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Hepatocellular carcinoma (HCC) is the third most frequent
cause of cancer deaths worldwide. The standard of care for
intermediate HCC is transarterial chemoembolization,
which combines tumour embolization with locoregional
delivery of the chemotherapeutic doxorubicin. Embolization
therapies induce hypoxia, leading to the escape and
proliferation of hypoxia-adapted cancer cells. The
transcription factor that orchestrates responses to hypoxia
is hypoxia-inducible factor 1 (HIF-1). The aim of this work is
to show that targeting HIF-1 with combined drug therapy
presents an opportunity for improving outcomes for HCC
treatment. HepG2 cells were cultured under normoxic and
hypoxic conditions exposed to doxorubicin, rapamycin and
combinations thereof, and analyzed for viability and the
expression of hypoxia-induced HIF-1α in response to these
treatments. A pilot study was carried out to evaluate the
antitumour effects of these drug combinations delivered
from drug-eluting beads in vivo using an ectopic xenograft
murine model of HCC. A therapeutic doxorubicin
concentration that inhibits the viability of normoxic and
hypoxic HepG2 cells and above which hypoxic cells are
chemoresistant was identified, together with the lowest
effective dose of rapamycin against normoxic and hypoxic

HepG2 cells. It was shown that combinations of rapamycin
and doxorubicin are more effective than doxorubicin alone.
Western Blotting indicated that both doxorubicin and
rapamycin inhibit hypoxia-induced accumulation of HIF-1α.
Combination treatments were more effective in vivo than
either treatment alone. mTOR inhibition can improve
outcomes of doxorubicin treatment in HCC. Anti-Cancer
Drugs 28:771–780 Copyright © 2017 The Author(s).
Published by Wolters Kluwer Health, Inc.
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Introduction
Hepatocellular carcinoma (HCC) is the fifth most com-

mon cancer worldwide and the third most common cause

of cancer-related deaths [1]; it is often diagnosed at

an intermediate or an advanced stage, when treatment

options are limited and the prognosis is poor.

Transarterial chemoembolization (TACE) using the

anthracycline antibiotic doxorubicin is the standard

treatment for unresectable intermediate HCC [2]. TACE

combines embolization with locoregional delivery of

chemotherapeutic agent(s). HCCs are typically highly

vascularized [3] and embolization therapies for HCC

exploit the fact that the liver tumour is fed by the hepatic

artery, whereas the normal liver tissue is fed mainly by

the portal vein [4]. Disruption of the arterial blood supply

results in a depletion of oxygen and nutrients to the

tumour cells, and consequent necrosis and tumour

shrinkage. Drug-eluting bead transarterial chemoembo-

lization (DEB-TACE) is a refinement of TACE and

provides a one-step procedure for both embolization and

drug delivery. DEB-TACE enables a controlled, loca-

lized and sustained release of the drug to the tumour bed,

with reduced systemic doxorubicin and an improved

safety profile compared with cTACE [5–7]. Currently,

the most widely used and studied DEB is DC Bead, a

sulphonate-modified polyvinyl alcohol hydrogel micro-

sphere system that can be conveniently loaded in the

hospital pharmacy with cationic drugs such as doxor-

ubicin hydrochloride [8]. Once the drug has been fully

sequestered into the beads by an ion-exchange process, it

is delivered to the interventional radiologist and admi-

nistered through the hepatic arterial vasculature to the

site of the tumour, where the drug is then released in a

controlled and sustained manner over the next weeks. A

feature of the embolization of the blood vessels is the

generation of ischaemia, which is the primary cause of

tumour cell death following this procedure, but that also

may have downstream ramifications.
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Tumour hypoxia is a feature of all solid tumours, and is a

