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Abstract

A better understanding of the pathophysiology of HFpEF is important. Detailed phenotyping of
pulsatile hemodynamics has provided important insights into the pathophysiology of left
ventricular remodeling and fibrosis, diastolic dysfunction, microvascular disease and impaired
oxygen delivery to peripheral skeletal muscle, all of which contribute to exercise intolerance, the
cardinal feature of HFpEF. Furthermore, arterial pulsatile hemodynamic mechanisms likely
contribute to the frequent presence of comorbidities, such as renal failure and dementia, in this
population. Our therapeutic approach to HFpEF can be enhanced by clinical phenotyping tools
with the potential to “segment” this population into relevant pathophysiologic categories, or to
identify individuals exhibiting prominent specific abnormalities that can be targeted by
pharmacologic interventions. This review describes relevant technical and physiologic aspects
regarding the deep phenotyping of arterial hemodynamics in HFpEF. In an accompanying review,
the potential of this approach to enhance our clinical and therapeutic approach to HFpEF is
discussed.
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Introduction

The burden of heart failure has increased dramatically over the last several years.}:2 Heart
failure affects ~2% of the western population and is the most common cause of
hospitalization in adults >65 years of age.! Not only is heart failure already an epidemic, but
with the aging of the population, a dramatic further increase in its prevalence is expected.
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Approximately half of patients with HF have heart failure with a preserved left ventricular
(LV) ejection fraction (HFpEF). Furthermore, the relative prevalence of HFpEF (as a
proportion of the total burden of heart failure) appears to be increasing as the population
ages.k 14 Therefore, an important further increase in the prevalence of HFpEF is expected.
Patients with HFpEF demonstrate high annual mortality rates, ranging from ~3.5-6% in
randomized trials3-> to ~15% in community-based studies.® Approximately 50% of such
deaths occur from cardiovascular causes.” In addition to its high morbidity and mortality,
HFpEF has been shown to be associated with an impaired quality of life.8:9

Multiple therapies that provide substantial clinical benefit in heart failure with reduced
ejection fraction are available. However, multiple phase 111 trials over the last few decades
have failed to demonstrate a clear benefit of various candidate pharmacologic interventions
in HFpEF. Therefore, a better understanding of the processes that contribute to the
pathophysiology of HFpEF is important.

Detailed phenotyping of arterial hemodynamics has provided important insights into the
pathophysiology of LV remodeling and fibrosis, diastolic dysfunction, microvascular
disease, and oxygen delivery to peripheral skeletal muscle, all of which contribute to
exercise intolerance, the cardinal feature of HFpEF. Furthermore, it has been proposed that
HFpEF is a heterogeneous syndrome, with different degrees of contribution from various
pathophysiological processes. This may unfavorably impact the average responses of this
patient population to novel therapies tested in clinical trials. Better clinical phenotyping
tools, which in turn may be used to “segment” the HFpEF population into relevant
pathophysiologic categories, or simply to identify individuals with prominent specific
abnormalities that are targeted by pharmacologic interventions, represent a promising
approach to enhance our therapeutic approach to HFpEF.

This review deals with relevant technical and physiologic aspects regarding the deep
phenotyping of systemic arterial hemodynamics in HFpEF. An accompanying review deals
with the potential of this approach to enhance our translational, clinical and therapeutic
approach to HFpEF. Given space limitations, this review does not address pulmonary arterial
load and right ventricular-pulmonary vascular interactions. The reader is referred to a recent
excellent review about this topic.10

The concept of arterial load and limitations of the pressure-volume plane

The LV ejects blood against the hydraulic load imposed by the systemic arterial tree. Given
the pulsatile nature of the LV as a pump, arterial load is time-varying, complex and cannot,
therefore, be expressed as a single number of parameter.11:12

The pressure-volume plane has been a useful approach to study LV function and energetics.
The LV end-systolic elastance, Egg, is the slope of the end-systolic pressure-volume relation
(Figure 1) and represents an informative load-independent measure of LV chamber pump
performance and systolic stiffness. Although Egg is ideally assessed invasively using data
from a family of pressure-volume loops obtained during an acute preload or afterload
alterations, “single-beat” methods have also been developed and have undergone limited

J Cardiovasc Transl Res. Author manuscript; available in PMC 2018 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Chirinos

Page 3

validation, 1314 allowing for non-invasive Egg estimations using simple echocardiographic
measurements.

