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Abstract

Several methods have been proposed for automatic and objective monitoring of food intake, but 

their performance suffers in the presence of speech and motion artifacts. This work presents a 

novel sensor system and algorithms for detection and characterization of chewing bouts from a 

piezoelectric strain sensor placed on the temporalis muscle. The proposed data acquisition device 

was incorporated into the temple of eyeglasses. The system was tested by ten participants in two 

part experiments, one under controlled laboratory conditions and the other in unrestricted free-

living. The proposed food intake recognition method first performed an energy-based 

segmentation to isolate candidate chewing segments (instead of using epochs of fixed duration 

commonly reported in research literature), with the subsequent classification of the segments by 

linear Support Vector Machine models. On participant level (combining data from both laboratory 

and free-living experiments), with 10-fold leave-one-out cross-validation, chewing were 

recognized with average F-score of 96.28% and the resultant area under the curve was 0.97, which 

are higher than any of the previously reported results. A multivariate regression model was used to 

estimate chew counts from segments classified as chewing with an average mean absolute error of 

3.83% on participant level. These results suggest that the proposed system is able to identify 

chewing segments in the presence of speech and motion artifacts, as well as automatically and 

accurately quantify chewing behavior, both under controlled laboratory conditions and unrestricted 

free-living.

Index Terms

Food Intake Monitoring; Piezoelectric Strain Sensor; Segmentation; Chewing detection; Chewing 
behavior; Obesity; SVM

I. Introduction

Research suggests that changing the eating behavior might be helpful in reducing total 

energy intake in individuals. For example, the energy intake is proportional to the portion 

size, thus, reducing the portion size may lead to a decrease in total energy intake [1]–[3]. 
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Reducing the bite rate (the number of bites of food per minute) may reduce the energy intake 

[4]. Other studies have shown that increasing or decreasing the rate of intake may impact the 

energy intake [5]–[10]. For example, results in [9] suggest that increasing number of chews 

per bite by 150% and 200% from the baseline may achieve a reduction of total mass intake 

by 9.5% and 14.8%, respectively. Authors in [10] claimed that the number of chews per 1 

gram of food in obese individuals is lower compared to normal weight individuals while 

increasing the number of chews per bite in both obese and normal weight individuals 

reduced their total energy intake. The counts of chews and chewing rate can also be used for 

estimation of ingested mass and energy intake. In [11], individually calibrated models were 

proposed for estimation of the ingested mass and caloric energy intake from the chew 

counts. Chewing rate estimated from chewing sounds captured through a miniature 

microphone was proposed for estimating weight per bite for three different food types [12].

In many of these studies ([5]– [9]), chew counts were measured by manual counting either 

by the participants or the investigators. Manual chew counts can be inaccurate, pose 

participant’s burden and limit the applicability of the interventions targeting the modification 

of the chewing rate. Thus, there is a need for objective and automatic methods for 

quantification of the chewing behavior of individuals. In [11], chewing sounds were used for 

estimation of chewing sequences and chewing microstructure with a recall of 80%. 

However, acoustic-based approaches are susceptible to surrounding acoustic noise or speech. 

Semi-automatic chew counting methods based on wearable piezoelectric strain sensors have 

been proposed [12]–[15]. In [13], a piezoelectric strain sensor was used for quantification of 

sucking behavior of infants. Histogram-based peak detection was used to estimate the chew 

counts in adults instrumented with a piezoelectric strain sensor and a printed strain sensor, 

resulting in the mean absolute error of 8% [14]. An accelerometer-based method [20] 

achieved an absolute error of 13.8% for chew count estimation. Chew count estimation 

methods reported in the literature have been tested under controlled laboratory conditions; 

however, they are not evaluated in unrestricted daily living. Thus, objective and accurate 

chew count estimation in unrestricted free-living situations is largely an unsolved problem. 

Therefore, there is a need to develop methods which can automatically estimate chew counts 

with reliable accuracy both under controlled laboratory setting as well as in more natural 

unrestricted daily living.

