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Abstract

Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome that 

may benefit from improved subtyping in order to better characterize its pathophysiology and to 

develop novel targeted therapies. The United States Precision Medicine Initiative comes amid the 

rapid growth in quantity and modality of clinical data for HFpEF patients ranging from deep 

phenotypic to trans-omic data. Tensor factorization, a form of machine learning, allows for the 

integration of multiple data modalities to derive clinically relevant HFpEF subtypes that may have 

significant differences in underlying pathophysiology and differential response to therapies. Tensor 

factorization also allows for better interpretability by supporting dimensionality reduction and 

identifying latent groups of data for meaningful summarization of both features and disease 

outcomes. In this narrative review, we analyze the modest literature on the application of tensor 

factorization to related biomedical fields including genotyping and phenotyping. Based on the 

cited work including work of our own, we suggest multiple tensor factorization formulations 

capable of integrating the deep phenotypic and trans-omic modalities of data for HFpEF, or 

accounting for interactions between genetic variants at different -omic hierarchies. We encourage 

extensive experimental studies to tackle challenges in applying tensor factorization for precision 

medicine in HFpEF, including effectively incorporating existing medical knowledge, properly 

accounting for uncertainty, and efficiently enforcing sparsity for better interpretability.
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Introduction

Heart failure is a common and morbid condition affecting over 5.7 million Americans1 and 

defined by fatigue, shortness of breath, and exercise intolerance. Heart failure is typically 

divided into two subtypes: heart failure with preserved ejection fraction (HFpEF) and heart 
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failure with reduced ejection fraction (HFrEF). Patients in these groups tend to have 

different demographics, co-morbidities, and responses to therapy. Several large, randomized 

controlled trials in patients with HFrEF have shown therapeutic benefit for a range of 

neurohormonal medications and intracardiac devices; however, large clinical trials have not 

demonstrated similar clinical benefit in patients with HFpEF2,3. The heterogeneity in the 

pathogenesis and in the clinical phenotypes of HFpEF may have contributed to lack of large, 

positive clinical trials4.

Recent studies have identified the centrality of chronic systemic inflammation in the 

pathogenesis of HFpEF5. Patients with HFpEF tend to be older females with several co-

morbidities, including obesity, hypertension, diabetes, coronary artery disease, chronic 

obstructive pulmonary disease, and chronic kidney disease. The combination of older age 

and these comorbidities may contribute to the systemic inflammation that in turn affects 

multiple signaling cascades and organ systems, including the heart, lungs, skeletal muscles, 

and kidneys4. The culmination of these pathways leads to different manifestations of the 

clinical syndrome of HFpEF, including unique combinations of co-morbidities, changes in 

cardiac remodeling and mechanics, biomarker profiles, and clinical symptoms3,4,6. 

Understanding these combinations may be informative to the design of future trials testing 

targeted therapeutic approaches.

Unsupervised machine learning has been previously used to identify clusters, or 

“phenogroups”, of patients with HFpEF using demographic, physical characteristics, and 

laboratory, electrocardiographic, and echocardiographic data7. Layering in genetic data may 

elucidate the mechanistic underpinnings of different HFpEF phenotype groups or even lead 

to additional refinement in the classification of patients with HFpEF. Prior studies have 

demonstrated genetic differences in cardiac geometry and mechanics8–10, risk for new onset 

heart failure11,12, and mortality after heart failure diagnosis13. Additionally, linking 

epigenetic signatures to specific HFpEF phenotypic subgroups may provide additional 

mechanistic understanding of pathogenesis and identify future targets for therapy14. 

Identifying methodologies for a trans-omic approach, including with de-tailed phenotypic 

data, is therefore essential to better subtyping patients with HFpEF and identifying the 

mechanistic underpinnings of the syndrome.

Precision medicine aims to utilize information from multiple modalities—including 

phenotypic, genomic, and environmental measurements—to develop an individualized and 

comprehensive view of a patient’s pathophysiologic progression, to identify unique subtypes 

of the patient, and to administer personalized therapies15. Existing efforts are often based on 

only a selected set of biomarkers. The rapid growth of phenotypic, genetic, medication 

prescription, and environmental data for HFpEF patients poses technical challenges for 

subtyping them, due to the large volume of data, diversity of data types, and uncertainty 

from noise and missing data. However, the rapid growth of multiple data modalities, when 

linked to the right patients, may provide a prismatic view of the patients’ pathophysiologic 

evolution and offers a basis for meaningful subtyping of these patients. Figure 1 shows 

multiple data modalities for HFpEF patients, including deep phenotyping and trans-omic 

data. One of the example datasets with linked evaluation on multiple modality measurements 

is the Multi-Ethnic Study of Atherosclerosis (MESA) dataset16, which is curated by a 
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medical research study involving more than 6,000 men and women from six communities in 

the United States. In particular, over 6000 patients in MESA were genotyped using 

Affymetrix 6.0, in addition to routinely collected laboratory tests and exams measurements. 