The concept of Egg and its role in myocardial energetics was first formulated by Suga
several decades ago.1516 For a given beat, the pressure-volume area (PVA) is the sum of: (1)
The stroke work (or external work), which is the area within the pressure-volume loop
trajectory (blue area in Figure 1); (2) The potential energy, which is the approximately
triangular area to the left of the single pressure-volume loop, enclosed by the end-systolic
pressure-volume relation, the left border of the pressure-volume loop, and the end-diastolic
pressure-volume relation. 16:17 According to the time varying-elastance paradigm, the PVA
represents the total mechanical energy generated by LV contraction until the end of systole.
In a single heart operating at a stable contractile state under various preload and afterload
conditions, the PVA correlates strongly with myocardial oxygen consumption (MVO,) per
beat. In such conditions, this approach (specifically, the ratio of stroke work to PVVA) offers
insights regarding the energetic efficiency of the system (when the latter is defined as the
stroke work generated for any given MVO,). However, pressure-volume analyses are much
less reliable to compare the energetic efficiency of the LV-arterial system between
individuals or disease populations, because the function that relates the pressure-volume area
to MVO, is highly variable between individuals.12:16-19 This results in weak relationships
between the PVA and MVVO,, (and by extension, between PVA-derived efficiency the true
underlying efficiency) between individuals.

After the role of the pressure-volume plane to assess LV function and energetics was
established, an “extension” of this approach to assess arterial load and ventricular-arterial
coupling was developed, primarily to understand the determinants of stroke volume.20-22
Analyses of ventricular-arterial coupling in the pressure-volume plane have been reviewed in
detailed elsewhere.12:20-24 |n this paradigm, arterial load is quantified as an “effective
arterial elastance”, which is defined as the ratio of end-systolic pressure to stroke volume.
When arterial load is defined is this manner, the Ea/Egg ratio can be computed as an index
of ventricular-arterial coupling. Due to geometric considerations, the Ea/Egg ratio roughly
correlates with the ratio of stroke work to PVA, and therefore, to the operating energetic and
mechanical efficiency of the LV in single hearts operating at different loading conditions.
However, given the limitations of the PVA as a surrogate of MVVO, when comparing
different individuals or diseased populations, the same reservations apply to the Ea/Egs
ratio.

Importantly, the Ea/Egg ratio is intimately related to EF (EF=1/[1+Ea/Egs]); consequently,
markedly “inefficient” ratios are closely associated with the presence of important
reductions in LV EF. In general, the Ea/Egg ratio is a marker of the energetic efficiency of
the system in situations in which the LV ejection fraction (EF) is frankly abnormal.12:20-25
This approach is less useful to compare energetic ventricular-arterial coupling when the
ejection fraction is preserved.

A small study including patients with HFpEF suggested an increased Ep and Egg beyond
that associated with aging and/or hypertension.26 However, subsequent studies with larger
sample sizes demonstrated that Ea and Egg were similarly increased in hypertensive controls
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and HFpEF patients.2”28 Furthermore, patients with HFpEF demonstrate normal “coupling”
of the LV (Egs) and the arterial load (Ep), as assessed in the pressure-volume plane,
suggesting that this approach fails to capture key features of the abnormal ventricular-arterial
cross-talk in this condition. However, the pressure-volume plane helps us understand some
aspects of the pathophysiology of HFpEF, including the limited stroke volume reserve,
increased blood pressure lability, pre-load sensitivity,12:23.29.30 and the propensity of this
population to experience side effects with interventions that cause important reductions in
peripheral vascular resistance.

Despite its high popularity and the physiologic insights provided by analyses in the pressure-
volume plane in HFpEF, this approach demonstrates serious limitations to characterize
pulsatile arterial load and broader aspects of ventricular-arterial interactions in HFpEF. As
stated previously, an attempt to represent the complex time-varying arterial hydraulic load
with a single number is unrealistic. The Ea/Egg ratio does not account for time-varying
phenomena during ejection.1? In particular, the LV loading sequence (late vs. early systolic
load), which is intrinsically neglected by analyses in the pressure-volume plane, is an
important determinant of maladaptive remodeling, hypertrophy, diastolic dysfunction and
heart failure risk.39-37 In addition, the commonly made assumption that E is a lumped
parameter of resistive and pulsatile arterial load, is factually incorrect.12:38-40 Despite its
name, Epx is not a true elastance (i.e., the inverse of a compliance) and is mostly dependent
on vascular resistance (a microvascular, rather than a conduit artery property).39:41
Furthermore, E is highly sensitive to heart rate.3%41 In fact, Ea has been shown to be
minimally sensitive to changes in arterial compliance or to various specific parameters of
pulsatile arterial load within physiologically/clinically relevant ranges.12:38-40 |n a recent
study?0 E and detailed specific indices of pulsatile arterial load were determined from
time-resolved central pressure and flow measurements: (1) In a large community-based
sample of middle-aged adults; (2) In a diverse clinical population of older adults, and; (3) In
response to the handgrip maneuver, a physiologic intervention known to induce pronounced
changes in pulsatile arterial load.*2 This series of studies consistently demonstrated that E
is a quasi-perfect function of the product of systemic vascular resistance and heart rate, with
weak, inconsistent and in some cases, erratic/paradoxical relationships with proper measures
of pulsatile load, such as aortic root characteristic impedance (Zc), measures of wave
reflections, and total arterial compliance. These findings are in full agreement with modeling
studies, 3% and demonstrate that E 5 depends almost entirely on SVR and heart rate, and has
very poor sensitivity to the human pathophysiological ranges of pulsatile afterload observed
in vivo. Finally, there was no correlation between E and carotid-femoral pulse wave
velocity, the current reference method to quantify large artery stiffness.#344 Current
American Heart Association guidelines specifically recommend against utilizing Ep as a
measure of arterial stiffness.*3 Given the considerations above, it is incorrect to interpret Ea
as an index of arterial “stiffening” or, by extension, to equate a parallel increase in E and
Egs as a state of “ventricular-arterial stiffening”. Similarly, it is important to recognize that
the presence of similar Ex values between 2 populations does not mean that arterial stiffness
is similar, and that a change in Ep in response to an intervention (or lack thereof) does not
reflect changes in arterial stiffness.
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The poor performance of E to capture underlying pulsatile arterial load is readily explained
by the various simplifying assumptions made during its original derivation, as previously
discussed in detail.12:39.40 First, arterial pressure does not increase from zero to end-systolic
pressure as the result of the stroke volume injection into the arterial tree, because arterial
pressure hovers around a non-zero value (mean arterial pressure, which is in turn entirely
determined by peripheral resistance, heart rate and stroke volume). Second, the derivation of
Ea assumed a “square-shaped” pressure curve in systole, with its upper side corresponding
to end-systolic pressure, thus ignoring the contribution of pulsatile phenomena to the
contour of the arterial pressure curve above end-systolic pressure. Sunagawa et a/, in their
original derivation of E, appropriately raised caution regarding the fact that the contribution
of these phenomena can become important, with a relatively large error in this coupling
model, when the area under the systolic area of the curve becomes a large fraction of the
overall pressure curve or when pulsatile phenomena lead to an increase in the area under the
pressure curve above end-systolic pressure, which may occur for instance, in the presence of
prominent pressure augmentation from wave reflections.3%45 Such conditions happen to be
characteristic hemodynamic features among older people (particularly women)#3:46-50 angd
patients with HFpEF.3251