Several wearable sensor systems have been reported for automatic and objective detection of 

food intake based on recognition of chewing, such as in-ear miniature microphones [16], 

[17], strain sensors [14], [18], accelerometers [20], and in-ear proximity sensors [19]. In 

[17], authors presented an earpiece with embedded miniature microphone for capturing 

chewing sounds of sedentary individuals in a quiet laboratory setting. A reference 

microphone was used for rejecting environmental sounds. Hidden Markov Model (HMM) 

trained with 16 features from the sensor signals were able to differentiate between chewing 

and non-chewing sequences with an average accuracy of 83%. One of the few studies 

conducted in unrestricted conditions of free living [18] used a piezoelectric strain sensor and 

a subject-independent classification model based on Artificial Neural Networks to achieve 

the food intake detection accuracy of 89% over the 24 hours of sensor wear. In [19], authors 

presented an earpiece with three orthogonally placed infrared proximity sensors for 
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capturing the deformation of the ear canal during chewing. In free-living testing, the HMM 

based subject-independent classifier achieved an average accuracy of 82%.

A significant number of the systems for food intake detection described in the literature are 

either tested only under laboratory conditions or only considers food intake in the sedentary 

postures. People can eat while being sedentary or while performing low to moderate 

intensity physical activities such as walking (snacking/eating “on the go”) [18], [20]. 

Research also suggests that with changing lifestyles, the prevalence of the fast food and lack 

of lunch breaks at work, people are increasingly ‘eating on the go’ [21]. A recent study 

found that people who ‘eat/snack on the go’ are more susceptible to increase their food 

intake later in the day compared to those who do not [22]. Therefore, it may be of interest to 

detect and differentiate food consumption while sedentary and while low to moderately 

active (food intake during high-intensity activities is not common due to the high breathing 

rate).

Another common limitation of the current techniques for food intake monitoring is the use 

of the epoch-based classification to detect chewing ([16], [18], [19], [23]–[25]) and to 

compute the number of chews. With this approach, the sensor signal is split into short 

segments (epochs) which then are classified either as chewing or no chewing. The 

algorithms then count the number of chews in the epochs classified as chewing. Such 

approach is prone to accumulation of error as the epochs are not aligned with the boundaries 

of the chewing bouts, thus, accumulating the error from the classification stage and chew 

counting stage.

Main contributions of this paper are as follow: (i) Proposed is a novel wearable sensor 

system in the form of eyeglasses. Sensor (piezoelectric strain sensor) is placed on the 

temporalis muscle, compared to below the ear or in-ear sensors presented in the literature. 

The sensor system is specifically designed to detect eating while participants are performing 

low to moderate intensity activities so that the system’s performance is not hindered by the 

presence of motion artifacts (speech, walking, head motions, etc.). The sensor system is non-

invasive, non-obtrusive and potentially socially acceptable. (ii) Instead of an epoch based 

approach, energy based segmentation (similar to voice activity detection [26]) is proposed to 

identify the boundaries of potential chewing bouts (of variable length) and chew count 

estimation. (iii) The presented system and related algorithms are tested in unrestricted free-

living conditions to establish the feasibility of the system for detection of chewing segments 

and estimation of chew counts in free-living.

II. Methods and Material

A. Data Collection Protocol

Ten participants (8 males and 2 females) with an average age of 29.03±12.20 years and 

range of 19–41 years were recruited for the study. The average body mass index (BMI) was 

27.87±5.51 kg/m2 with a range of 20.5–41.7 kg/m2. Recruited participants did not have any 

medical conditions which would impact their chewing. Each participant read and signed an 

informed consent form before the start of the experiment. The study was approved by the 

University of Alabama’s Institutional Review Board.

Farooq and Sazonov Page 3

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experiments consisted of two parts, conducted on different days. The first part consisted of a 

laboratory visit where it was possible to monitor participants and accurately annotate their 

activities for developing the gold standard. The laboratory part included an initial quiet rest 

period of 5 minutes where participants used a computer or cellphone while sitting 

comfortably. The rest period was followed by a meal in which a slice of cheese pizza was 

consumed. Next, participants talked to the investigators for 5 minutes. Last two activities 

included walking on the treadmill and eating a granola bar while walking on a treadmill. 