requirement for tumour growth [9]. Intratumoural hypoxia

and the hypoxic phenotype are implicated in therapy

resistance, tumour malignancy, tumour progression and a

poor prognosis. A negative, but inevitable, consequence of

embolization therapy is the de novo formation of hypoxic

regions within the tumour. Hypoxic tumour cells undergo

phenotypic adaptations that allow the cells to survive and

results in the clonal selection of refractory tumour cells

[10]. The transcription factor, hypoxia-inducible factor 1

(HIF-1) is the master regulator of cellular responses to

hypoxia. HIF-1 is a heterodimeric DNA-binding complex

consisting of α and β subunits. The HIF-1α subunit is

subjected to oxygen-dependent post-translational degra-

dation by hydroxylation of prolyl residues within the

oxygen-dependent degradation domain, which promotes

the interaction of HIF-1α with the von Hippel–Lindau

tumour-suppressor protein, a component of the

protein–ubiquitin ligase complex that targets HIF-1α for

rapid degradation. Under hypoxic conditions, HIF-1α
stabilizes and translocates to the nucleus, where it het-

erodimerizes with HIF-1β. The HIF-1 complex binds to

hypoxia response elements present in the enhancer or

promoter regions of the HIF-1 target gene [11]. The

transcriptional activity if HIF-1 is subjected to oxygen-

dependent regulation, whereby the asparagyl hydroxylase

factor inhibiting HIF-1 (FIH-1) blocks the association of

transcriptional coactivators CREB (cAMP response ele-

ment binding)-binding protein/p300 with the C-terminal

transactivation domain of HIF-1α in the presence of

oxygen [12]. Clinical and animal studies have reported

increased HIF-1α after TACE in both plasma and tumour

samples [13–15]. The genes regulated by HIF-1 enable

the cells to survive in a hypoxic environment and thus

promote tumour growth [16].

The cytotoxicity of doxorubicin against cancer cells is

attributed to the intercalation of the drug in the DNA of

dividing cells; the induction of topoisomerase-II-mediated

strand breaks; and the generation of oxygen radicals that

damage DNA and cell membranes [17–19]. Recent data

suggest that doxorubicin inhibits the transcription of HIF-

mediated genes by blocking the binding of HIF-1 to the

promoter region of hypoxia response genes [20].

Rapamycin interferes with the PI3K/Akt/mTOR signal-

ling pathway, a pathway that is known to play an

important role in cancer progression and is known to be

deregulated in around half of all HCCs [21]. Activation of

mTOR (mechanistic target of rapamycin) increases the

rate of translation of HIF-1α [22]. The mTOR inhibitor

rapamycin has been shown to exert antitumoural effects

in vitro and in vivo [23–30]. In addition to the use of

either doxorubicin or rapamycin against HCC, there is

also potential for the use of both in combination. Drugs

that target molecular pathways exert their effects on

stromal tissues and cells and the processes that support

tumour growth, as well as on tumour cells themselves.

Rapamycin and doxorubicin have been shown to have

additive effects in vivo in murine models of liver, pros-

tate, cervical and lung cancers [31–33].

The majority of in-vitro investigations are carried out at

ambient (21%) oxygen, and do not properly model

in-vivo intratumoural physiology, wherein oxygen con-

centrations are likely to be much lower [34]. To under-

stand the biology of cells occupying hypoxic niches,

in-vitro research needs to be carried out at physiologi-

cally relevant oxygen concentrations. Increased under-

standing of the pathophysiological responses to hypoxia

will contribute towards improved treatment regimens and

better outcomes for patients.

Here, we established a hypoxic model of HCC by culti-

vating HepG2 cells at 1% oxygen. The time-dependent

and concentration-dependent effects of doxorubicin,

rapamycin and both drugs in combination on the viability

of HepG2 cells were investigated under both normoxic

and hypoxic culture conditions. SDS-PAGE and Western

Blotting were then used to evaluate the responses of

hypoxia-induced HIF-1α after application of the same

chemotherapeutics. Finally, the antitumour effects of

DEBs loaded with doxorubicin, rapamycin and both

drugs in combination were investigated in vivo using an

ectopic xenograft murine model of HCC.

