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Efforts to understand matter at ever-increasing spatial and temporal resolutions have

led to the development of instruments such as the ultrafast transmission electron

microscope (UEM) that can capture transient processes with combined nanometer

and picosecond resolutions. However, analysis by UEM is often associated with

extended acquisition times, mainly due to the limitations of the electron gun.

Improvements are hampered by tradeoffs in realizing combinations of the conflicting

objectives for source size, emittance, and energy and temporal dispersion.

Fundamentally, the performance of the gun is a function of the cathode material, the

gun and cathode geometry, and the local fields. Especially shank emission from a

truncated tip cathode results in severe broadening effects and therefore such electrons

must be filtered by applying a Wehnelt bias. Here we study the influence of the cath-

ode geometry and the Wehnelt bias on the performance of a photoelectron gun in a

thermionic configuration. We combine experimental analysis with finite element sim-

ulations tracing the paths of individual photoelectrons in the relevant 3D geometry.

Specifically, we compare the performance of guard ring cathodes with no shank

emission to conventional truncated tip geometries. We find that a guard ring cathode

allows operation at minimum Wehnelt bias and improve the temporal resolution

under realistic operation conditions in an UEM. At low bias, the Wehnelt exhibits

stronger focus for guard ring than truncated tip cathodes. The increase in temporal

spread with bias is mainly a result from a decrease in the accelerating field near the

cathode surface. Furthermore, simulations reveal that the temporal dispersion is also

influenced by the intrinsic angular distribution in the photoemission process and the

initial energy spread. However, a smaller emission spot on the cathode is not a domi-

nant driver for enhancing time resolution. Space charge induced temporal broadening

shows a close to linear relation with the number of electrons up to at least 10 000

electrons per pulse. The Wehnelt bias will affect the energy distribution by changing

the Rayleigh length, and thus the interaction time, at the crossover. VC 2017
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4994004]

INTRODUCTION

Ultrafast transmission electron microscopy (UEM) is a powerful tool for studying transient

processes in materials at combined high temporal and spatial resolutions.1–7 In contrast to con-

ventional transmission electron microscopy (TEM) operating with continuous electron beams,

UEM uses ultrafast laser pulses to generate, through photoemission, ultrashort electron bunches

at the cathode in an electron gun of a modified TEM. The fundamental performance of an

UEM, such as its temporal, spatial, and energy resolutions, is mainly determined by the initial

state of the photo-emitted electron bunch and its dynamic behavior during propagation in the

gun and microscope column, through the sample, and to the detector. Through the selection of
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appropriate cathode and laser parameters, the initial state of the electron bunch, including the

number of electrons, beam size, duration, and energy spread, can be fine-tuned according to the

requirement of the desired experiment. An UEM based on a modified thermionic emission

TEM geometry is a versatile instrument that may be operated for imaging, diffraction, and elec-

tron energy loss spectroscopy (EELS) studies.8,9 It can be used to address a wide variety of sci-

entific problems.10 Most thermionic emission TEMs are designed with Wehnelt electrodes that

are placed at an adjustable distance from the cathode (the Wehnelt gap). The Wehnelt acts as

an electrostatic lens that simultaneously focuses the beam and determines the beam divergence,

controls the electric field over the emission area, and suppresses the transmission of electrons

emitted from the shank of the thermionic cathode into the column (limits the effective emission

area). Unfortunately, these multiple roles of the Wehnelt are in conflict with the UEM perfor-

mance. The very act of limiting the effective emission area by the Wehnelt also reduces the

electric field at the cathode center, which is detrimental to the temporal resolution. However, if

the effective emission area is not limited by the Wehnelt, in a tip geometry one risks accepting

electrons emitted from the shank of the cathode. The shank-emitted electrons are subject to

large aberrations, including substantial path-length differences that greatly worsen temporal res-

olution. It was recently demonstrated experimentally that shank-emitted photoelectrons and pho-

toelectrons emitted from the flat truncated surface of a conventional cathode geometry arrive at

the sample with a relative time delay when operating an UEM with low bias on the Wehnelt

electrode.11 Thus, in order to perform imaging and diffraction experiments at high temporal res-

olution, the UEM must be operated with a sufficiently high Wehnelt bias voltage to reject all

shank-emitted electrons from entering the limiting aperture of the column. Unfortunately, sev-

eral experimental studies have found that the temporal resolution deteriorates with increasing

Wehnelt bias voltage.8,11 It would therefore be of benefit to eliminate all photoemission from

the shank of the cathode. This would facilitate UEM analysis already at a combined low

Wehnelt bias and small Wehnelt gap and thus result in improved temporal resolution. A poten-

tial solution is the use of disc cathodes. In particular, tantalum disc cathodes with a diameter

exceeding that of the photo-exciting laser beam have shown promising results.11,12 However,

during conventional thermionic operation, a large cathode is detrimental to the performance of

the microscope. A large emitting area results in a large emittance and a large emittance (when

using 100% of the beam) means lower coherence (length) for the same illumination area at the

sample. An alternative solution is the use of graphite-embedded cathodes as demonstrated by

the Flannigan group.13,14

In this paper, we investigate cathodes with a guard ring geometry for completely eliminat-

ing all shank-emissions. A guard ring cathode is composed of a central LaB6 cylinder sur-

rounded (guarded) by a graphite mantle. Since the work function of graphite exceeds the photon

energy of the exciting laser, the emission area is dictated by the size of the LaB6 cylinder, not

by the suppressing effect of the Wehnelt and not by the laser spot size as for a tantalum disc

cathode. Thus, under realistic operating conditions for imaging and diffraction, a guard ring

cathode will allow the electric field over the emission area to be both larger and more uniform

than in the case of a cathode in the truncated tip geometry. We will demonstrate the perfor-

mance of the guard ring cathode in UEM and compare to a LaB6 cathode of conventional trun-

cated tip geometry to illustrate the impact of cathode geometry on electron dynamics.

Despite the importance of the geometries of the Wehnelt electrode and the photocathode as

well as the accelerator region to the overall performance of UEM, surprisingly little has previ-

ously been established on what effects dominate the beam quality. In the constant strive for

improved temporal resolutions and electron count rates, a thorough understanding of all pro-

cesses involved during the initial flight path of the electrons must be established. Finite element

simulation has been widely used to study electron pulse dynamics in related systems.15–17

Recently, Kieft et al.18 studied the effects of Wehnelt aperture gap and diameter as well as

excitation laser-pulse duration on various properties of the photoelectron packet (e.g., collection

efficiency, duration, and energy spread) by means of numerical simulations. Here, detailed finite

element simulations are employed to describe the influence of the angle distribution of the pho-

toemission process, cathode geometry, local electric fields, as well as Wehnelt bias voltage and
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gap on the electron beam characteristics. Through a combination of experiments and simula-

tions, we characterize the performance of a guard ring cathode in a thermionic-based photoelec-

tron gun. In comparison to a truncated-tip cathode, the use of a guard ring cathode can allow

the Wehnelt to be optimized more freely since it is relieved of much of its duty in limiting the

effective emission area and controlling the beam divergence.