To the degree that Ea does not properly characterize arterial pulsatile load, the Eap/Egg ratio
is a very limited index of “ventricular-arterial coupling”, even if the important limitations of
this approach to assess LV energetics are ignored. This issue is particularly problematic in
HFpEF, because pulsatile load is highly relevant for ventricular-arterial interactions in this
patient population. Ventricular-arterial coupling encompasses multiple different physiologic
aspects that require characterization beyond the pressure-volume plane.

These considerations are not purely theoretical, but translate into important limitations to the
application of this approach in clinical studies. For example, in a recent study, measures of
wave reflection, but not Ea or peripheral vascular resistance, were significantly correlated
with the invasively measured time constant of isovolumic relaxation, the gold standard index
of diastolic relaxation.52 Similarly, a recent study demonstrated that E 5 did not predict
incident HF in the Multiethnic Study of Atherosclerosis (MESA) cohort,>3 whereas indices
of reflection magnitude and late systolic load were strong predictors of incident HF in this
cohort.>*5 Finally, a single dose of inorganic nitrate, which has been recently shown to
improve aerobic capacity in patients with HFpEF, did not reduce Ea, but substantially
reduced wave reflections,6 and this reduction significantly correlated with the degree of
improvement in peak VO, in these patients.®” These findings are consistent with the need to
time-resolve arterial load in order to gain clinically-relevant insights into ventricular-arterial
coupling and the effects of therapeutic interventions.

Wave reflections in the arterial tree

Every beat, the LV generates a pulse wave that travels forward in the arteries and gets
partially reflected at sites of impedance mismatch, such as points of branching or change in
wall diameter or material properties along the arterial tree. Innumerable tiny reflections
merge into a net reflected wave, which travels back to the heart.30:46:47 This reflected wave
is often seen as a single discrete wave, originating from an “effective” reflection site, but is
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actually the result of scattered reflections, originating from distributed reflection sites.
Important sources of wave reflections include the microvasculature, the bifurcations in
middle-sized muscular arterial segments, the tapering of the aorta, well as sites of tortuosity
or focal wall stiffening and/or narrowing in conduit arteries, with the bulk of wave
reflections arising distal to the aortic arch (i.e., from the lower body).3046:47 The time of
arrival of the reflected wave to the proximal aorta depends on the location of reflection sites
and on the pulse wave velocity (PWV) of conduit vessels, particularly the aorta, which
transmits both forward and backward traveling waves from and towards the LV,
respectively.30:58-60 Aortic PWV is directly related to the stiffness of the aortic wall (square
root of elastic modulus).30:46.61 Stiffer aortas thus conduct the forward and backward
traveling waves at greater velocities and therefore promote shorter reflected wave transit
times (i.e., earlier arrival of wave reflections to the LV).11.62

Due to the shorter wave transit time from the heart to reflection sites and back to the
proximal aorta in the presence of increased pulse wave velocity among older adults,11:62
wave reflections arrive back at heart while the LV is still ejecting blood, with predominant
effects during mid-to-late systole.30:63 Wave reflections thus increase the late systolic
workload of the LV and profoundly impact its loading sequence (late relative to early
systolic load). In the presence of preserved LV pump function (such as occurs in HFpEF),
typical effects of the reflected wave on the aortic pressure waveform include a systolic
shoulder followed by a second systolic peak that augments aortic pressure in mid-to-late
systole.50 Such features are prominent in patients with HFpEF.32:51.56