Materials and methods
Cell lines

HepG2 cells were obtained from the American Type

Culture Collection (Rockville, Maryland, USA) and cul-

tured as recommended by the supplier. Cells were

maintained in minimum essential medium+Earle’s

salts+ L-glutamine, supplemented with 10% foetal

bovine serum heat-inactivated and 1% nonessential

amino acids (all from PAA Laboratories, GmBH, Cölbe,

Germany). For hypoxic incubations (1% oxygen), the

cells were cultured in a hypoxic glove box (COY

Laboratory Products Inc., Grass Lake, Michigan USA).

Cell viability assay

HepG2 cells were seeded onto 96-well plates (1× 104

cells/well in 200 µl aliquots) and incubated overnight.

Plates were exposed to doxorubicin (Zhejiang Hisun

Pharmaceuticals, Zhejiang, China), rapamycin (LC

Laboratories, Woburn, Massachusetts, USA) or a combi-

nation of both and incubated for 24, 48 and 72 h under

normoxic or hypoxic conditions (six replicate wells for

each drug concentration). Cell viability was assessed using

the 3-(4, 5 dimethylthiazol-2-yl)-5-(3-carboxymethox-

yphenyl)-2-(4 sulphophenyl) 2H-tetrazolium, inner salt

(MTS) cytotoxicity assay (Promega, Southampton, UK)

according to the manufacturer’s instructions.

Western blot analysis

Cells were harvested and nuclear extracts were prepared.

Overall, 20 µg of protein (as determined by Bradford assay)
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was resolved on a 10% polyacrylamide gel and transferred to a

polyvinylidene fluoride membrane (Immobilon-Pmembrane;

Millipore Corp., Watford, Hertfordshire). Immunoblotting

was carried out using antibodies against HIF-1α (Cell

Signalling Technology, Danvers, Massachusetts, USA) and

Lamin B1 (Abcam, Cambridge, UK). Protein was detected

and quantified using chemiluminescence (Amersham ECL

Plus Western Blotting Detection Reagents; GE Healthcare,

Buckinghamshire, UK) and FlouroChem software (Alpha

Innotech; San Leandro, California, USA); the target protein

was normalized to a house-keeping protein control.

Immunohistochemistry

HepG2 cells were seeded onto chamber slides (Fisher

Scientific, Leicestershire, UK) and incubated under

normoxic conditions until confluence was 60%. The cells

were then incubated in either 21% oxygen or 1% oxygen

for 24 h and fixed with 3.7% formalin. The cells were

incubated overnight with antibodies to HIF-1α, and

then incubated with tetramethylrhodamine-5-(and 6)-

isothiocyanate fluorescein isothiocyanate conjugated

secondary antibody. 4′,6-Diamidino-2-phenylindole stain-

ing was used to visualize the nucleus. Images are taken at

× 100 magnification.

Ectopic xenograft murine model of hepatocellular

carcinoma

Experiments were conducted by EPO-GmbH and

approved by LAGeSo (State Office of Health and Social

Affairs), Berlin. National Medical Research Institute nu/

nu mice (Taconic M&B, Ry, Denmark), adult females of

20 g were randomly assigned to treatment groups. In all,

1× 107 HepG2 cells from the culture were transplanted

subcutaneously at day 0. Treatment started when

tumours were of palpable size. DC Bead microspheres

(Biocompatibles UK Ltd, Camberley, UK) were loaded

to a doxorubicin concentration of 25mg/ml, a rapamycin

concentration of 20 mg/ml and a combination of both as

described previously [35]. The beads were lyophilized

and gamma sterilized (Isotron PLC, Wiltshire, UK). A

3 ml aliquot of alginate solution (CellMed Ag, Alzenau,

Germany) was added to a vial containing 1 ml of beads

and mixed. Overall, 100 μl of bead/alginate mix was

applied adjacent to the tumour by direct injection. For

oral administration, rapamycin powder was dissolved in

ethanol to a concentration of 10 mg/ml and diluted to

0.01 mg/ml in drinking water. A dose of 1 mg/kg/day was

administered by gavage. Tumour growth was measured

twice per week in two perpendicular diameters using a

calliper. Tumour volume was calculated using the ellip-

soid volume formula (volume= π/6× length×width2).