Eating while walking was included to replicate snacking/eating ‘on the go.’ Normal walking 

speed for a human is in the range of 2.8 to 3.37 mph, depending on the age [26]. Thus, 

walking speed of 3 mph was chosen. Participant’s body movements were not restricted, and 

they were allowed to talk during all activities except for the quiet rest activity.

The second part of the study included another visit to the laboratory followed by a period of 

unrestricted free-living. This second visit was completed by 8 participants. During the 

laboratory portion, the participants were instrumented with the wearable sensor and asked to 

perform head movements (up and down and left and right motions), trunk movements, 

raising hands and transitions between sitting and standing to replicate conditions that may 

potentially generate motion artifacts in the sensor data. Each movement was repeated 5 

times and the laboratory part lasted for about 15 minutes. This was followed by a period of 

unrestricted free-living testing where participants left the laboratory and were asked to 

follow their daily routine for up-to 3 hours. Participants were asked to have at least one 

meal/eating episode during the free-living portion of the study.

B. Sensor System and Annotation

On both experiment days, participants were monitored using a portable, wearable sensor 

system. The wearable system consisted of a piezoelectric strain sensor and a data collection 

module which was connected to the temple of the eyeglasses. An off the shelf piezoelectric 

film sensor (LDT0-028K from Measurement Specialties Inc. VA) was placed on the 

temporalis muscle (attached via medical tape) for capturing jaw motion. Temporalis muscle 

(Fig. 1(b)) is part of the muscles that controls the jaw movements during chewing [27]. The 

selected sensor consists of Polyvinylidene fluoride (PVDF) polymer film with a thickness of 

28 μm. The sensor’s sensitivity (10 mV per micro-strains) has been shown to be good 

enough to capture vibration due to chewing at the skin surface [43]. The data collection 

module consisted of circuitry for signal acquisition, signal conditioning, and data 

transmission. Sensor signals were sampled at 1000 Hz by a microprocessor (MSP430F2418, 

from Texas Instruments) with a 12-bit ADC. Onboard signal conditioning included the 

amplification of the sensor signal using an ultra-low power operational amplifier and the use 

of capacitors at the input, output and feedback stages to remove high-frequency RF noise 

and to eliminate high voltage spikes that may be created by accidental high-frequency 

excitation [33]. A pushbutton was used by the participants to mark the start and end of 

chewing bouts. On both experiment days (laboratory meal and free-living eating), 

participants also kept count of the number of chews for each chewing bout using a portable 

tally counter. Collected sensor signals were sent to an Android Smartphone via Bluetooth 

from the onboard RN-42 Bluetooth module. Data was logged on the Smartphone for further 

offline processing in MATLAB (Mathworks Inc.). Fig. 1(a) shows a participant wearing 
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eyeglasses where the piezoelectric strain sensor is placed on the temporalis muscle and the 

data collection device is connected to the temple of the eyeglasses. Fig. 1(b) shows the 

location of the sensor placement on the temporalis muscle. Fig. 1(c) shows the data 

collection module and the piezoelectric strain sensor. Fig. 2 shows examples of the signals 

collected both in the controlled laboratory session as well as in free-living session. 

Pushbutton signals indicate eating episodes. Fig. 2(a) shows an example of the piezoelectric 

sensor signals and the corresponding pushbutton signal for the activities performed by 

participants in the laboratory session. Fig. 2(b) shows the signals during a free-living 

experiment. For each participant data from both visits (controlled laboratory and free-living 

experiments) were processed in the same way explained below.