EXPERIMENTAL

The UEM at Material Physics (KTH) is based on a modified JEOL JEM 2100 TEM with a

conventional thermionic gun as depicted in Fig. 1. The modification of the UEM was performed

by Integrated Dynamic Electron Solutions, Inc. (IDES). Briefly, two vacuum-compatible optical

ports were added to the column, allowing optical access to the sample and to the photocathode.

Polished aluminum mirrors were installed above the condenser lens system and above the

objective lens pole piece, to allow laser illumination of both the photocathode and the sample.

Both mirrors are located along the symmetry axis of the TEM column to reduce parallax com-

plications and are fitted with through holes to allow unrestricted electron beam transmission.

An additional electron lens (indicated as C0 in Fig. 1) is positioned immediately below the

anode section. The C0 lens may be tuned to collect photoelectrons of a desired divergence angle

exceeding the conventional acceptance angle of the JEOL JEM 2100 microscope, increasing the

throughput of the photoelectrons into the column. The lens also serves to focus the photoelec-

trons through the hollow aluminum mirror that directs the laser pulses to the cathode and into

the condenser lens.8,19 The UEM is equipped with a post column imaging energy filter (Gatan

Quantum SE) capable of analyzing the electron energy distribution in both imaging and spectro-

scopic modes. Laser and related optics are placed on platforms directly coupled to the

FIG. 1. Schematic illustration of the principal elements of the ultrafast electron microscope. Conventional truncated tip and

guard ring cathode geometries are shown as insets. The green and purple pulse trains indicate laser pulses for pump and

probe (directed to the sample and photocathode, respectively).
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vibration-isolation system of the TEM column. A magnetic field cancellation system was

installed around the TEM to decrease the impact of environmental magnetic fields.

A fiber-amplified laser with a 1030 nm fundamental wavelength and <300 fs pulse duration

(Tangerine, Amplitude Systèmes) facilitates the excitation of both the cathode and the sample.

The laser has a tunable repetition rate (single shot—2 MHz) and can deliver up to 35 W average

power at 100 lJ pulse energy. Pulses from a second harmonic generation process (515 nm) are

guided through a 400 mm motorized delay stage and directed towards the sample to initiate a

transient process. Fourth harmonic generation laser pulses (UV, 258 nm) are directed onto the

cathode for the photoemission process. In the experiment, two types of cathodes with different

geometries were used to generate the photoelectrons. The first is a conventional truncated tip

LaB6 cathode with a circular flat area 60 lm in diameter onto which the laser pulse is focused.

The second cathode is a guard ring LaB6 cathode. This cathode comprises a 50 lm diameter

LaB6 column surrounded by a 700 lm diameter graphite mantle. The physical shapes of the

cathodes are shown as insets in Fig. 1. The high work function of graphite guarantees that

essentially no electrons are emitted from the graphite, both under normal thermal emission con-

dition and more importantly during ultrafast photoemission operation. In order to have a similar

experimental cut-off voltage (at �700 V) for both cathodes, the Wehnelt-cathode gap was set to

700 lm for the guard ring cathode and 600 lm for the truncated tip cathode. The cut-off voltage

is the Wehnelt voltage that will completely suppress the electron emission. The cut-off voltage,

as well as Wehnelt focusing, is a function of Wehnelt gap, bias voltage, and cathode geometry.

It can vary for different cathode types. We also placed the guard ring cathode at 500 lm since

the Wehnelt conditions are more relaxed in this geometry (supplementary material, Fig. S4).

The bias voltage on the Wehnelt is tuned from 80 V to 700 V.

The dynamics of the electron bunches in the UEM were simulated using the finite element

method with a charged particle tracing model on the COMSOL Multiphysics
VR

software plat-

form.20 A 3-D model including the Wehnelt, accelerator region, and field free range was imple-

mented in accordance with the real configuration of the present modified TEM. The simulation

included both geometries of conventional truncated tip and guard ring cathodes. For a valid

comparison between the two cathodes, the flat surfaces where photoemission takes place are

both set to 60 lm in diameter in the simulation. Mesh refinement was performed to optimize

computational time and accuracy of the results. The propagation of the electrons was simulated

by integrating the relativistically corrected Newtonian equations of motion in the calculated

electric field, using a generalized alpha time-stepping method. For simulation of space charge

effects, the coulombic electron-electron interaction was added during the electron propagation.

The FWHM diameter of the UV laser spot illuminating the cathode was assumed to be 100 lm

with a Gaussian distribution. Electron packets containing between 1000 and 10 000 electrons

with 300 fs Gaussian initial temporal width (based on the laser pulse width) were launched

from the LaB6 surface of the cathodes to simulate multi-electron bunch dynamics. The initial

energy spread was assumed to be of a Gaussian distribution with a mean of 1.2 eV and standard

deviation of 0.8 eV and was cut off at E¼ 0. The photoemission process was assumed to follow

Lambertian angular distributions.21,22 In the truncated tip geometry, 25% of the photoemission

occurred at the truncated flat surface with the remainder being emitted from the shank. The

bias voltage on the Wehnelt was tuned from 50 V to 650 V to study the influence of the

Wehnelt electrode on the dynamics of the electron bunch.

RESULTS AND DISCUSSION

This section is divided into subsections with descriptive headings. We begin by reporting

the Experimental Results including the temporal duration of electron bunches, the electron

energy dispersion, and the effective source distribution. We then continue by describing our

Finite Element Simulations including the spatial distribution of electrons during propagation,

the temporal spread of electron bunches, and the simulated normalized effective transverse

emittance.
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Experimental results

Temporal duration of electron bunches

The temporal duration of the photoemitted electron pulses was characterized by photon-

induced near field electron microscopy (PINEM) using a silver nanowires sample.8 The PINEM

effect is related to the sample geometry. As reported in Ref. 23, surface plasmon polaritons

(SPP) may be trapped and propagate on flat, buried, metal/dielectric interfaces. In this geome-

try, the PINEM signal may become elongated because of the relative long lifetime of the SPP.

However, for the case of Ag nanowire, localized surface plasmon can be optically excited

directly and can also dissipate quickly as a far field component wave. In this case, the PINEM

effect is only present when the exciting laser pulse (pump) and probing electron pulse are spa-

tially and temporally overlapped at the specimen.24 In the process, the probe electrons will

interact with the evanescent plasmonic near-field generated by the pump laser pulse at the silver

nanowires. The interaction may lead to absorption or emission of multiple energy quanta of the

pump photon energy.25 The resulting gain (and loss) in energy of the electron beam can be

accurately measured by the post-column energy analyzer. The intensity of the zero loss peak in

the electron energy spectrum is directly related to the cross-correlation of the photon pulse and

the electron bunch (in the weak interaction regime).26 By changing the relative time delay, the

laser pulse will slice the electron bunch from back to front at the sample position. In the low

current regime with probe pulses averaging approximately 1 electron at the sample, the energy

width of the zero loss peak of the electron beam is smaller than the excitation photon energy

and discrete absorption and loss bands, equidistantly positioned by the photon energy, can be

observed in the resulting electron energy spectra [Fig. 2(a)]. The change in zero loss peak

intensity with time delay is shown in Fig. 2(b). The curve corresponds to the intensity change

at the cut indicated by the red dashed line in Fig. 2(a). The full width at half minimum of this

profile (about 1 ps) approximately corresponds to the cross-correlation of the laser pulse (300

fs) and the electron bunch at the sample. In the case of multi-electron probe pulses, electron-

electron interaction within the bunch, or space charge, will become a significant factor. Space

charge will increase the energy dispersion in the electron bunch, and when the width of the

zero loss peak in the EELS spectrum exceeds the photon energy of the pump laser pulse, the

discrete sidebands are blurred to continuous tails to the distribution. The effect can be observed

on both the gain and loss sides of the time scan electron energy loss spectra in Fig. 2(c).