The mice were inspected for signs of toxicity and beha-

vioural changes immediately after application of the

beads and then twice daily. Body weight change was

used as a parameter for toxicity and was determined twice

per week. Mice were euthanized at a moribund stage or if

the tumour was larger than 10% of the total body weight.

The tumours were excised and weighed postmortem.

Results
The effects of doxorubicin, rapamycin and combinations

on cell viability under normoxic and hypoxic conditions

To determine the effect of doxorubicin, rapamycin and

combinations of both on HepG2 cell viability, a series of

time-dependent and concentration-dependent MTS

assays were carried out. The effects of doxorubicin alone

are summarized in Fig. 1a. After 48 h (Fig. 1a), 10, 25 and

50 µmol/l doxorubicin treatments all reduced the viability

of HepG2 cells cultured under normoxic conditions

(P= 0.000, 0.002 and 0.004, respectively). The 10 µmol/l

treatment was not significantly more effective than either

the 25 or the 50 µmol/l treatments (P= 0.126 and 0.648,

respectively). After 72 h, 10, 25 and 50 µmol/l doxorubicin

treatments all reduced the viability of HepG2 cells cul-

tured under normoxic conditions (P= 0.000, 0.001 and

0.010, respectively). The 10 µmol/l treatment was not

significantly more effective than either the 25 or the

50 µmol/l treatments (P= 0.993 and 1.000, respectively).

The hypoxic cells were more resistant to doxorubicin

treatment. After 48 h, only the 10 µmol/l treatment sig-

nificantly reduced the cell viability of HepG2 cells cul-

tured under hypoxic conditions (P= 0.005); treatments of

25 and 50 µmol/l had no significant effect (P= 0.280 and

0.546, respectively). After 72 h, only the 10 µmol/l treat-

ment significantly reduced the cell viability of HepG2

cells cultured under hypoxic conditions (P= 0.001);

treatments of 25 and 50 µmol/l had no significant effect

(P= 0.288 and 0.065, respectively).

The effects of rapamycin alone are summarized in

Fig. 1b. The lowest effective concentration of rapamycin

as a single agent after 24 h was 100 nmol/l for normoxic

cells (P= 0.011). Hypoxic cells were resistant to con-

centrations up to 500 nmol/l. The lowest effective con-

centration of rapamycin as a single agent after 48 h was

10 nmol/l for normoxic cells (P= 0.028) and 100 nmol/l for

hypoxic cells (P= 0.006). Analysis of variance found a

significant increase in cytotoxicity between doxorubicin

alone and doxorubicin+ 10 nmol/l rapamycin combina-

tions in both normoxic and hypoxic cells after 24 h

(P= 0.000 and 0.05, respectively), but this effect was

not observed at the later time points (Fig. 2).

Effects of doxorubicin and rapamycin on HIF-1α
induction

To determine the effect of these agents on the hypoxic

induction of HIF-1α, SDS-PAGE and Western Blotting

were carried out on nuclear extracts from HepG2 cells

exposed to doxorubicin or rapamycin when cultured

under normoxic or hypoxic conditions. As shown in

Fig. 3, 24 h exposure to hypoxic conditions resulted in a

significant increase in nuclear HIF-1α (P= 0.001). This

was confirmed using immunohistochemistry (Fig. 4).
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Although the doxorubicin treatment of 10 µmol/l had no

significant effect, the 50 µmol/l treatment significantly

reduced the amount of HIF-1α detected in the nucleus

(P= 0.002) (Fig. 3a). Doxorubicin treatment did not

result in the induction of HIF-1α in the nucleus of

normoxic cells (Fig. 3a). Both the 10 nmol/l rapamycin

and the 100 nmol/l rapamycin treatments significantly

inhibited the accumulation of HIF-1α in the nucleus of

hypoxic cells (P= 0.021 and 0.001, respectively)

(Fig. 3b).