Assessing arterial load and ventricular-arterial interactions via pressure-flow relations

Although blood pressure is often taken as a useful surrogate of LV afterload (“pressure
overload”), it should be recognized that afterload affects the pressure and flow generated by
the LV in a reciprocal fashion. Furthermore, pressure is not only dependent on afterload, but
is also strongly influenced by LV chamber pump function.23:47.60.64 Therefore, LV afterload
cannot be described in terms of pressure alone, but should be assessed from pressure-flow
relations. A detailed phenotypic characterization of pulsatile arterial load can be performed
with non-invasive pressure and flow measurements using imaging techniques combined with
arterial applanation tonometry (Figure 2).

Avrterial tonometry can be used to obtain high-fidelity central pressure waveforms from the
carotid artery, which is an adequate surrogate of the aortic pressure waveform.%®
Alternatively, peripheral waveforms (brachial or radial) can be transformed with the use of
generalized transfer functions in the frequency domain, to produce estimated central
pressure waveforms. Generalized transfer functions take advantage of the relatively small
variability in the relationship between the harmonics of pressure in the aorta and the
respective harmonics of pressure in specific peripheral arteries. This variability is
particularly small for low frequencies (first few harmonics of the pressure waveform) but
can vary markedly between people at higher frequencies. “Low frequency” information in
the central pressure waveform includes the peak pressure, or areas under the pressure curve
(pressure-time integrals) in early systole, late systole, or diastole. Higher frequencies
determine sharp inflections in the waveform and morphologic “details” (such as the
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inflection point and augmentation index); these features in the central pressure waveform
may not be particularly reliable when synthesized with the use of transfer functions.

Aortic flow can be measured with through-plane phase-contrast MRI of the ascending aorta
(Figure 2), which produces a flow velocity profile of the aortic cross-section in each phase
of the cardiac cycle. Doppler echocardiography of the LV outflow tract can also be used,
because LV systolic outflow through the LV outflow tract equals aortic inflow. With both
techniques, temporal resolution should be maximized to obtain the details of the flow
waveform. With phase-contrast MRI, a single cardiac cycle (and flow waveform) is typically
reconstructed from information acquired over multiple cardiac cycles. For Doppler
echocardiography and arterial tonometry, signal averaging of several cardiac cycles is
typically used to obtain a pressure waveform and a flow waveform for analyses.

Once the central pressure-flow pair is available, central arterial pressure-flow relations can
be studied in great detail, allowing for a comprehensive assessment of LV afterload,
including wave reflections.1146:47 Analyses of pressure-flow relations also provide indices
of ventricular function and ventricular-arterial interactions. Various key phenotypes and their
physiologic/clinical interpretations are summarized in Table 1.

To better understand the effects of wave reflections on pressure and flow, it is useful to
discuss the effects of intermittent flow injection into an elastic tube in which reflections are
absent (Figure 3). Under such conditions, pulsatile energy imparted from one end of the
tube, in the form of a compression wave, promotes forward flow and increases pressure
within the tube (Figure 3). Measured flow and pressure signals demonstrate exactly the same
shape. The amount of pressure rise (AP) versus flow change (AQ) (vertical scale in pressure
and flow curves in Figure 3) is determined by the characteristic impedance (Zc) of the tube
(therefore, Zc= AP/AQ). It follows that the product of pulsatile flow and Zc equals pulsatile
pressure. In such a system, the QZc product represents the pulse flow required to “push” the
pulse flow through the Zc of the tube.

In the arterial tree, however, the pressure profile is determined by a combination of forward
and backward waves at any given site. At the aortic root, measured pressure and flow
waveforms result from the sum of a forward-traveling wave, which affects pressure and flow
in the same direction, and a backward wave, which changes pressure and flow in opposite
directions (Figure 4). The backward wave arises from the interaction of the forward wave
with reflecting sites distal to the aortic root. A commonly unrecognized phenomenon is that
the heart itself is also a reflector. Backward-traveling reflected waves can re-reflect at the
heart, becoming part of the forward wave. The forward wave is therefore influenced by wave
reflections.