Further, since the PINEM effect will transfer the intensity in the electron energy distribution

from low to high gain/loss, a sharp decrease in the intensity of the zero loss peak can be

observed when the laser pump pulse is at the sample. The positive slope of the depressed

region of the spectrum is in line with the interpretation that faster electrons are located at front

of the electron bunch and slower electrons at back.27 As the laser pump pulse scans through the

electron packet from back to front, only the electrons that temporally overlap with laser pulse

will emit or absorb energy quanta at the sample position (in line with the PINEM effect). In

Fig. 2(c), where 1000 electrons per pulse were detected at the camera, the space charge effect

is so severe that the resulting electron energy profile is bimodal: two broad peaks shifted

þ10 eV and �10 eV on the energy loss scale are evident in the EELS spectra. The peak at

�10 eV, corresponding to electrons that have gained energy (faster), is indicated by a blue

dashed line a in Fig. 2(c). The þ10 eV peak corresponds to the slower electrons and is indi-

cated by a red dashed line b. The intensity of these two peaks as a function of temporal delay

is shown in Fig. 2(d). The temporal shift between the time when the first (fast) electrons have

reached a position of half the maximum attenuation to the time when the last (slow) electrons

are at a position of halfway recovered intensity is here defined as the electron bunch duration

[as indicated by the arrow in Fig. 2(d)]. In the present case, the electron bunch length is 1.8 ps.

The temporal duration of electron bunches emitted from the guard ring and the truncated

tip cathodes was analyzed as a function of Wehnelt bias voltage and exciting laser (UV) pulse

energy. The results are shown in Figs. 3(a) and 3(b). Only electrons from the central beam

were considered in the analysis of the temporal resolution. The entrance aperture to the EELS
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spectrometer was used to spatially filter-out the shank-emitted electrons from truncated tip cath-

odes. It has previously been demonstrated that shank-emitted electrons arrive at the sample

with more than 10 ps delay compared to on-axis electrons at low Wehnelt bias voltage.11 When

operating the microscope in near single electron mode, only a handful of (<10) electrons are

detected at the CCD camera for each electron bunch. This mode of operation is achieved for

the guard ring cathode at a 7.3 lJ/cm2 UV laser fluence. The corresponding temporal duration

of the cross-correlation [Fig. 3(a)] is approximately 1 ps at 80 V Wehnelt bias voltage for a

700 lm Wehnelt gap. The number of electrons per pulse influences the temporal duration, as

shown in Fig. 3(a). The temporal spread of an approximately 1000 electron bunch (as recorded

by the retractable camera) generated by a 740 lJ/cm2 laser pulse exceeds 2 ps at 80 V Wehnelt

bias, or roughly twice that of a near single electron bunch. From the same figure, it is apparent

that the temporal spread increases dramatically with increasing Wehnelt bias voltage. This holds

FIG. 2. Time series PINEM spectra of silver nanowires using 2.4 eV (515 nm) pump photon energy. (a) Probed by a few

electrons per pulse pulses and (c) multi-electron pulses (approximately 1000 electrons per pulse at the detector). (b) The

temporal change in intensity of the zero loss peak as indicated by the red dashed line in figure (a). The blue line a and the

red line b in (d) are the temporal intensity changes at 610 eV electron energy loss corresponding to the indicated blue a
and red b lines in image (c).
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true for both types of cathodes investigated in the study. The rate of increase of the temporal

spread is not linear with the Wehnelt bias. That is, at low Wehnelt bias, a small bias increase

will not affect the temporal spread as much as a similar increase at high Wehnelt bias.

Electron energy dispersion

The energy resolution in conventional electron microscopy using a thermal emission gun

can readily reach values below 1 eV. The resolution is influenced by several factors: the energy

width of the electron source, the energy broadening (Boersch effect) arising from electron-

electron interaction in the gun region, the electron-optical design of the electron spectrometer,

and the stability of the high-voltage and spectrometer power supplies.28 In thermal emission

mode, after the gun crossover each emitted electron is often assumed to travel down the column

at a distance sufficiently far from any other electron such that electron-electron interaction can

be ignored at typical beam currents. Thus, with an ideal spectrometer, the Boersch effect near

the cathode and thermal broadening will dominate the energy resolution. In conventional ther-

mal emission, Fermi-Dirac statistics yield approximately 0.4 eV spread at 2000 K, a temperature

relevant for thermionic emission from a low work function material such as LaB6. In practice,

0.6 eV or larger spread is more typical, owing to additional contributions from the Boersch

effect and the point spread function of the spectrometer. However, in photoemission mode, the

electron generation process is of a completely different nature. The initial energy distribution is

related to the excess photon energy above the work function,29,30 and the peak currents are

FIG. 3. Temporal cross-correlation of the electron bunch and the pump laser as a function of Wehnelt bias and increasing

UV pulse energies (blue 7.3 lJ/cm2, red 62 lJ/cm2, yellow 740 lJ/cm2). (a) Guard ring cathode at 700 lm gap and (b) trun-

cated tip cathode at 600 lm gap.
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much higher than in conventional TEM; thus space charge effects are more important.

Photoelectron guns are typically operated in a linear photoemission regime governed by a con-

stant quantum efficiency, so the bunch charge is proportional to the total energy of the UV

pulse, at least until it reaches saturation due to space charge effects (e.g., the Child-Langmuir

limit31,32). After emission, the space charge effects depend on the electron density (and shape)

in the photoemitted bunch.16

In the UEM geometry, such charges in a single bunch will result in a substantial energy

broadening induced by space charge effects. By operating the instrument in near single-electron

mode, space charge effects can be reduced. However, for many experiments, especially for

systems with long recovery times that require measurement at low repetition rates, this mode of

operation can result in unrealistic acquisition times. Many electrons per pulse may therefore be

required for acquiring a high-resolution image or a diffraction pattern. For UEM instruments

based on a modified thermal emission TEM geometry, it has been shown that the Wehnelt bias

voltage greatly influences the energy dispersion.8

The experimental energy dispersion from a guard ring cathode (positioned at a 700 lm

Wehnelt gap) and a truncated tip cathode (600 lm Wehnelt gap) as a function of bias voltage

at different laser fluence is shown in Figs. 4(a) and 4(b), respectively. Note that the focusing

power of the Wehnelt is a function of the bias voltage, gap, as well as the cathode/Wehnelt

geometry, such that the bias voltage is not a directly comparable measure of Wehnelt actions

for different setups. However, since the Wehnelt focal length cannot be directly measured, we

simply plot the energy spread as a function of bias voltage. For the truncated tip cathode [Fig.