Fig. 1

The effects of (a) doxorubicin and (b) rapamycin on the viability of HepG2 cells cultured under normoxic and hypoxic conditions. HepG2 cells were
seeded onto 96-well plates (1×104 cells/well) and incubated overnight. Plates were then exposed to doxorubicin or rapamycin and incubated for 24,
48 and 72 h under normoxic or hypoxic conditions. Cell viability was estimated using the MTS assay and normalized to untreated control. Data points
represent mean ±SEM from at least three independent experiments. For statistical analysis of doxorubicin treatments, analysis of variance with
Tamhane post-hoc comparisons was used; * denotes a significant decrease in cell viability compared with the control P<0.01. For statistical analysis
of rapamycin treatment, a one-tailed t-test was carried out; ** denotes a significant decrease in cell viability compared with the control P<0.05.

774 Anti-Cancer Drugs 2017, Vol 28 No 7



Effects of doxorubicin and rapamycin drug-eluting beads

in a murine model of hepatocellular carcinoma

Consequent to the findings described above, the anti-

tumour effects of doxorubicin and rapamycin, both as

monotherapies and in combination, were evaluated

in vivo in a pilot study using a murine model of HCC

(Fig. 5). HepG2 tumour-bearing mice were treated with

doxorubicin-loaded beads, rapamycin-loaded beads,

rapamycin and doxorubicin co-loaded beads, oral rapa-

mycin and doxorubicin-loaded beads in combination with

Fig. 2

The effects of doxorubicin +10 nmol/l rapamycin on the viability of HepG2 cells cultured under (a) normoxic and (b) hypoxic conditions. HepG2 cells
were seeded onto 96-well plates (1×104 cells/well) and incubated overnight. Plates were then exposed to doxorubicin +10 nmol/l rapamycin and
incubated for 24, 48 and 72 h under normoxic or hypoxic conditions. Cell viability was estimated using the MTS assay and normalized to untreated
control. Data points represent mean±SEM from at least three independent experiments. For statistical analysis, analysis of variance was carried out.
*P<0.000, **P<0.05.
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oral rapamycin. At day 45, analysis of variance showed a

significant difference between the treatment groups

(P= 0.008). Post-hoc comparisons indicated that three

treatment regimens resulted in a significant reduction in

tumour volume compared with the control – doxorubicin-

loaded beads (P= 0.014), rapamycin and doxorubicin co-

loaded beads (P= 0.011) and oral rapamycin in combi-

nation with doxorubicin-loaded beads (P= 0.021).

Rapamycin monotherapies inhibited tumour growth for

the duration of the experiment and oral rapamycin

inhibited tumour growth more effectively than

rapamycin-loaded beads, although the pattern of growth

inhibition was the same for both treatments.

Doxorubicin-loaded beads inhibited tumour growth in a

manner similar to rapamycin-loaded beads up to day 32.

We found that doxorubicin was necessary and sufficient

for tumour regression, which occurred from day 32 in the

doxorubicin-loaded bead cohort and in the rapamycin

and doxorubicin co-loaded bead cohort. The most

effective treatment overall was the combination of

doxorubicin-loaded beads and oral rapamycin, which

resulted in almost total inhibition of tumour growth to

day 35, tumour regression from day 28 to 30 and day 42 to

45 and complete tumour destruction reported in one

animal by day 45. All treatments resulted in decreased

tumour weight compared with the control (Fig. 6). There

was evidence of increased antitumoural activity with

combination therapies compared with either treatment

alone, and all treatments were well tolerated.