In addition, the advent of RNAseq and epigenetic data will likely offer trans-omic evidence 

to HFpEF patient subtyping and identify individualized therapy targets. We will use the 

scenario of MESA dataset containing both a high density of phenotypic variables and 

genome-wide genetic variants as an illustrative example in this review.

The Problem of Complex, Multi-Modal Data in Precision Medicine

The lack of positive, large-scale HFpEF clinical trials may be due to distinct systemic and 

myocardial signaling in HFpEF (compared to HFrEF) and the underlying heterogeneity of 

HFpEF. A precision medicine approach, leveraging multiple modalities and sources of 

information, including deep phenotyping and trans-omic data, may better define subtypes of 

HFpEF that are more homogeneous in their responses to specific targeted therapies. With the 

rapid development of Next Generation Sequencing and sophisticated phenotyping tools such 

as comprehensive cardiovascular imaging, the linked data for HFpEF patients from various 

modalities are becoming increasingly complex, defined as.

• Data Complexity: The data objects themselves are becoming more complex. 

They are becoming larger in scale, higher in dimension (e.g., millions of genetic 

loci identified by whole genome sequencing). The features (especially 

phenotypic features) are usually heterogeneous, sparse and time-evolving.

• Relation Complexity: The relationships between multiple modalities of 

electronic health record (EHR) data are becoming more complex. Such 

relationships can link RNA expression to phenotypic abnormalities, or link 

epigenetic signature changes (e.g., DNA methylation, histone modifications) to 

upregulation or downregulation of genes (e.g. α-MHC gene and SPR-Ca2+ 

ATPase gene). Relations also hold between features in the same measurement 

modality. For example, some phenotypic variables can be grouped into 

echocardiographic measurements (e.g., global longitudinal strain, left ventricular 

end-diastolic volume) or electrocardiogram (ECG) parameters (e.g., PR interval, 

QRS-T angle).

Recent advances in machine learning have opened avenues towards more effective mining 

and modeling from EHRs to facilitate translational research17. However, clinicians often 

regard existing machine learning models as hard-to-interpret black boxes. Traditional 

machine learning algorithms usually treat phenotypic variables as independent features 

instead of exploring clinically meaningful groups of phenotypic variables that together can 

characterize HFpEF subtypes (e.g., younger patients with moderate diastolic dysfunction 

and relatively normal BNP as a distinct HFpEF archetype7). It is also difficult for 

conventional machine learning algorithms to model patient physiologic temporal 

progressions for disease/syndrome subtyping. Patients are often monitored in physiological 

time series in which vital measurements and laboratory test values fluctuate as time 

progresses (e.g., there is significant intra-person variation in blood pressure measurements 

due to setting, method of measurement, time of day, and health status). The fact that these 
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physiologic time series are sampled at irregular time intervals and may contain missing data 

further complicates complexity of feature modeling. Intuitively, the temporal trends, and in 

general relations as features, are more expressive and informative, but their extraction is 

often difficult and often involves manual work such as pre-specifying rules or patterns18 and 

matching against clinical time series19. In contrast, independent measurements (e.g., 

individual blood pressure measurements) have been widely used because they are simple to 

extract and have robust statistical properties. However, these independent measurements are 

less informative and inter-pretable than relational features. In fact, modeling relational 

features are usually ignored by machine learning algorithms that mostly adopt a flat patient-

by-feature matrix view (patients as rows and features as columns). Because of complexity 

the data required to capture HFpEF characteristics, the traditional vector- or matrix-based 

representations (e.g., non-negative matrix fac-torization20, topic modeling21) are not flexible 

enough to capture all the degrees of freedom contained in the data. Although theoretically 

one can add interactions as additional features or embed graphical models to account for 

feature interactions, the problem quickly becomes intractable for large feature 

dimensionality (e.g. at the genome scale). Our previous research in cancer subtyping and 

intensive care unit (ICU) mortality prediction shows that using the relational features and 

independent raw features jointly can take advantage of both in order to improve the 

interpretability and accuracy of the machine learning model22–24.