4(b)], the energy spectra are collected by only considering the central photoelectrons, i.e.,

excluding the shank electrons by the entrance aperture to the EELS spectrometer. The energy

dispersion of the electron bunches emitted from the guard ring cathode steadily decreases with

increasing Wehnelt bias voltage. The truncated tip cathode exhibits more complex behavior: the

FIG. 4. Energy dispersion of electron bunches photoemitted from (a) a guard ring cathode and (b) a truncated tip cathode at

increasing UV fluence (blue 7.3 lJ/cm2, red 62 lJ/cm2, yellow 740 lJ/cm2). The corresponding average numbers of elec-

trons per pulse measured at the retractable CCD camera are shown in panels (c) for the guard ring cathode and (d) for the

truncated tip cathode.
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energy dispersion will initially increase with Wehnelt voltage, reaching a maximum around

300 V, after which it continuously decreases. These observations are against a general intuition

that a tighter focusing is expected to generate a smaller crossover and consequently more space

charge effect. Furthermore, we observe a strong correlation between the energy spread and the

number of electrons out of the gun, shown in Figs. 4(c) and 4(d), indicating that the space

charge effect is a (more complex) consequence of electron trajectories, rather than simply the

crossover size.

As mentioned above, the focusing strength of the Wehnelt increases with the bias voltage.

This will influence the proportion of electrons transmitted through the limiting aperture in the

anode section. For a truncated tip cathode, in the low Wehnelt bias regime, increased conver-

gent lensing (under-focusing regime) will allow more electrons to escape through the limiting

aperture at the anode. Thus, the number of transmitted photoelectrons initially increases with

bias voltage. In the tip cathode geometry, the shank acts as a defocusing lens element, weaken-

ing the Wehnelt lens effect or making a diverging lens overall at low bias voltage. However,

the Wehnelt field can penetrate more easily compared to large flat cathodes, and Wehnelt focus-

ing power increases more rapidly at high bias. Above 300 V in the present geometrical configu-

ration, the focal point of the Wehnelt is formed before the anode, and the transmission of

electrons through the limiting aperture starts to decrease by the Wehnelt bias (over focusing

regime), resulting in a reduction of the number of electrons per bunch with bias voltage. For

the guard ring cathode, without any shank-emitted electrons and already strong Wehnelt focus-

ing at low bias, the number of transmitted electrons continuously decreases with increasing bias

voltage as shown in Fig. 4(c). In flat guard ring cathode geometry without shank, Wehnelt

always acts as a focusing lens, but due to the large flat area of cathode, the Wehnelt field can-

not easily penetrate to the cathode center. Its focusing power increases less drastically with bias

increase. Note that the gaps employed here are fairly large, such that the Wehnelt acts as an

over-focusing lens in the typical operational bias voltage range. A high bias will tightly focus

the electron beam close to the cathode, and the majority of high angular components will be

filtered out by the limiting aperture(s). Figure 4(d) show that more electrons are emitted from

the truncated tip cathode than the guard ring cathode shown in Fig. 4(c). This is because of the

combination of a larger diameter of the present truncated surface and the shank emission. This

will result in higher energy dispersion due to an increased contribution from the space charge

effect. However, as can be seen in Fig. 4(a), the energy dispersion at high UV laser pulse

energy is reduced with increasing Wehnelt bias voltage. With 700 V on the Wehnelt electrode,

the energy dispersion appears almost independent of the UV laser power, approaching that of

the almost single electron per pulse regime (neglectable space charge effect regime) even

though we are generating thousands of electrons at the cathode.

From the above, we can conjecture (and verify in simulations) that the energy spread due

to the space charge effect will be a nonlinear function of Wehnelt focusing. A high bias on the

Wehnelt will result in a strong focusing of the beam with a short Rayleigh length, and conse-

quently less time for the electrons to interact with each other (diminishing space charge effects)

while at lower bias the focusing is weak with a long Rayleigh length and interaction time, and

thus the space charge effect will become cumulated and more pronounced. At much lower bias,

the focusing is very weak (or even diverging beam) and the charge density never gets high

enough for the electrons to repel each other, and the space charge effect diminishes.

Effective source distribution

The direct imaging (DI) method33 was used to analyze the effective source of the photo-

cathodes under relevant conditions. The DI method utilizes fully spread illumination in the

specimen plane so that, in the diffraction mode, the crossover in the back focal plane of the

objective lens is imaged onto the camera providing a continuous spatial frequency measurement

of the effective source distribution. Figure 5 shows images of the effective source distribution

as measured using the DI method for the guard ring cathode and for the truncated tip cathode

at different bias voltages. The UV laser fluence was 740 lJ/cm2.
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For the truncated tip cathode, a ring surrounding the central emission spot can be observed

at low Wehnelt bias (i.e., 80 V and 270 V). This ring is associated with shank-emitted electrons.

In the corresponding images taken from the guard ring cathode [Fig. 5(a)], no such ring is pre-

sent, illustrating how the cathode surface geometry and graphite mantle effectively eliminate

the shank emission. Figures 5(c) (guard ring) and 5(d) (truncated tip) show fitted line profiles

through the center of each source image. The beam width analysis reflects the size of the cross-

over at the sample plane for a given set of condenser lens settings. Qualitatively, a smaller

crossover indicates a lower beam emittance, and thus better spatial coherence for a given illu-

mination spot size as well as better potential resolution for scanning modes, provided that the

reduction in emittance does not come with a dramatic reduction in current [at constant bright-

ness, current is proportional to the product of emittance x and emittance y (Ref. 34)].

For the guard ring cathode, the transmitted intensity initially decreases with increasing

Wehnelt bias voltage and the beam gets smaller. At 550 V on the Wehnelt, distinct shoulders

appear on each side of the central peak, and the transmitted intensity reaches a local minimum.

At 640 V, the intensity increases slightly and the shoulders move closer to the central peak. The

shoulders identify the formation of a halo around the central beam, due to the high aberration

of Wehnelt, similar to what has been reported in Ref. 11. The halo can also be recognized

directly in the 550 V bias panel in Fig. 5(a). The intensity profiles from the truncated tip cath-

ode show that the beam initially becomes broader with increasing bias voltage, reaching a max-

imum width at around 270 V [Fig. 5(d)]. However, at even higher bias the beam once again

becomes narrower, while the transmitted intensity gradually decreases. In contrast to the guard

ring cathode, there is no halo at intermediate bias.