Discussion and conclusions
Here, we have identified a doxorubicin concentration of

10 µmol/l that is effective against normoxic and hypoxic

HCC cells. This 10 µmol/l dose is commensurate with

concentrations of doxorubicin that are eluted from DC

Beads at distances of up to 350 and 600 µm [36–38].

Viable hypoxic cells have been observed at distances of

50–250 µm from the nearest blood vessel [39]; thus,

tissue penetration of doxorubicin is sufficient to target

hypoxic cells.

Hypoxia-induced mechanisms of resistance to doxor-

ubicin are likely to be multifactorial and include reduced

drug accumulation and increased drug efflux [40–42],

resistance to apoptosis [43], decreased levels of topoi-

somerase II [44,45] and a reduction in free radical-

dependent DNA damage [46]. Toxic effects that are

oxygen dependent are reduced in hypoxia [47].

Hypoxia protected cells from doxorubicin-induced cyto-

toxicity (48 and 72 h treatments) at concentrations 10, 25

and 50 μmol/l. The cytotoxicity of doxorubicin is because

of a number of different mechanisms, with the activation

of one mechanism potentially having an inhibitory effect

on other mechanisms and particular co-factors being

required for efficient cytotoxicity in some cases. For

example, doxorubicin is a topoisomerase II poison with

the intercalation of doxorubicin into cellular DNA at

higher drug concentrations itself potentially inhibiting

the binding of TOP2 to cellular DNA and decreasing

Fig. 3

Nuclear accumulation of hypoxia-inducible factor 1α (HIF-1α) after doxorubicin and rapamycin treatments. Normoxic and hypoxic HepG2 cells were
exposed to doxorubicin or rapamycin for 24 h. Nuclear extracts were fractionated on a 10% SDS-PAGE gel, transferred to a PVDF membrane and
probed with anti-HIF-1α antibodies. Proteins were visualized using chemiluminescence. The membrane was stripped and reprobed using antibodies
against the nuclear house-keeping protein Lamin B1. Protein levels were quantified using densitometry analysis. HIF-1α was normalized to Lamin. Fold
change compared with untreated hypoxic cells was calculated. Statistical analysis was carried out using a t-test. *P<0.05, **P<0.01.
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TOP2-mediated cytotoxicity [48]. The complex interplay

of these factors with hypoxia-induced cell survival

mechanisms could explain why a 10 μmol/l dose is more

effective than higher doses. In this study, only the

50 μmol/l dose of doxorubicin was shown to inhibit

hypoxia-induced nuclear accumulation of HIF-1α. In line

with this study, Potmesil et al. [49] reported that the

frequency of single-strand DNA breaks in mouse leu-

kaemia cells increased with doses of doxorubicin

between 0.2 and 20 μmol/l, then plateaued in normoxic

cells and declined in hypoxic cells until the concentration

was increased to 200 μmol/l. Extracellular pH levels are

also higher in hypoxic cells compared with normoxic cells

because of the Warburg effect, which reduces the pro-

portion of doxorubicin in the nonionized membrane-

permeable form and consequently causes a reduction in

the accumulation of doxorubicin into cells [50–52].

Different local doxorubicin concentrations will also

impact on this drug-partitioning effect and drug-efflux

mechanisms may also be more pronounced when the

drug is at higher concentrations.

We subsequently established that 10 nmol/l rapamycin

inhibited cell viability in normoxic cells, but that a con-

centration of 100 nmol/l was required to inhibit

cell viability in hypoxic cells. Combinations of 10 nmol/l

rapamycin with doxorubicin were more effective against

both normoxic and hypoxic HepG2 cells than either

treatment alone. A primary mechanism contributing

towards drug resistance is increased drug efflux because

of the upregulation of P-glycoprotein MDR1 [40,41].