In the arterial tree of older adults, a nearly reflection-less state occurs only in very early
systole, before arrival of the bulk of backward-traveling waves. The slope of the pressure-
flow relation during this period is governed by proximal aortic characteristic impedance
(Zc). The slope of the pressure-flow relation in early systole, therefore, approximates aortic
Zc and can be measured using a pressure-flow loop. Once this slope is defined we can
represent the pressure and flow wave forms adequately “scaled” to each other to better
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assess departures from a “reflection-less” state (Figure 5). Soon after the onset of ejection,
the linear relationship between pressure and flow (which is governed by the aortic root Z¢)
diverges, such that pressure increases relative to flow. This divergence is the consequence of
wave reflections from the periphery arriving at the aortic root. Figure 4 demonstrates this
phenomenon (red area). The pulsatile pressure-flow divergence generally becomes
particularly prominent in mid-to-late systole (Figure 5A). We can assess the magnitude of
this divergence as an index of the contribution of wave reflections to the systolic pressure
profile. In order to do this, it is useful to compute the product of flow by aortic root Zc (QZc
product), which is represented by the white area in Figure 5B. The QZc product can be
interpreted as the minimum pressure that would be required to “push” the prevalent flow
waveform through the aortic root Zc (i.e., in the complete absence of wave reflections).
From a clinical and physiologic perspective, in the presence of a normal stroke volume, this
product provides some quantification of the mismatch between aortic root properties (size
and stiffness) and flow requirements, which contribute to increased pulse pressure with
aging and various disease states. It is useful to note that, when wave reflections are absent,
the systolic QZc product is equal to the systolic portion of the forward pressure wave, which
is in turn equal to the systolic portion of the total pressure wave.

The difference between measured pressure and the QZc product (red area in Figure 5B) can
be interpreted as the pulsatile pressure that is not primarily required to promote pulsatile
systolic flow through the aortic root Zc, but is necessary to overcome the effect of wave
reflections. An analogous concept was originally proposed by Hashimoto, Nichols and
O'Rourke and called “wasted LV effort”, using pressure-only approaches.6:67 The concept
presented in Figure 5 is an extension of this principle to the pressure-flow pair. Whereas
intuitive and potentially useful, this time-domain index requires further study. It should be
considered a parameter of ventricular-arterial cross-talk, rather than a pure arterial property.
Interestingly, as will be discussed later, this area is equal to twice the systolic portion of the
reflected wave.

According to wave separation analysis, the measured flow waveform is the difference
between forward and backward flow waves, whereas the measured pressure waveform is the
sum of forward and backward pressure waves. This determines that the red area in Figure 5B
(pulsatile pressure “above” QZc) gets “partitioned” exactly by half, with one half
corresponding to the forward pressure wave and one half corresponding to the backward
pressure wave (Figure 6). This leads to a few interesting observations: (1) The pulsatile
pressure area above QZc is equal to twice the backward wave; (2) The pulsatile component
of the forward wave is equal to the sum of the QZc product plus the backward wave. In other
words, the forward wave exceeds the QZc product by an amount equal to the backward
wave. Forward wave amplitude, therefore, cannot be interpreted purely as an index of
mismatch flow needs and aortic root properties, because it contains important contributions
from wave reflections.%8

A popular approach to characterize wave reflections is to compute reflection magnitude as
the ratio of the amplitudes of the backward and forward waves (Pb/Pf). This computation,
however, can underestimate the effects of reflections to pressure (and LV load), because

peripheral reflections that re-reflect at the heart become part of the forward wave, and thus
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add to denominator, rather than solely the numerator of reflection magnitude. Similarly,
reflection magnitude does not contain information about the timing of the reflected wave and
its net effect on aortic (and LV) pressure in systole. Therefore, in many instances it becomes
particularly important to pay attention to indices such as QZc, and the difference between
total pressure and QZc during systole, in addition to more detailed analyses of pressure-flow
relations in the frequency domain.

Pressure-flow analyses in the frequency domain

The amplitude of forward and backward waves are parameters of ventricular-arterial cross-
talk, rather than measurements of arterial load. The most comprehensive approach to
characterize the pattern of arterial load is based on decomposition of the pressure and flow
waveforms in its harmonic components (analyses in the frequency domain). In analyses of a
pressure-flow pair (spanning one complete cardiac cycle), the fundamental frequency, or 15t
harmonic, is the heart rate, and higher harmonics are multiples of that frequency (for
example, at a heart of 60 beats/minute, the fundamental harmonic has a frequency of 60 Hz,
the 2" harmonic has a frequency of 120 Hz, and so on). Each harmonic is a sine wave that
(in addition to frequency), has 2 basic properties: (1) amplitude (or moadulus, which is
measured, for instance, in mmHg for pressure harmonics and mL/min for flow harmonics);
(2) A phase angle, which in this case is simply a representation of the position of the specific
pressure of flow harmonic sine wave in the time axis, relative to the cardiac cycle. Pressure
or flow harmonics have such magnitude and phase that, when all harmonics are summed, the
original waveform can be reconstructed (the sum of all pressure harmonics equals the
measured pressure waveform, whereas the sum of all flow harmonics equals the measured
flow waveform). Based on the principle that impedance equals the ratio of pressure over
flow, in the frequency domain, each pressure harmonic can be divided over the
corresponding flow harmonic to obtain a spectrum of impedances, which is collectively
called /nput impedance ([ZN]; note the difference between the input impedance spectrum,
which is the summed load from all downstream of the proximal aorta, versus aortic root
characteristic impedance [Z¢], which is a “local” arterial property). Because harmonics of
pressure and flow are sine waves (with magnitude and phase), the Z;\ spectrum also has a
magnitude and a phase value at each harmonic. The Z;y spectrum is the “gold standard”
representation of arterial hydraulic load and is, in principle, a pure representation of arterial
properties (its measurement being independent of LV function).