Tensor Factorization: A Potential Solution for Multi-Modal Data in HFpEF

Tensor modeling has emerged as a promising solution for the computational challenges of 

precision medicine. A tensor is a multidimensional array where each modality spans one 

axis (denoted as mode in tensor terminology). In matrix representation, one may have to 

concatenate multiple data modalities into a single second dimension of the matrix, thus 

disallowing explicit representation of interactions among these modalities. Tensors, as 

natural generalizations of vectors and matrices, are becoming increasingly popular for 

representing multi-modality data. Figure 2 shows the tensor for modeling interactions among 

patients, phenotypic measurements, and genetic variants. Various tensor factorization models 

with such parsimonious structures and accompanying computational tools have been integral 

in the analysis and process of big tensor data (see Kolda et al.25 and Cichocki et al.26 for 

further reading). These factorization models not only reduce dimensionality but also help 

discover latent groups in each data modality and identify group-wise interactions. In 

addition, specifically designed tensor factorizations can also integrate additional domain-

specific prior knowledge to constrain the tensor structure27,28. Following our illustrative 

MESA dataset, Figure 2 shows a visualization of two types of factorization—Tucker29 and 

CANDECOMP/PARAFAC (CP)30—in order to integrate the phenotypic and genetic 

measurements and model their relations for the subtyping of HFpEF. The Tucker 

factorization29 (top panel in Figure 2) decomposes the data tensor  into three factor 

matrices specifying groups in each mode and a core tensor  specifying levels of interaction 

between the groups from different modes. In general, number of groups in each mode is less 

than the dimensionality of that mode and the core tensor  can be regarded as a compression 

of . The CANDECOMP/PARAFAC (CP) factorization30 (bottom panel in Figure 2) 

decomposes  as a weighted sum of rank-1 sub-tensors, each of which is the outer-product 
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(S, Sijk = αiβjγk) of a patient factor vector (α), an intervention factor vector (β) and a 

biomarker factor vector (γ). The weights λr, r = 1 … R indicate relative importance of sub-

tensors. When interpreting the Tucker factorization regarding HFpEF subtyping, the factor 

matrix  corresponds to HFpEF subtypes, the factor matrix ℬ corresponds to groups of 

phenotypic variables that characterize HFpEF subtypes, and the factor matrix  corresponds 

to groups of genetic variants that characterize HFpEF subtypes. With CP factorization, the 

factor vectors αi’s correspond to HFpEF subtypes, the factor vectors βi’s correspond to 

groups of phenotypic variables that characterize HFpEF subtypes, and the factor vectors γi’s 

correspond to groups of genetic variants that characterize HFpEF subtypes. Compared to 

Tucker, the structural hypothesis of CP requires the same number of groups for each mode. 

The simplified structures in CP allows easier linkage from phenotypic variable groups and 

genetic variant groups to HFpEF subtypes (simply linking those are in the same sub-tensor). 

On the other hand, the structural flexibility by Tucker factorization may offer more accurate 

data fitting but typically requires more intensive computation23. In practice, care needs to be 

taken when trading off model flexibility with simplified interpretation and computation31.

When modeling HFpEF patients subtyping using tensor factorization, certain types of 

features can in fact display a hierarchical structure. Although genetic variants, such as single 

nucleotide polymorphisms (SNPs) and copy number variations (CNVs) are the most 

primitive components in trans-omic features, other trans-omic data such as epigenetics and 

pathways can arguably provide invaluable information. It is widely acknowledged that 

viewing SNPs and CNVs as independent features and fitting them to linear models loses 

critical information such as the interaction between proteins encoded by the affected 

genes32,33. Decades of trans-omic research have resulted in evidence of protein interaction, 

transcription factor regulation and signaling. Much of the data are curated and archived as 

public databases such as STRING34, KEGG35, InterPro36, Aceview37 and Pfam38. These 

databases provide information sources for regulatory or interaction pathways involving 

genes affected by SNPs or CNVs. Thus, we can build a tensor that account for higher-order 

relations between SNPs and CNVs as follow. For a particular patient, we scan through 

genetic variants, such as SNPs or CNVs, and use interval tree search39 to identify relevant 

genes whose chromosomal regions contain those of the genetic variants. Next, we query the 

pathway databases to identify pathways or gene sets that involve the identified genes. Then 

the tensor entry, indexed by the patient, the pathway, and the genetic variant, is increased by 

the genotype of the variant (0, 1, or 2 corresponding to none, single-allelic or bi-allelic 

variant). The SNPs and CNVs may be of high dimensionality, thus one may need to 

aggregate the SNP and CNV counts according to the affected genes to avoid impractically 

large tensor. The tensor constructed this way falls into the category of subgraph augmented 

tensor, and in particular, pathways or gene sets can be precisely represented as graphs or 

subgraphs. Pathways as a mode of the tensor help to put the genetic variants in the context of 