Rapamycin has been reported to improve the uptake of

chemotherapeutics in multidrug-resistant cell lines

because of competitive inhibition as a result of a direct

interaction of rapamycin with Pgp [53–55].

To ascertain the possible effects of doxorubicin and rapa-

mycin on responses to hypoxia-induced survival pathways,

we investigated their effects on hypoxia-induced nuclear

Fig. 4

Immunohistochemistry staining for hypoxia-inducible factor 1 (HIF-1) in normoxic and hypoxic HepG2 cells. Cells were seeded onto chamber slides.
HepG2 cells were seeded onto chamber slides and incubated under normoxic conditions until confluence was 60%. The cells were then incubated
under either (a) normoxic conditions or (b) hypoxic conditions for 24 h. The cells were incubated overnight with antibodies to HIF-1α and then
incubated with the TRITC-conjugated secondary antibody. 4′,6-Diamidino-2-phenylindole staining was used to visualize the nucleus. Images are taken
at ×100 magnification. HIF-1α is absent in normoxic cells and present in hypoxic cells.
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accumulation of HIF-1. Doxorubicin of 50 µmol/l and

rapamycin of 10 and 100 nmol/l attenuated the stabilization

of HIF-1α under hypoxic conditions.

Consequent to the findings described above, the anti-

tumour effects of doxorubicin and rapamycin, both as

monotherapies and in combination in vivo, were eval-

uated in a murine model of HCC. Rapamycin mono-

therapies inhibited tumour growth for the duration of the

experiment. Doxorubicin was necessary and sufficient for

tumour regression. The most effective treatment overall

appears to be the combination of DOXDEB and oral

rapamycin, which resulted in almost total inhibition of

tumour growth to day 35, tumour regression from day 28

to 30 and day 42 to 45 and complete tumour destruction

reported in one animal by day 45. There was evidence of

increased antitumoural activity with combination thera-

pies compared with either treatment alone, and all

treatments were well tolerated. In agreement with our

findings, combinations of doxorubicin with mTOR inhi-

bition were found to be more effective than mono-

therapies in an orthotopic syngeneic rat HCC model [32]

and in an ectopic xenograft mouse model of prostate

cancer [33] and lung and cervical cancers [31]. If cancer

cells with a hypoxic phenotype as well as cancer cells

with a normoxic phenotype can be successfully targeted

by specific drug regimens, as has been indicated by the

data presented here, there is a possibility of improving

the outcome of patients with primary liver cancer, a dis-

ease that, at present, has a dismal prognosis.

Fig. 5

Antitumoural activity of doxorubicin and rapamycin treatments in a mouse model of hepatocellular carcinoma. In all, 5×106 HepG2 cells were
subcutaneously implanted in NMRI: nu/nu mice (day 0). Tumour was palpable at day 23 after implantation and treatment was initiated. Rapamycin was
administered by gavage at a dose of 1 mg/kg/day. 100 µl of beads loaded as specified was injected adjacent to the tumour. Tumour volume was
measured at days 23, 25, 28, 30, 32, 35, 37, 42 and 45. Data shown represent the mean value of three replicates per group ±SEM, apart from the
control group, where data represent the mean of two replicates ±SEM. Statistical analysis was carried out using analysis of variance analysis.
*P≤0.05; **P≤0.01. DOXDEB, doxorubicin-loaded beads; RAPADEB, rapamycin-loaded beads; RAPADOXDEB, doxorubicin and rapamycin co-
loaded beads.

Fig. 6

Effects of doxorubicin and rapamycin treatments on tumour weight at
day 45 in a mouse model of hepatocellular carcinoma. Mice were
euthanized at day 45, and the tumours were excised and weighed. Data
represent mean ±SEM. Because of the small sample sizes, statistical
analysis was not carried out. DOXDEB, doxorubicin-loaded beads; p.o.,
orally; RAPADEB, rapamycin-loaded beads; RAPADOXDEB,
doxorubicin and rapamycin co-loaded beads.
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