de-granulation; however, multiple counter-regulator pathways can blunt this 

process, including the activity of leukocyte mono-immunoglobulin-like receptor 3 (LMIR3/

CD300F/ CLM-1). Both mouse and human LMIR3 are highly expressed on MCs, and upon 
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binding extracellular sphingolipids (mouse LMIR3 binds ceramide; human LMIR300 binds 

ceramide and SM), these receptors suppress FcεR1-driven degranulation in multiple allergic 

model systems (passive systemic anaphylaxis, ovalbumin (OVA)-sensitized asthma, and 

house dust mite eczema) [161, 162]. MC activation is also influenced by the recruitment of 

the FcεR1 signaling complex to ganglioside-enriched lipid rafts, and exogenous GM, GM3 

and GD1a gangliosides are capable of enhancing IgE-mediated histamine and LT release in 

human MCs [163, 164]. The SRC family kinase LYN, which transduces the activation signal 

from crosslinked FcεR1 receptors, coprecipitates with GD1b ganglioside in MCs, thus 

linking sphingolipids from lipid rafts with the IgE signal apparatus. Activated MCs also 

generate a burst of both intracellular and extracellular S1P following IgE/antigen activation, 

likely via colocalization of SphK1 and SphK2 to the FcεR1 complex driven by interactions 

with FYN and LYN kinases [165, 166]. The released S1P acts in an autocrine fashion on 

MC S1P1 receptors, enhancing chemotaxis and degranulation [167]; however, a role for MC 

S1P2 receptors remains controversial, with conflicting reports debating a role for S1P2 in 

degranulation [160, 168]. Also, additional studies have revealed that while mouse MCs 

require SphK2 for degranulation, calcium mobilization, and cytokine and leukotriene 

production, human MCs only require SphK1 activity for full functionality [169]. Elevated 

tissue and serum S1P levels skew both human and mouse MCs towards a hyper-reactive 

phenotype that may lower the threshold for triggering systemic anaphylaxis [170, 171].

Eosinophils—Human eosinophils express multiple S1P receptors, migrate towards S1P 

gradients, and upregulate the eotaxin receptor CCR3 following S1P exposure [172]. 

Peripheral blood eosinophils expressed higher levels of S1P receptor mRNA and protein 

when isolated from patients with allergic rhinitis than non-allergic controls, and S1P 

receptors levels increased fol-lowing nasal allergen challenge [173]. Similar to MCs, the 

sphingolipid-binding inhibitory receptor LMIR3/CD300F/ CLM-1 is also highly expressed 

on mouse and human eosinophils, is upregulated on the eosinophils of patients with allergic 

rhinitis, and a murine knock-out of this gene increased tissue eosinophil levels [174]. In 

addition, orosomucoid-like-3 (ORMDL3), the asthma-associated inhibitor of de novo 

ceramide synthesis, is expressed by eosinophils and is reported to regulate eosinophil 

chemotaxis and degranulation via CD48 activation [175].

Association with Allergic Disease and Therapeutics

Asthma—S1P is elevated in the airways of patients with asthma after sub-segmental 

allergen challenge and modulates airway smooth muscle contraction and cytokine 

production [176]. In murine asthma models, S1P has a central role in mediating AHR (via 

smooth muscle S1P1 activation) and enhancing inflammation via effects on MCs, 

eosinophils, and DCs [140, 177]. Nebulized delivery of FTY720 (figolimod), an S1P1 

functional antagonist, and multiple SphK1 inhibitors (SK1-I, N,N-dimethylsphingosine 

(DMS), AAL-R) have demonstrated that S1P mediates both the sensitization and effector 

phases of murine allergic asthma [35, 39, 40, 178].

Beyond S1P’s pleiotropic cellular effects, multiple, well-powered genome-wide association 

studies (GWAS) and cis-expression quantitative trait loci (cis-eQTL) investigations have 

linked overexpression of the gene ORMDL3 with pediatric-onset asthma [179••, 180–182]. 
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Overexpression of ORMDL3 in a transgenic mouse model led to increases in AHR, airway 

inflammation, goblet cell metaplasia, and basal IgE levels [183]; however, the cellular 

mechanisms by which ORMDL3 overexpression enhances asthma pathogenesis remains 

unclear [184]. Increased airway ceramide levels have been implicated in the pathogenesis of 

pulmonary diseases such as emphysema and cystic fibrosis, but little is known about the 

specific roles of ceramide signaling in asthma pathogenesis [185, 186]. We have recently 

shown that intratracheal delivery of a pharmacologic inhibitor of SPT, (myriocin) enhances 

AHR and Th2-mediated inflammation in a house dust mite-mediated model of asthma [187]. 

Intriguingly, ceramide synthase-2 (CerS2) knockout mice, which have reduced pulmonary 

long-chain ceramide levels, also have exaggerated airway inflammation and increased 

baseline AHR. [188]

Food Allergy—Allergic responses to food allergens involve lymphocyte sensitization 

(CD4+ T cells, IgE-producing B cells) and enhanced activity of MCs, frequently in the 

colon. SphK1 and SphK2 knockout mice had reduced food allergen IgE levels, OVA-primed 

CD4+ T cells, and colonic MC counts compared to wild-type control mice in an intragastric 

OVA food allergy model [189]. Coadministration of FTY720 in an intraperitoneal-primed 

OVA food allergy model blunted allergic diarrhea by reducing pathogenic CD4+ T cell 

induction and diminishing colonic MC recruitment but had no effect on colonic eosinophil 

counts [190]. A clinical trial is currently underway to assess serum S1P levels in pediatric 

patients with food allergy undergoing oral challenge (NCT01776489).