Finite element simulations

Spatial distribution of electrons

As evident from the experimental result presented above, both the cathode geometry and

the Wehnelt bias influence the spatial and temporal resolutions as well as the number of

FIG. 5. Effective source distributions of emission from (a) a guard ring cathode and (b) a truncated tip cathode at increasing

bias voltage on Wehnelt. The scale bars represent 200 pixels. (c) and (d) Line profiles (200 pixels) and fitted Gaussians

around the center spot showing the effective source distribution for the guard ring cathode and truncated tip cathode,

respectively. The curves with shoulders in (c) are a result from a four terms Gaussian fitting. The UV laser fluence was 740

lJ/cm2.
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electrons transmitted into the column. To establish which factor dominates the electron beam

performance, we employed finite element simulations for the trajectories of individual photo-

electrons travelling from the cathode through the accelerating section, past the limiting aperture,

and into the TEM column. The 3D simulations trace individual trajectories of all electrons in

the photo-emitted bunches to establish the positions of every electron allowed through the limit-

ing aperture in the TEM column. In the model, the Wehnelt gap is set to 750 lm for the guard

ring cathode and 650 lm for the truncated tip cathode so that the cut-off voltage (where the

electric field is zero at the cathode surface as shown in supplementary material, Fig. S1) is the

same as in the experiments.

The inset of Fig. 6(c) shows, in color code, the emission position of every photoelectron at

the truncated tip electrode. Red color indicates electrons from the central truncated surface of

the tip, while yellow and blue indicate shank-emitted electrons exceedingly distant from the flat

truncated surface. Figure 6 illustrates the longitudinal and lateral position of every photoelec-

tron after 1300 ps of travel, at a position corresponding to immediately after the limiting aper-

ture. The simulations show that at low Wehnelt bias, the shank-emitted electrons are temporally

separated from the photoelectrons in the central beam. The temporal difference decreases with

increasing Wehnelt bias voltage, but unfortunately, this comes at the expense of increases in

the temporal spread of the central electron beam. At a Wehnelt bias, when the shank-emitted

electrons are rejected by the limiting aperture, the temporal resolution exceeds several ps. The

simulation is in good agreement with the experimental results of B€ucker et al.11 and shows that

truncated tip cathodes are restricted to operate at high Wehnelt bias, where shank-emitted elec-

trons are completely suppressed. Hence, since the temporal spread of the photoelectron pulse

deteriorates with increasing bias voltage, as shown in Fig. 3, truncated tip cathodes are not an

optimal choice for ultrafast electron microscopy.

FIG. 6. Electron positions after 1300 ps flight time for a 2000 electron bunch photoemitted from a truncated tip cathode.

The simulated Wehnelt bias was set to: (a) 150 V, (b) 350 V, and (c) 550 V. The inset in (c) shows the initial lateral position

of the electrons on the surface of a tip cathode (color-coded).
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For the guard ring cathode geometry, the complications associated with shank emission

are eliminated. Figure 7 shows the simulated longitudinal and radial positions for photoelec-

trons in bunches after traveling 1300 ps from a guard ring cathode [Fig. 7(a)] and a truncated

tip cathode [Fig. 7(b)] under increasing Wehnelt bias voltage. In the simulation, each electron

bunch contained 2000 electrons and shank-emitted electrons were ignored in the simulation of

the emission from the truncated tip cathode. The inset in Fig. 7(a) shows a color-coded distri-

bution of initial lateral photoelectron positions on the flat (truncated) surface for both cathodes.

The photoelectrons are identified according to their radial position from yellow (central) to

green (perimeter). The simulated electron distributions show how the lateral distribution

changes and how the longitudinal spread of the electron pulse increases with the Wehnelt bias

voltage, i.e., the temporal duration of the electron pulse increases with the bias voltage. For

the guard ring cathode, the lateral spread increases with the increase of bias voltage, a reflec-

tion of the beam becoming more divergent at high bias voltage. At 450 V, some electrons are

cut by the limiting aperture (with a radius of 1 mm). For the guard ring cathode, the focal

length of the Wehnelt is shorter than the distance to the limiting aperture. An increase in bias

voltage results in an even shorter focal length and a more divergent beam at the position of

the limiting aperture. However, for a truncated tip cathode, the lateral spread at the limiting

aperture decreases when increasing the Wehnelt bias from 50 V to 250 V. This is because the

focal length of the Wehnelt for a truncated tip cathode is longer than the distance to the limit-

ing aperture at a 50 V bias. At 250 V, the beam is focused at the limiting aperture and thus

more electrons will get transmitted through the limiting aperture (for simulated throughput

ratio as a function of bias, see supplementary material, Fig. S2). At any further increase to the

Wehnelt, the beam will become more divergent. These simulation results are consistent with

the experimental result shown in Fig. 4. The change in beam trajectory with bias voltage

affects both the space charge effect and throughput. It can also be inferred that the guard ring

cathode exhibits stronger focal ability than truncated tip cathodes at low bias voltage at

the current Wehnelt gap. This is also shown in the simulated electron trajectories in Fig. S5,

supplementary material.

FIG. 7. Electron positions after 1300 ps flight time for a 2000 electron bunch photo-emitted from (a) a guard

ring cathode (750 lm gap) and (b) a truncated tip cathode (650 lm gap). For the truncated tip cathode, only

electron emission from the flat central truncated area was considered (shank-emitted electrons were omitted).

The figure shows the influence of the Wehnelt bias on the dispersion of the electron bunch. The inset show

the initial lateral distribution of the photoelectrons on the central flat surface of the cathode (in the relevant

color-code).
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Temporal spread of electron bunches

The simulated temporal spread as a function of electron flight distance is shown in Fig.

8(a), for electron bunches photoemitted from both guard ring and truncated tip cathodes. Each

simulated bunch contains 2000 electrons and the temporal spread is calculated from the longitu-

dinal FWHM of the simulated electron bunch divided by the average velocity of the electrons.

From the results, it is clear that the temporal bunch broadening takes place near the cathode

surface and mainly stems from the initial energy and angular spread in the photoemission

process.35

Electron bunches with different initial states were released from the cathode surfaces and

traced during their flight path to determine the influence of initial state variables on the final

temporal dispersion. The initial conditions of the simulated electron pulses are listed in Table I.

The initial energy spread DEi (standard deviation) is set to be either 0.8 eV (similar to most

favorable experimental conditions) or 0 eV. The photoemitted angle distribution was selected to

satisfy a Lambertian distribution (case 1, 3, and 5) or alternatively all electrons were emitted

normally from the cathode surface (cases 2 and 4). In cases 1 to 4, the emitted electrons obey

Gaussian spatial distribution on the cathode surface in accordance to the exciting laser power

density, while in case 5, all the electrons are released from the central point of the cathode.