C. Signal Processing and Pattern Recognition Stages

A novel three-stage algorithm is proposed for automatic detection and characterization of the 

chewing bouts. Since chewing bouts are of variable length, therefore using fixed length 

epochs might include partial chewing or non-chewing. Close observation of Fig. 2 indicates 

that chewing results in higher amplitudes in the piezoelectric sensor signal compared to 

other activities, both in laboratory session as well as in free living. Therefore, we suggest 

using short-time energy based segmentation to identify the boundaries of variable length, 

high energy segments, which can potentially be chewing. However, these high energy 

segments may or may not belong to chewing; therefore, a second classification stage is 

presented where a classifier differentiates chewing segments from other activities that may 

result in high-energy segments (e.g. talking or walking). For chew count estimation from the 

chewing segments recognized by the classifier, multivariate regression models were used. 

These three stages are depicted in Fig. 3. A detailed description of each stage is given below.

D. Segmentation Stage

Energy envelope of the signal was computed using a sliding window (Hanning), to identify 

boundaries of the signal segments with high energy (potential chewing events). Since the 

sliding window is supposed to capture the energy of the chewing, located in the frequency 

band of 0.94–2.17 Hz [28], a window size of 1 second with an overlap of 0.5 seconds was 

used to compute the short-time energy. The short-time energy of each window was 

combined into a vector and a threshold (T) was dynamically estimated with the thresholding 

criterion presented in [29]. Successive windows for which the computed energies were 

higher than T were combined to form high energy segments that were considered as 

candidate chewing segments and successive windows with lower energies compared to T 
were combined to form low energy segments considered as non-candidate segments. Fig. 4 

shows an example of the segmentation procedure. The first row shows the energy envelope 

computed from the signal whereas the second row shows the resultant segmentation of the 

sensor signal. White segments are low energy segments whereas the black segments are the 

high energy segments. Notice that some of the high energy segments do not belong to 

chewing (based on the pushbutton signal). In order to identify chewing segments, further 

processing using a classifier is needed.
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E. Classification Stage: Feature Selection and Classification

High energy activity segments may or may not belong to chewing events (for example, such 

segments may be caused by walking or talking, Fig. 4). Therefore, a classifier was used to 

determine whether a given candidate segment belonged to chewing or not. However, for 

training and validation of the classification models, reference labels are required for each 

segment. In this case, each segment from the segmentation stage (candidate and non-

candidate) was assigned a class label i.e. Ci ∈ {‘−1’,‘+1’} based on the pushbutton signals. 

From the data, it was observed that average overlap between the candidate segments (from 

the segmentation stage) and the pushbutton (indicating true chewing) was 80%. Therefore, a 

segment was labeled as chewing (Ci = +1) if the overlap between the segment and 

pushbutton (indicating eating) was at least 80% or more, otherwise it was labeled as a non-

chewing (Ci = −1). These labels were used for training and validation of the classifier and 

for performance evaluation, in both laboratory and free-living experiments.

A number of supervised learning algorithms are available for the classification task, among 

which support vector machine (SVM), have shown excellent performance because of their 

generalization and speed. SVM models are robust and less prone to overfitting [30]. Linear 

SVM models find the minimum number of support vectors to define the separating 

hyperplane by the optimization of maximizing the margins. Hyperplane equation can be 

extracted from the SVM and used for fast classification. In this work, linear SVM models 

were trained using Classification Learner tool in MATLAB 2015 (from Mathworks Inc.). 

For training participant independent models, data from laboratory and free-living 

experiments was aggregated for each participant and the aggregated data was used for 

training models. Linear SVM models were trained using a leave-one-out cross-validation 

procedure where the SVM model was trained with data from 9 participants, and data from 

the remaining participant was used for testing the trained SVM model. This procedure was 

repeated 10 times such that each participant was used for testing once. F1 score was 

computed for each iteration as:

(1)

(2)

(3)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively.

For each sensor segment, a set of 38 time and frequency domain features (proposed in a 

previous study for piezoelectric strain sensor [18]) was computed. Using all computed 
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features might be redundant for the given classification task, therefore, a feature selection 

procedure based on Fisher score [31] was used to obtain a subset of features more suitable 

for differentiation between chewing and no chewing. Fisher score is a filter-based feature 

selection algorithm that ranks features according to their discriminatory information, such 

that in the data space spanned by the selected features, the distance between data points in 

the different classes is as large as possible while the distance between data points in the 

same class is as small as possible. The feature selection procedure was performed in two 

steps. First, all 38 features were ranked using Fisher score algorithm. Second, 38 individual 

support vector machine (SVM) models were created, where the first SVM model was trained 

using only the highest ranked feature and the subsequent models were trained by adding one 

feature at a time to the feature set according to their ranking. Each model was evaluated in 

terms of its classification accuracy (F1 score) and the feature set achieving the maximum 

average F1 score was chosen to train the final model.