Atopic Dermatitis—In human skin, the epidermal stratum corneum (SC) acts as an air–

liquid interface, blocking desiccation of the underlying cellular structure. Ceramide is the 

most abundant lipid component of the SC [191] and higher ceramide:cholesterol (CH) ratios 

correlate with improved barrier function [192]. Lesional and non-lesional atopic dermatitis 

skin is characterized by reduced ceramide-1 (Cer-EOS) and ceramide-3 (Cer-NP) content 

and a reduced Cer-CH ratio, resulting in impaired barrier function [193, 194]. Emollient 

treatments containing exogenous ceramides, however, have not been superior to petroleum-

based or glycyrrhetinic acid-containing emollients [195]. Topical steroids and calcineurin 

inhibitors are both reported to increase the Cer-CH ratio in the skin of healthy control 

patients, but in patients with atopic dermatitis, topical steroids caused ultrastructural 

disordering of the SC and skin atrophy, effects not noted in calcineurin inhibitor-treated skin 

[192, 196]. A pre-clinical evaluation of topical FTY720 in the NC/Nga mouse model of dust 

mite-induced atopic dermatitis revealed reduced epidermal hypertrophy, MC accumulation, 

and CD3+ T cell infiltration in treated animals [36].

Conclusion

Lipid mediators of allergic inflammation gained increasing clinical attention following the 

approval of drugs targeting the LT pathway in the late 1990s. Multiple clinical trials are 

currently underway to test the efficacy of novel PN receptor inhibitors for multiple atopic 

indications [197]. Drugs targeting S1P signaling also are emerging as potent anti-

inflammatory/anti-autoimmune compounds [198]. Unfortunately, we are aware of no clinical 

trials currently testing the efficacy of anti-S1P compounds for allergic indications despite 

accumulating evidence from animal studies of possible utility. The genetic linkage of 
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ORMDL3 to asthma has also intensified interest in the role of sphingolipid metabolism in 

allergic airway disease, but unanswered mechanistic questions regarding how ORMDL3 

locus polymorphisms contribute to asthma pathogenesis remain [184]. Future clinical and 

basic science studies, especially those utilizing the unbiased lipidomics approach, are 

required to more completely elucidate the mechanisms by which lipid mediators contribute 

to allergic disease. Increased understanding of these critical bioactive molecules will drive 

future innovations in treating atopy in its many forms.
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Fig. 1. 
Select bioactive lipids—PAF (purple, representative hexadecyl (16:0) species); sphingolipids 

(pink, representative Sph (d18:1)/C16 Cer and phosphorylated forms); prostanoids (green); 

leukotrienes (yellow). Cer, ceramide; C1P, ceramide-1-phosphate; LTB4, leukotriene B4; 

LTC4, leukotriene C4; LTD4, leukotriene D4; LTE4, leukotriene E4; PAF, platelet activating 

factor; PGD2, prostaglandin D2; PGE2, prostaglandin E2; PGI2, prostaglandin I2/

prostacyclin; Sph, sphingosine; S1P, sphingosine-1-phosphate; TXA2, thromboxane A2
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Fig. 2. 
Integrated bioactive lipid synthesis and signaling pathways. Sphingolipids (blue), PAF 

(yellow), prostanoids (pink), leukotrienes (green). Substrates (boxes), regulatory proteins/

enzymes (italics), receptors (arches, bold italics), enzymatic activity (solid lines/arrow), 

regulatory activity (dotted lines). 5-LO, 5-lipoxygenase enzyme; BLT1,-2, LTB4 

receptor-1,-2; CDase, ceramidase; Cer, ceramide; CERK, ceramide kinase; C1P, 

ceramide-1-phosphate; CerS1-6, ceramide synthases1–6; CoA, coenzyme A; cPLA2, 

cytosolic phospholipase A2; COX-1/2, cyclooxygenase-1/-2; CystLT1/2, Cysteinyl 

leukotriene receptors-1/-2; D1-2, PGD2 receptor-1,-2; EP1-4, PGE2 receptor-1,-2,-3,-4; FP, 

PGF2 receptor; GCase, glucosylceramidase; GCS, glucosylceramide synthase; GluCer, 
glucoceramide; GlycoSLs, Glycosphingolipids; GPR99, G-protein receptor-99; IP, PGI2 

receptor; KDS, 3-Ketodihydrosphingosine Reductase; LPC, lyso-phosphatidylcholine; 

LPCAT, LPC acetyltransferase; LTB4, leukotriene B4; LTC4, leukotriene C4; LTD4, 

leukotriene D4; LTE4, leukotriene E4; LTA4H, LTA4 hydroxylase; LTC4S, LTC4 synthase; 

ORMDLs, ORM1-like proteins; PAF, platelet activating factor; PAFR, PAF receptor; Pase, 

phosphatase; PGD2, prostaglandin D2; PGE2, prostaglandin E2; PGH2, prostaglandin H2; 

PGI2, prostaglandin I2/prostacyclin; PGDS, PGD2 synthase; PGES, PGE2 synthase; PGFS, 

PG2F synthase; PGIS, PGI2 prostaglandin synthase; SM, sphingomyelin; Sph, sphingosine; 

SK1,2, sphingosine kinases-1,-2; SMase, sphingomyelinase; SMS, sphingomyelin synthase; 

SPPase, sphingosine phosphate phosphatase; S1P, sphingosine-1-phosphate; S1P1-5, S1P 

receptors1-5; SPT, serine palmitoyltransferase; TP, TXA2 receptor; TXAS, TxA2 synthase; 

TXA2, thromboxane A2
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