Electron-electron interaction was switched off in the present simulation. The truncated tip cath-

ode was positioned at a 650 lm gap. The guard ring cathode was positioned both at 750 lm (at

a similar cut-off voltage as the tip cathode) and at 500 lm (at a similar surface extraction field

as for the tip cathode at a 50 V bias). The results from the simulations at Wehnelt bias at 50

and 650 V are listed in Table I. The temporal broadening is affected by the local extraction

field, the initial energy spread, and the angular distribution. In the ideal case 4 with no initial

energy spread and all electrons emitted normally from the cathode surface, the simulation

shows the best temporal resolution for both types of cathode when the bias voltage was kept at

50 V. This implies that when choosing the cathode material, we should consider not only the

FIG. 8. (a) Changes in temporal dispersion as a function of flight distance for electron bunches emitted from guard ring and

truncated tip cathodes (only electrons emitted from the truncated surface is considered). The gray dashed line indicates the

position of the limiting aperture. (b) The simulated FWHM temporal width of an electron pulse as a function of bias voltage

for a guard ring cathode at 750 lm and 500 lm gap, and a truncated tip cathode at 650 lm gap. (c) The influence of the

Wehnelt bias on the extraction field in the longitudinal direction around the cathode surfaces. (d) and (e) Equipotential lines

and beam trajectories around the guard ring cathode and truncated tip cathode, respectively. The range of the color scale

bar is from �200.0 kV to �199.5 kV for both kinds of cathode. In all panels except (b), the guard ring cathode is placed at

a 750 lm gap and the truncated tip cathode at a 650 lm gap.
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work function but also the angle distribution of the photoemission. As an example, the (010)

and ð110Þ surfaces of LaB6 have different photoemission angle distributions as shown in Ref.

22. For both cathodes, we know from comparing case 1 with case 5 that different lateral photo-

emission positions only show limited contribution to the temporal resolution (i.e., low spherical

aberration).

From the results of Table I, we find that the temporal broadening at bias 50 V is in part

due to the initial energy spread and the angular distribution of the photoemitted electrons.

However, we can also observe that at a bias of 50 V, a truncated tip cathode shows better time

resolution and then a guard ring positioned at a gap that results in a similar cut-off voltage.

This is true for all relevant bias voltages as shown in Fig. 8(b). The simulations of the truncated

tip cathode in Table I and Fig. 8(b) are however not realistic for UEM conditions since they

ignore the experimentally present shank-emitted electrons. However, it is of interest to establish

why emission from a flat surface of a truncated tip cathode geometry results in shorter electron

bunches at low Wehnelt bias than emission from a guard ring cathode geometry. It is well

known that a strong electric field in front of the cathode will benefit the temporal resolu-

tion.35–37 The Wehnelt bias will influence the accelerating electric field near the cathode surface

and therefore the bias will affect the temporal spread of the electron bunch. Figure 8(c) shows

the longitudinal accelerating electric field in the near cathode surface region under different

bias voltages for a guard ring and truncated tip cathode geometries. With increasing Wehnelt

bias voltage, it is evident that the electric field decreases. For a truncated tip cathode, the elec-

tric field near the cathode surface will be larger than for a guard ring cathode positioned for a

similar cut-off voltage, in particular, very near the surface of the cathode. This is due to a geo-

metrical field enhancement in the truncated tip geometry [Fig. 8(c)], which is somewhat similar

to the field enhancement of the (extruded) tip source in a field emission gun.15,17 As shown in

Fig. 8(a), the temporal broadening takes place near the cathode surface. It can be inferred that

the enhancement of the electric field shown in the inset of Fig. 8(c) is the main reason why

truncated tip cathodes show better temporal resolution than guard ring cathodes at a low bias

voltage in the simulation shown in Figs. 7 and 8(b). However, an applied Wehnelt bias will

quickly suppress the local field enhancement. For the guard ring cathode, with its more relaxed

restrictions of the Wehnelt, it is feasible to increase the electric field at the cathode surface by

reducing the Wehnelt gap to 500 lm where the field will be similar to the truncated tip cathode

(supplementary material, Fig. S1). The temporal spread of a bunch emitted from a guard ring

cathode positioned at this Wehnelt gap will match the temporal spread of an electron bunch

emitted from the flat area of a truncated tip cathode (Table I). Figure S3 in the supplementary

material show a more complete set of simulation results of the bias and gap dependence of a

guard ring cathode. The simulated temporal resolution for initial condition case 1 (Table I) is

0.7 ps at 50 V bias. This is similar to the experimentally determined result of 0.8 ps for a 10

electron pulse (supplementary material, Fig. S4).

TABLE I. Simulated temporal spread of electron bunches with different initial states and instrumental conditions. The

guard ring cathode was positioned both at 750 lm and 500 lm gaps, the truncated tip cathode at 650 lm, and DEi is the ini-

tial energy spread.

Case

No.

DEi

(eV)

Angle

distribution

Electron

emission

spatial

distribution

Dt (Bias 50 V) Dt (Bias 650 V)

Guard ring

cathode

(750 lm)

Guard ring

cathode

(500 lm)

Truncated tip

cathode

(650 lm)

Guard ring

cathode

(750 lm)

Guard ring

cathode

(500 lm)

Truncated tip

cathode

(650 lm)

1 0.8 Lambertian Gaussian 1.4 ps 0.7 ps 0.7 ps 8.0 ps 1.2 ps 6.4 ps

2 0.8 Normal Gaussian 1.0 ps 0.6 ps 0.6 ps 6.0 ps 0.9 ps 4.9 ps

3 0 Lambertian Gaussian 1.1 ps 0.6 ps 0.7 ps 5.1 ps 0.9 ps 4.6 ps

4 0 Normal Gaussian 0.3 ps 0.3 ps 0.4 ps 0.9 ps 0.3 ps 1.5 ps

5 0.8 Lambertian Central point 1.3 ps 0.7 ps 0.6 ps 7.7 ps 1.1 ps 6.1 ps
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Figures 8(d) and 8(e) show equipotential lines around the guard ring and truncated tip cath-

ode at a Wehnelt bias voltage of 50 V. The equipotential lines close to the guard ring cathode

surface [Fig. 8(d)] are almost flat, indicating a uniform electric field. The red lines representing

the electron trajectories show that the beam is focused. As a contrast, the equipotential lines

surrounding the truncated tip electrode [Fig. 8(e)] are curved around the tip. Such field geome-

try may lead to aberrations. The electron beam is also not focused at this bias voltage, which is

consistent with the results in Fig. 7 and the discussion concerning Fig. 4. This also means that

the central bright spot at bias 80 V in Fig. 5(b) is a virtual beam crossover. A higher voltage

is required to focus the electron beam emitted from this cathode geometry. By comparing

Figs. 8(d) and 8(e), we can conclude that the guard ring cathode geometry results in a higher

effective focal strength of the Wehnelt. More simulated electron trajectories, as a function

of Wehnelt bias, for both the guard ring cathode and the truncated tip cathode are shown in

Fig. S5, supplementary material.