Whereas the Zjy pattern is fully informative about the arterial load, it is not particularly
intuitive. However, some features of Z,y are worth mentioning. The mean pressure/mean
flow (i.e., resistance) is represented as the modulus of the “0™” harmonic of Z;y. At high
frequencies, the modulus of Zy oscillates around the aortic root characteristic impedance
(Zc). Resistance and aortic root Z¢ are real, rather than complex numbers. Therefore, the
phase angle at 0" harmonic (0 Hz frequency), and the average phase angle of the higher
harmonics of Zy is zero. Some fluctuations of modulus and phase of Zy are observed at
higher frequencies, however, due largely to the effects of wave reflections. Wave reflections
have a somewhat random impact at these high frequencies, such that their effects “cancel
out” when values are averaged (thus leaving an average effective Zy that is governed only
by Z at these higher frequencies). Wave reflection is a major determinant of the values of
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modulus and phase at low frequencies, which is the frequency range that contains the major
harmonic components of ascending aortic and pressure. These low frequencies typically
correspond to the first 3 harmonics of pressure and flow.

In older people, wave reflections are prominent and inadequately timed, imposing additional
load during ventricular ejection. The lower harmonics thus demonstrate modulus values that
are greater than Z¢ to the degree that wave reflections exert an additive effect to the modulus
of impedance at these low frequencies.

Once aortic root Z¢ is known, each harmonic of pressure and flow can be separated into its
forward and backward (reflected) components. A reflection coefficient can thus be
computed for each harmonic.47-69 Each reflection coefficient is derived from sine waves, and
therefore is a complex number with modulus (amplitude) and phase, which correspond to
different degrees of destructive or constructive interference between forward and backward
harmonics. In other words, the modulus of the reflection coefficient is not fully
representative of the net pressure load induced by reflections at a specific frequency.
Therefore, the net effect of reflections is best expressed as the real part of the reflection
coefficient, which becomes increasingly positive as pressure from wave reflections increases
(constructive interference), and negative when destructive interference leads to a net
decrease in pressure by wave reflections at a given harmonic.”0 Since the first few harmonics
contain the vast majority of the pulsatile energy generated by the heart, reflection
coefficients at these harmonics (such as the first 3 harmonics) are of particular interest.

An interesting consideration is that the reflection coefficients are different for each
frequency, because the arterial tree reflects pulsatile energy back to the aortic root
differentially, depending on the frequency. Furthermore, the phase of the reflection
coefficients is not zero, such that there is a “phase shift” of the reflected wave components
relative to the forward components. The complex nature of wave reflections in the arterial
tree is well recognized and is key to our understanding of the effects of arterial dysfunction
on central hemodynamics.11:62.71 First, due to the frequency-dependent complex nature of
wave reflection, a reflected wave is not simply a “smaller” but otherwise identical “version”
of the forward wave. Reflecting sites “reshape” the wave, partially because they shift its
phase. Because of this phenomenon, reflected wave transit times (or the time of “arrival” of
the composite reflected wave to the proximal aorta) cannot be inferred simply from the
apparent observed delay between a characteristic point in the forward and backward waves
(such as the foot of the wave). A distal shift of reflecting sites with aging’2 has been
proposed based on analyses that neglect the complex frequency-dependent nature of wave
reflections in the arterial tree. Furthermore, these analyses were based on use of the pressure
waveform inflection as a surrogate for reflected wave transit time. More recent analyses by
Phan et af? that utilized pressure and flow information, and more implicitly accounted for
the complex nature of wave reflections, did not demonstrate such a distal shift and in fact
suggested the opposite (a proximal shift of reflection sites with aging). These considerations
have implications for our understanding of the role of wave reflections in microvascular
disease, as discussed in more detail in the accompanying review. The complex nature of
wave reflections can also aid in our understanding of the mechanism of action of therapeutic
interventions that alter the phase of wave reflections (via effects on muscular conduit
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arteries), effectively reducing the contribution of wave reflections to LV load and the aortic
pressure profile, without the need to affect resistance vessels (which are also an important
source of wave reflections), or increase the total transmission of pulsatile energy to the
peripheral capillary bed. As discussed in the second part of this review, this appears to be a
promising therapeutic strategy in HFpEF.

Several additional physiologic insights can be provided by a direct assessment of the input
impedance spectrum, but such details are beyond the scope of this review. The reader is
referred to previous publications for a more detailed description of input impedance.11.47
Unfortunately, frequency domain analyses tend to be considered too complex for intuitive
clinical assessments, but remain extremely valuable for mechanistic clinical research studies.