functional relations between genes. Genetic variants help to link correlated pathways in 

order to render a comprehensive view of the HFpEF pathophysiology (Figure 3). Our 

previous research showed that subgraph augmented tensor can be efficiently factorized and 

the groups of pathways, which functionally link the related genetic variants, can be linked to 

patient groupings23.
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The tensor formulations in Figure 2 and Figure 3 are alternative schemes that focus on 

exploring the interactions between different feature types and exploring hierarchical 

structures of features of the same type, respectively. Both Tucker and CP factorization seem 

to have broader adoptions in non-genomic biomedical fields, perhaps due to the relative ease 

of imposing probabilistic and other regularizations. Although CP produces summation of 

rank-1 sub-tensors (Figure 2) and leads to simplified interpretation, Tucker provides a more 

flexible and sometimes more realistic factorization by allowing varying number of groups in 

different modalities. The choice between these two alternatives depend on data availability, 

outcome to track, and focus of hypothesis, and are open questions in the clinical domain of 

HFpEF that deserves extensive experimental studies and characterizations. Although to our 

knowledge no prior research studies have applied tensor factorization to subtype HFpEF 

patients, a substantial body of research on applying tensor factorization to handle multiple 

modalities of biomedical data has emerged over the past decade. We refer the reader to 

general reviews40,41 for tensor modeling application in biomedical domains. Below, we 

provide a more detailed discussion on the applications of tensor modeling in cardiovascular 

medicine.

In cardiovascular disease, prior studies have investigated the interactions between heart 

failure related diagnoses and administered medications to heart failure patient groupings. Ho 

et al. 42 studied the problem of heart failure onset prediction with clinically meaningful 

subtensors. They build a patient-diagnosis-procedure tensor and derive patient clusters on 

specific diagnoses and medications by applying CP while enforcing sparsity constraints. In a 

follow-up study, Ho et al.43 investigated Centers for Medicare and Medicaid Services (CMS) 

claims data to predict high cost (above 75th percentile) beneficiaries by using phenotypes 

within chronic diseases including hypertension, arthritis, heart failure and diabetes as 

features (generated by tensor factorization). They build a patient-diagnosis-procedure tensor 

and apply CP-APR factorization to decompose it as summations of rank-1 bias tensors and 

rank-R interaction tensors with sparsity constraints on the factor matrices of interaction 

tensors, in order to explicitly account for interactions among groups of the same modality. 

Wang et al.44 studied the problem of predicting the onset risk of patients with heart failure. 

They applied tensor modeling to generalize sparse logistic regression to multiple modalities 

on EHR data, such as comorbidity diagnosis codes and medications, and called their model 

High Order Sparse Logistic Regression (HOSLR). They reported that HOSLR not only 

achieved good prediction accuracy on newly diagnosed heart failure, but also discovered 

interesting predictive patterns capturing the interaction between diagnosis and medications. 

Wang et al.28 studied the problems of detecting sub-phenotypes of hypertension, type 1 and 

2 diabetes, and heart failure based on EHR data. Their tensor formulation incorporated 

medical knowledge via customized regularization terms. Medical knowledge guidance is as 

a subset of columns in the target factor matrix and the resultant factor matrix is required to 

be close to the target on the pre-specified subset of columns. They also constrained that the 

columns of the factor matrix should be close to pairwise orthogonal to ensure distinct 

phenotypes.
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Applying Tensor Factorization to HFpEF: Potential Challenges

The advent of precision medicine initiatives in HFpEF, coupled with the welcome growth of 

new modes of data in cardiovascular medicine, produces not only opportunities but also 

challenges when moving towards tensor modeling. Although tensor factorization naturally 

integrates multiple modalities or hierarchies of features, common factorization schemes such 

as Tucker and CP usually lack the machinery to incorporate existing medical knowledge as 

probabilistic priors, or to evaluate extracted and grouped relations as clinical evidence from 

a Bayesian perspective (e.g., posterior probability and confidence interval). Confidence 

intervals and prior and posterior probabilities are the most basic primitives for statistical 

decision making, but few tensor-based approaches have adopted them in clinical decision 

support. Our preliminary data show that mining and grouping relation subgraphs leads to 

improved accuracy and better interpretability in diagnostic reasoning but calls for a Bayesian 

formulation to incorporate existing medical knowledge, provide confidence estimation, and 

further improve prediction accuracy to practical level22,23.