It is well established that the space charge effect may influence the temporal dispersion of

electron bunches.37–39 The effect becomes increasingly important with large numbers of elec-

trons per bunch. Figure 9(a) shows the simulated temporal dispersion of electron bunches emit-

ted from a guard ring cathode with increasing number of electrons per bunches. The results

from the simulation show that the temporal spread increases nearly linear with the increase in

number of electrons per pulse within the range from 1000 to 10 000 electrons. Figure 9(b)

shows the energy and time correlation of electrons in an electron pulse containing 10 000

FIG. 9. (a) Simulated temporal dispersion for electron bunches emitted from a guard ring cathode containing increasing

number of photoelectrons at 50 V Wehnelt bias. (b) Simulated electron energy distribution for a 10 000 electron bunch in a

relative time domain (at 50 V bias) immediately after the limiting aperture. The electrons are color coded according to their

initial normal velocity in m/s. (c) Energy spectrum obtained projecting the electrons in (b) onto the energy dimension.
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electrons. Note that the position of the electrons within the pulse is strongly correlated with the

initial normal velocity of the electron as shown by the color code in Fig. 9(b). The deviation

from a linear dispersion of energy and time at both ends of the electron bunch is consistent

with the results in Ref. 40. For most positions within the bunch, the charge distribution yields

an electric field with a longitudinal component nearly linear to the longitudinal position, except

for electrons in the front and tail parts. This aberration is a direct result of the non-

monotonicity of the electric field caused by space charge and results in electrons in the very

front of the bunch experiencing less acceleration than those slightly closer to the center, while

electrons in the tail will experience deceleration for the same reasons. The simulated electron

temporal spread is consistent with the experimental result in the PINEM experiments shown in

Fig. 2(c), and the projected energy spectrum shown in Fig. 9(c) is also consistent with the over-

all shape of the experimental EELS spectrum, with a bimodal distribution that shows peaks at

both the gain and loss energy sides.

Simulated normalized effective transverse emittance

From the simulated electron distribution, the normalized effective transverse emittance of

the electron beam at different Wehnelt bias voltages was calculated according to Eq. (1)41

�n;x ¼ 4bc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x02 � xx0

2

q
: (1)

In the expression b¼ v/c (where v is the relevant electron velocity and c is the speed of light),

c is the Lorentz factor, x0 ¼ px/p (px is the transverse momentum). The resulting emittances are

shown in Fig. 10. For a guard ring cathode, the emittance decreases with increasing bias volt-

age, while the emittance from a truncated tip cathode initially increases with bias and then

decreases until around 600 V, which is highly correlated with the throughput (supplementary

material, Fig. S2). This is due to the fact that a perfect lens does not affect emittance, but a

limiting aperture does by cutting out the outer electron population at the cost of throughput.

CONCLUSIONS

From the experimental results, it is clear that guard ring cathodes can effectively address

the problem of shank-emitted electrons in the photoemission mode. This is significant since

both simulations and experiments show that, at low Wehnelt bias voltage, shank emitted elec-

trons arrive temporally shifted from electrons emitted from the central flat surfaces. As the

FIG. 10. Normalized effective transverse emittance of emission from guard ring (gap 750 lm) and truncated tip (Gap

650 lm) cathodes under increasing Wehnelt bias voltage. Each simulated electron bunch contains 2000 electrons.
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temporal dispersion of electron bunches increases with increasing Wehnelt bias, conventional

suppression of shank-emitted electrons by the Wehnelt is not a preferred solution for ultrafast

analysis. The capacity of the guard ring cathode to eliminate all shank emission facilitates ultra-

fast imaging and diffraction experiments even at low bias voltages, allowing optimal time reso-

lution under such experimental conditions. Compared to a disc electrode, the guard ring geome-

try allows for a better control of the initial beam size. The photoelectron distribution can be

readily tuned by changing the size of central LaB6 crystal. Further, the electron beam will

become less susceptible to drift in laser pointing. In the KTH UEM, using a guard ring cathode

at 700 lm Wehnelt gap, the temporal resolution can reach the sub-ps regime in a few electrons

per bunch mode. Placing the cathode at a 500 lm gap yields a resolution <800 fs and simula-

tions show that the temporal dispersion can be further reduced by placing the cathode even

closer to the Wehnelt because of the increase of the acceleration field near the cathode surface.

However, for electron bunches containing several 1000 electrons, such gains may be offset by

detrimental space charge effects (supplementary material, Fig. S4) due to the looser focusing

conditions of the Wehnelt at smaller gaps. Loosely focused beam conditions with an extended

Rayleigh length at the crossover exhibit long electron-electron interaction times and the cumu-

lated space charge broadening can thus become significant, while for a strongly focused beam

the interaction time is short resulting in a diminishing space charge effect at the crossover.

Our simulations show how the initial energy spread and the angular distribution from the

photoemission process influence the temporal dispersion. A potential way to increase the tem-

poral resolution would thus be to reduce the excess energy of the photoelectrons. This may be

realized by either tuning the laser wavelength or selecting a cathode material with a work func-

tion that appropriately fits the photon energy of the laser. Addressing the broadening from the

angular distribution is less trivial, but crystal truncation planes that maximize forward focusing

should generally be selected.

The temporal resolution deteriorates with increasing Wehnelt bias voltage mainly because

of a decrease of the electric extraction field at the cathode surface. Usually, UEM tends to be

employed at low bias voltage since the temporal resolution is the most important driver for

time-resolved experiments. However, another important and beneficial role of the Wehnelt elec-

trode for the beam quality is to act as an electrostatic lens that focuses the beam. Simulations

show that the geometry of the guard ring cathode enhances the Wehnelt electrode focal strength

compared to the conventional cathode geometry.

However, further improvement of the UEM may require a novel gun design, including

modification of the Wehnelt and cathode geometry, to realize conditions where the electron

beam is tightly focused at the limiting aperture and with a high extraction field at the cathode

surface.

SUPPLEMENTARY MATERIAL

See supplementary material for simulated electric fields near the cathode surface, through-

put ratio, experimental and simulated temporal resolution for a guard ring cathode placed at dif-

ferent Wehnelt gaps, and simulated electron trajectories as a function of Wehnelt bias.

ACKNOWLEDGMENTS

This work was funded by the Knut and Alice Wallenberg Foundation and the Swedish

Research Council (VR). S. Ji gratefully acknowledges a stipend from the Chinese Scholarship

Council. Part of the simulations were performed on resources provided by the Swedish National

Infrastructure for Computing (SNIC) at the PDC center. C. N. Liu is acknowledged for assistance

with drawing the UEM schematic image.

1V. A. Lobastov, J. Weissenrieder, J. Tang, and A. H. Zewail, Nano Lett. 7, 2552 (2007).
2B. Barwick, H. S. Park, O. H. Kwon, J. S. Baskin, and A. H. Zewail, Science 322, 1227 (2008).
3A. Yurtsever and A. H. Zewail, Science 326, 708 (2009).
4A. H. Zewail, Science 328, 187 (2010).
5L. Piazza, C. Ma, H. X. Yang, A. Mann, Y. Zhu, J. Q. Li, and F. Carbone, Struct. Dyn. 1, 014501 (2014).

054303-17 Ji et al. Struct. Dyn. 4, 054303 (2017)

ftp://ftp.aip.org/epaps/struct_dyn/E-SDTYAE-4-007705
ftp://ftp.aip.org/epaps/struct_dyn/E-SDTYAE-4-007705
http://dx.doi.org/10.1021/nl071341e
http://dx.doi.org/10.1126/science.1164000
http://dx.doi.org/10.1126/science.1179314
http://dx.doi.org/10.1126/science.1166135
http://dx.doi.org/10.1063/1.4835116


6E. Najafi, T. D. Scarborough, J. Tang, and A. Zewail, Science 347, 164 (2015).
7B.-K. Yoo, Z. Su, J. M. Thomas, and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A. 113, 503 (2016).
8L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Chem. Phys. 423, 79 (2013).
9O. Bostanjoglo and D. Otte, Mater. Sci. Eng., A 173, 407 (1993).