Myocardial wall stress

Although the terms “myocardial afterload” and “ventricular afterload” are often used
interchangeably, the relationship between LV and myocardial afterload is influenced by the
time-varying LV geometry during ejection, which in turn affects the myocardial wall stress
(MWS) for any given LV chamber pressure. As discussed above, LV afterload is the
hydraulic load imposed by the systemic circulation (aortic input impedance), which depends
on the pressure required to generate flow (ejection) into the proximal aorta. In contrast,
myocardial afterload is determined by the MWS required to generate fiber shortening. MWS
thus reflects the time-varying mechanical load experienced by the contractile elements in the
myocardium and the amount of force and work that the myocardial fibers generate during a
contraction. Peak systolic MWS is closely and linearly related to myocardial oxygen
consumption (MVO,),”3 and therefore can be used to directly assess the mechanical
efficiency of the cardiovascular system. Interestingly, the relationship between MVO, and
peak MWS when comparing different individuals appears has been reported to be much
stronger’3 (R2~0.61) than the relationship between the pressure-volume area and MVO,
(R2~0.35). This approach therefore is more appropriate to compare the mechanical
efficiency of the cardiovascular system between individuals or disease populations. A
comparison of the information provided by the pressure-volume plane vs. analyses of
pressure-flow relations and MWS is presented in Table 2.

In addition to the usefulness of MWS as a marker of MVVO,, MWS has the key advantage of
characterizing the time-varying mechanical load on the myocardium. Time-resolved MWS
not only characterizes the systolic loading sequence, but also integrates the complex
influence of arterial load and LV structure and function on myocardial load.36:43.44.47.74-77
MWS is determined by interactions between myocardial contractile elements, instantaneous
LV geometry and the time-varying hydraulic load imposed by the arterial tree.”* Time-
varying MWS therefore represents an integrated and highly informative index of
myocardial-ventricular-arterial coupling.36:43:44.47.74-77

All key correlates of MWS (LV wall thickness, cavity size and pressure, which for any given
flow ejected, depends on the aortic input impedance) exhibit marked variations during
ejection. Therefore, time-resolving MWS during ejection (rather than using a single end-
systolic estimation) is necessary to gain insights into the bidirectional dynamic interactions
between the myocardium, the LV chamber properties, and the arterial tree. Previous studies
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have shown that, among normotensive and hypertensive adults with a normal LV ejection
fraction, peak MWS typically occurs in early systole (Figure 7).36:74.75 This is followed by a
marked change in the relationship between LV pressure and MWS during mid-systole,
which determines a lower stress for any given LV (and aortic) pressure.”* This phenomenon,
which appears ideal to protect cardiomyocytes against excessive load in mid-to-late
systole,”77=79 depends on the dynamic reduction of LV chamber size relative to wall
volume.” A lower LV EF (even within the “normal” EF range), more concentric LV
geometry (as seen in concentric LV remodeling or hypertrophy)’# and reduced early-phase
ejection (despite a preserved overall EF)0 are associated with a less efficient reduction in
late systolic MWS for any given LV/aortic pressure.” The implications of late systolic load
for myocardial hypertrophy and diastolic relaxation are discussed in the second part of this
review.

Other approaches

An additional approach to characterize LV-arterial interactions is wave intensity analysis.
This is a time-domain method in which the intensity of waves (defined as the product of the
time derivatives of pressure and flow velocity, [dP/dt] x [dU/dt]) is quantified.81.82
Simultaneous forward- and backward-traveling wave fronts of the compression or expansion
(“suction”) types can be quantified. Typical wave intensity patterns in the proximal arterial
system demonstrate a first positive peak of wave intensity from the forward compression
wave generated by the LV, which accelerates the aortic flow and increases the pressure
during LV contraction. A second peak is apparent in late systole, corresponding to a forward
expansion wave (FEW) that decelerates flow and reduces pressure during relaxation. The
characteristics of these forward waves may represent informative parameters of the
ventricular-arterial cross-talk. However, wave intensity analysis underrepresents reflected
waves, because it emphasizes high frequencies, whereas reflections exert their effects
predominantly at low frequencies. This can lead to misinterpretations of underlying
hemodynamics (such as assuming that diastole or mid-systole are “wave-free periods”
simply because high-frequency wave fronts are small or absent). Further research is required
to assess the potential clinical value of wave intensity analysis.

Conclusions

Comprehensive assessments of pulsatile arterial load and ventricular arterial interactions can
be achieved with analyses of pressure-flow relations. Whereas the pressure-volume plane
remains the gold-standard for LV chamber pump function, it has serious limitations to assess
pulsatile arterial load and ventricular-arterial coupling. Despite the apparent complexity of
pressure-flow analyses, this approach can be readily implemented with contemporary
software from signals that can be acquired quickly and non-invasively at the bedside. As
discussed in the second part of this review, analyses of prevalent pulsatile arterial
hemodynamic abnormalities in HFpEF leads to a better understanding of the
pathophysiology of the disease and can enhance our translational and therapeutic approach
to this condition. Therapeutic approaches to improve arterial hemodynamic abnormalities
that are prevalent in HFpEF are available and being tested in clinical trials.83 A
comprehensive understanding of systemic arterial hemodynamics as well as the
macrovascular-microvascular cross-talk, can provide important insights regarding: (1) the
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role of arterial load in LV remodeling and diastolic dysfunction; (2) the role of the arterial
tree in abnormal peripheral oxygen extraction during exercise, and; (3) the high prevalence
of certain comorbidities (cognitive dysfunction/dementia and, renal disease) in this patient
population.
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* Isnotatrue elastance.
* Correlates poorly with total arterial compliance.
* Does not account for time-varying phenomena.