To account for uncertainty, multiple authors proposed probabilistic Tucker and/or CP 

factorizations to incorporate priors on tensor structural parameters. Those priors can specify 

dependence between environmental exposures and SNP level differences 45, or probability 

of gene sequence conditioned on the composing nucleotides and chromosomal 

positions46,47. In addition, probabilistic CP was shown to improve EEG classification 

accuracy when missing data is present48. The above Bayesian formulations allow 

incorporating existing medical knowledge as probability priors and reliably estimating the 

posterior probabilities and confidence intervals of any findings from the model. In Tucker 

factorization in Figure 2, the vectors {β1 … βM} in the factor matrix ℬ that correspond to 

phenotypic subtyping criteria and outcome risk predictors can be used to integrate existing 

medical knowledge. We can select a subset {β1 … βM′} where M′ < M. Upon initialization, 

the existing knowledge that comes from diagnosis guidelines or other clinical guidelines is 

encoded in a guidance vector βm ∈ {β1 … βM′} where positive entries indicate relevant 

feature dimensions. For example, we can have a guidance vector corresponding to a HFpEF 

subtype of “obese, diabetic patients with a high prevalence of obstructive sleep apnea who 

have the worst LV relaxation”, where the disease-related entries are set to positive values 

(e.g., close to one), and the remaining entries are zero.

The efficient enforcement of sparsity constraints represents another challenge in applying 

tensor factorization to HFpEF patients. In tensor factorization, it is desirable to have sparse 

factor representations for improved interpretability. In the case of using CP tensor 

factorization to integrate phenotypic variables and genetic variants, we need sparse 

phenotypic factor vectors and sparse genetic variant factor vectors so that each time we 

specify a group interaction (i.e., only a small subset of phenotypic variables and a small 

subset of genetic variants are linked). To achieve this goal, Morup et al. proposed a sparse 

non-negative Tucker decomposition approach by using a specially designed penalty to 

regulate number of non-zero entries in the factor vectors49. However, it is computational 

expensive due to sparse optimization after factorization. More recently, the approach called 

Tensor Truncated Power (TTP)50 shows promise compared to sparse Tucker tensor 

factorization by incorporating an efficient truncation step in the iteration step of computation 
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of factors. More work still needs to be done in order to generalize this approach to 

accommodate Bayesian tensor factorization under Tucker or SP schemes.

Conclusion

Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous clinical syndrome 

that may benefit from improved subtyping in order to inform the design of future clinical 

trials and to identify responders to therapies. Modern medicine has accumulated multiple 

modalities of clinical data for HFpEF patients ranging from deep phenotypic to trans-omic 

data. Precision medicine with phenotypic and trans-omic data from multiple domains 

appears to be feasible and may result in meaningful, clinically relevant HFpEF subtypes 

with significant differences in the underlying etiology, pathophysiology, and risk of adverse 

outcomes. By integrating the multiple modalities of data for HFpEF, by properly accounting 

for interactions between genetic variants at different -omic hierarchies, by integrating 

existing medical knowledge as priors, and by utilizing Bayesian inference to provide 

uncertainty estimates, tensor factorization is a promising machine learning technique that 

could be helpful for HFpEF subtyping and contribute to the development of novel targeted 

therapies. However, applying tensor factorization for precision medicine in HFpEF faces a 

number of challenges, including effectively incorporating existing medical knowledge, 

properly accounting for uncertainty, and efficiently enforcing sparsity for better 

interpretability. The successful application of tensor factorization for the development of 

precision medicine approaches in the diagnosis and treatment of HFpEF is contingent on 

answering all these challenges.
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Figure 1. 
Illustration of electronic health record data sources from multiple modalities including deep 

phenotyping and trans-omics data. T2DM – Type 2 diabetes mellitus.
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Figure 2. 
Tensor modeling and factorization schemes for identifying HFpEF subtypes using 

phenotypic variables and genetic variants as modes. The data tensor  models the 

interactions among modes including patient, phenotypic variables, and genetic variants. The 

factor matrix ℬ in Tucker factorization or the length-P factor vectors βi’s in CP factorization 

correspond to groups of phenotypic variables that characterize HFpEF subtypes. The factor 

matrix  in Tucker factorization or the length-V factor vectors γi’s in CP factorization 

correspond to groups of genetic variants that characterize HFpEF subtypes. LV = left 

ventricle.
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Figure 3. Tensor model for hierarchical genetic pathway analysis to subtyping HFpEF patients
In the figure, we show the pathway features and genetic variant features as separate modes. 

The left hand side is the tensor modeling. The right hand side is the Tucker factorization 

results, which include a core tensor and three factor matrices. The factor matrix A is the 

〈patient, patient group〉 matrix, B the 〈pathway, pathway group〉 matrix, C the 〈variant, 

variant group〉 matrix. The core tensor  captures the interactions between the patient 

groups, pathway groups and variant groups.
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