10D. A. Plemmons, P. K. Suri, and D. J. Flannigan, Chem. Mater. 27, 3178 (2015).
11K. B€ucker, M. Picher, O. Cr�egut, T. LaGrange, B. Reed, S. Park, D. Masiel, and F. Banhart, Ultramicroscopy 171,

8 (2016).
12G. H. Campbell, T. LaGrange, J. S. Kim, B. W. Reed, and N. D. Browning, J. Electron Microsc. 59, S67 (2010).
13D. A. Plemmons and D. J. Flannigan, Chem. Phys. Lett. 683, 186–192 (2017).
14D. T. Valley, V. E. Ferry, and D. J. Flannigan, Nano Lett. 16, 7302 (2016).
15A. Paarmann, M. Gulde, M. Mu€ller, S. Sch€afer, S. Schweda, M. Maiti, C. Xu, T. Hohage, F. Schenk, C. Ropers, and R.

Ernstorfer, J. Appl. Phys. 112, 113109 (2012).
16M. Kuwahara, Y. Nambo, K. Aoki, K. Sameshima, X. Jin, T. Ujihara, H. Asano, K. Saitoh, Y. Takeda, and N. Tanaka,

Appl. Phys. Lett. 109, 013108 (2016).
17A. A. Petruk, K. Pichugin, and G. Sciaini, Struct. Dyn. 4, 044005 (2017).
18E. Kieft, K. B. Schliep, P. K. Suri, and D. J. Flannigan, Struct. Dyn. 2, 051101 (2015).
19B. W. Reed, T. LaGrange, R. M. Shuttlesworth, D. J. Gibson, G. H. Campbell, and N. D. Browning, Rev. Sci. Instrum.

81, 053706 (2010).
20See www.comsol.com for COMSOL Multiphysics

VR

v. 5.2a., COMSOL AB, Stockholm, Sweden.
21H. E. Ives, A. R. Olpin, and A. L. Johnsrud, Phys. Rev. 32, 57 (1928).
22M. Aono, T. Tanaka, E. Bannai, C. Oshima, and S. Kawai, Phys. Rev. B 16, 3489 (1977).
23T. T. Lummen, R. J. Lamb, G. Berruto, T. LaGrange, L. Dal Negro, F. J. Garcia de Abajo, D. McGrouther, B. Barwick,

and F. Carbone, Nat. Commun. 7, 13156 (2016).
24B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature 462, 902 (2009).
25S. T. Park, M. Lin, and A. H. Zewail, New J. Phys. 12, 123028 (2010).
26D. A. Plemmons, S. Tae Park, A. H. Zewail, and D. J. Flannigan, Ultramicroscopy 146, 97 (2014).
27P. Sang Tae, K. Oh-Hoon, and H. Z. Ahmed, New J. Phys. 14, 053046 (2012).
28R. F. Egerton, Ultramicroscopy 107, 575 (2007).
29S. Mogren and R. Reifenberger, Surf. Sci. 186, 232 (1987).
30D. H. Dowell and J. F. Schmerge, Phys. Rev. Spec. Top. - Accel. Beams 12, 074201 (2009).
31C. D. Child, Phys. Rev. (Ser. I) 32, 492 (1911).
32I. Langmuir, Phys. Rev. 21, 419 (1923).
33C. Maunders, C. Dwyer, P. C. Tiemeijer, and J. Etheridge, Ultramicroscopy 111, 1437 (2011).
34B. Jiang, G. Kirkman, and N. Reinhardt, Appl. Phys. Lett. 66, 1196 (1995).
35A. Gahlmann, S. Tae Park, and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 2894 (2008).
36M. Y. Schelev, M. C. Richardson, and A. J. Alcock, Appl. Phys. Lett. 18, 354 (1971).
37B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, J. Appl. Phys. 92, 1643 (2002).
38Z. Tao, H. Zhang, P. M. Duxbury, M. Berz, and C. Y. Ruan, J. Appl. Phys. 111, 044316 (2012).
39S. Collin, M. Merano, M. Gatri, S. Sonderegger, P. Renucci, J. D. Ganiere, and B. Deveaud, J. Appl. Phys. 98, 094910

(2005).
40B. W. Reed, J. Appl. Phys. 100, 034916 (2006).
41M. Reiser, Theory and Design of Charged Particle Beams (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1994).

054303-18 Ji et al. Struct. Dyn. 4, 054303 (2017)

http://dx.doi.org/10.1126/science.aaa0217
http://dx.doi.org/10.1073/pnas.1522869113
http://dx.doi.org/10.1016/j.chemphys.2013.06.026
http://dx.doi.org/10.1016/0921-5093(93)90254-C
http://dx.doi.org/10.1021/acs.chemmater.5b00433
http://dx.doi.org/10.1016/j.ultramic.2016.08.014
http://dx.doi.org/10.1093/jmicro/dfq032
http://dx.doi.org/10.1016/j.cplett.2017.01.055
http://dx.doi.org/10.1021/acs.nanolett.6b03975
http://dx.doi.org/10.1063/1.4768204
http://dx.doi.org/10.1063/1.4955457
http://dx.doi.org/10.1063/1.4974779
http://dx.doi.org/10.1063/1.4930174
http://dx.doi.org/10.1063/1.3427234
http://www.comsol.com
http://dx.doi.org/10.1103/PhysRev.32.57
http://dx.doi.org/10.1103/PhysRevB.16.3489
http://dx.doi.org/10.1038/ncomms13156
http://dx.doi.org/10.1038/nature08662
http://dx.doi.org/10.1088/1367-2630/12/12/123028
http://dx.doi.org/10.1016/j.ultramic.2014.08.001
http://dx.doi.org/10.1088/1367-2630/14/5/053046
http://dx.doi.org/10.1016/j.ultramic.2006.11.005
http://dx.doi.org/10.1016/S0039-6028(87)80045-6
http://dx.doi.org/10.1103/PhysRevSTAB.12.074201
http://dx.doi.org/10.1103/PhysRevSeriesI.32.492
http://dx.doi.org/10.1103/PhysRev.21.419
http://dx.doi.org/10.1016/j.ultramic.2011.05.011
http://dx.doi.org/10.1063/1.113855
http://dx.doi.org/10.1039/b802136h
http://dx.doi.org/10.1063/1.1653694
http://dx.doi.org/10.1063/1.1487437
http://dx.doi.org/10.1063/1.3685747
http://dx.doi.org/10.1063/1.2128494
http://dx.doi.org/10.1063/1.2227710

	s1
	s2
	f1
	s3
	f2
	f3
	f4
	f5
	f6
	f7
	f8
	t1
	f9
	d1
	s4
	f10
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41