B\ E,=ESP/SV

/ * Neglects the influence of wave reflections.
/ * Isaquasi-perfect function of resistance (a
/ microvascular property) and heart rate (a
/ cardiac property).
/ *  Assumes a constant ejection duration.
/ * Does not capture the influence of pulsatile
/ arterial load.
d * Bearsnorelationship to validated indices of
large artery wall stiffness (e.g.,PWV).
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. ‘ load, does not relate to heart failure risk.
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Figure 1.

Limitations of effective arterial elastance (EA) as an index of arterial load.
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Pressure (P)

Phase-contrast MR

Flow (Q) __ Detailed analyses of:
* Arterial load
* Ventricular-arterial interactions
* Ventricular pump function

Figure 2.
Primary measurements required for the assessment of arterial load via analyses of aortic

pressure-flow relations. A pressure-flow pair can be acquired with a combination of arterial
tonometry (which provides a pressure waveform) and either Doppler echocardiography or
phase-contrast MRI of the ascending aorta (either of which can provide a flow waveform).
Analyses of pressure-flow relations allow for a detailed assessment of arterial load,
ventricular-arterial interactions and ventricular function.
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§ The forward wave increases pressure (P) and forward
g flow (Q). In the absence of reflected waves pulsatile
= pressure and flow wave forms should be identical.

Zc= tPressure / 1 Flow relationship (ratio) between pulsatile pressure and
flow in the absence of reflected waves

The product of flow and Zc (QZc) equals the pulsatile
1 Pressure =Z¢c x 1F|0W pressure required to “push” any given pulse flow
through the tube’s Zc in the absence of reflections

Figure 3.
Analysis of pulsatile pressure and flow in a reflection-less elastic conduit vessel. The effects

of a compression wave are shown. This model illustrates the concept of characteristic
impedance (Z¢) which governs the pulsatile pressure-flow relation in the absence of wave
reflections.
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The forward wave Reflected waves:
-Increases pressure -Increase pressure
-Increases flow -Decrease flow

tp
-la

Aortic root

Rectified waves
- Reflections that “re-reflect” at the heart
- Become part of the forward wave

Figure 4.

Effect of forward, backward and rectified compression waves on pulsatile pressure and flow
in the aortic root.

J Cardliovasc Transl Res. Author manuscript; available in PMC 2018 June 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Chirinos

Page 22

Pressure [mmHg]
Flow [mL/sec

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

Wasted
LV effort

Pressure [mmHg]

0.4 0.6 0.8 1
Time [s]

Figure 5.
(A) Pressure and flow pair scaled by aortic root characteristic impedance. In early systole,

Zc governs the pulsatile pressure-flow relation. However, soon after ejection starts, the
effects of wave reflection increase pressure relative to flow (red area): (B) Same signals,
after flow has been multiplied by aortic root Z¢ and the minimum of each signal has been
subtracted, for a more intuitive graphic representation. The product of QZ¢ has units of
pressure and can therefore be directly related to the pressure waveform. The difference
between QZc and measured pressure can be easily quantified in systole. It is an index of
pressure that the LV needs to generate to overcome the effects of wave reflections, in order
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to eject the prevalent net flow. We hereby refer to this area as wasted LV effort, analogous to
the concept was originally proposed using pressure-only approaches.56.67
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Wave separation analysis. Because net flow is the difference between forward and backward
flow, whereas net pressure is the sum of forward and backward pressure, the red area in the
pressure waveform (pressure - QZc) gets “partitioned” exactly in half between the forward
(Pf) and the backward (Pb) waves. Consequently: (1) The systolic portion of the forward
wave does not equal QZc, unless reflections are absent in systole; (2). The amplitude of Pf at
any given time exceeds QZc by an amount equal to the amplitude of Pb, and is thus
significantly influenced by wave reflections; (3) At any given time, the difference between
QZc and measured pulsatile pressure equals twice the amplitude of Ph.
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Figure 7.
Time course of ejection-phase pressure (A), myocardial wall stress (MWS, B) and the

pressure-stress relation. Normally, brisk force development and fiber shortening occur in
early systole, resulting in an early peak in MWS and shortening rate, followed by continued
LV ejection and a dynamic reconfiguration of LV geometry that results in a mid-systolic
reduction in MWS relative to LV pressure, thus protecting the cardiomyocytes against
excessive load in mid-to-late systole (a period of increased vulnerability). The mid-systolic
reduction in MWS, relative to pressure, is impaired in the presence of a lower LV EF (even
within the “normal” EF range), concentric LV remodeling or hypertrophy, and/or reduced
early systolic ejection (despite a preserved overall EF).
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