Final participant independent (group) linear SVM models were trained using leave-one-out 

cross-validation with selected features. Actual labels and predicted labels by the models for 

test participants were combined to plot the Receiver Operation Characteristic (ROC) curve 

and compute Area under the Curve (AUC) for each class. Both ROC and AUC were used as 

metrics for the comparison of classifiers performances.

F. Estimation Stage: Chew Counts

In this stage, the segments classified as chewing were further processed for estimation of 

chew counts. Three features were computed from each chewing segment i.e. number of 

peaks, duration, and number of zero crossings. Fig. 5 shows a scatter plot of the chew counts 

(from chewing segments marked by the pushbutton) against these three features. Fig. 5 

suggests a linear relationship between the computed features and chew counts. Having more 

than one explanatory variable might improve the performance of the regression model. 

Therefore, a multivariate linear regression model was used.

G. Linear Regression for Chew Count Estimation

Linear regression is a predictive analysis technique used to model the relationship between a 

dependent variable and one or more explanatory variables [32]. General form of linear 

regression model is:

(4)

where, β0 is the called the intercept coefficient and βk is the coefficient of the kth 

explanatory variable and defines the effect of the kth variable on the output of the model. 

Here ε is called the error term and describes the variance in the data that cannot be explained 

by the model. The goodness of the fit of the regression model is given by the coefficient of 

determination, adjusted R2 (for multivariate regression model). Ten-fold leave-one-out cross-

validation was used to train the regression models for chew count estimation. For training of 

the regression models, features were computed from chewing segments marked by the 

participants with a pushbutton. This was done because the actual chew counts were available 
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for human marked chewing segments only. Total/cumulative human annotated chew counts 

for nth participant/experiment is represented by ACNT(n) (aggregate of laboratory and free-

living experiments). For validation of the regression model, the chewing segments 

recognized by the classification stage were used. In the leave-one-out cross-validation, 9 

participants were used for training of the model and the 10th participant was used for testing. 

Total estimated chew counts for the nth participant is represented by ECNT(n). The mean and 

mean absolute errors were computed as

(5)

(6)

where M=10 is the number of participants, Error mean (signed) error and |Error| is the mean 

absolute error (unsigned). For comparison, chew count errors were reported for chew counts 

in laboratory experiment meals, in free-living meals and aggregate chew counts of both 

laboratory and free-living meals.

III. Results

Fig. 2 shows examples of piezoelectric sensor signals for both laboratory experiments (Fig. 

2(a)) and free-living experiments (Fig. 2(b)) with corresponding pushbutton signals to 

indicate chewing bouts. A total of 202 chewing bouts were marked by participants with the 

pushbutton during eating (both laboratory and free-living meals). Table I lists the number of 

chewing bouts in the laboratory session and free-living, marked by the participant. The 

segmentation stage resulted in a total of 1274 segments where 617 segments were high 

energy, and 657 segments were low energy. Distribution of high energy segments between 

the laboratory and free-living experiments is given in Table I. Fig. 4 shows an example of the 

segmentation procedure where the first row shows the energy envelope of the signal during a 

part of the free-living experiment. Second row shows the results of segmentation of the 

piezoelectric sensor signal, where higher energy segmetns are shown in darker colors. Next, 

for creating reference labels for the classifier, detected segments were compared to the 

pushbutton (as described in the Methods), where it was found that 1059 segments were non-

chewing (marked as Ci = −1) and 215 segments were actual chewing segments (marked as 

Ci = 1). Distribution of chewing segments in the laboratory and free-living experiments is 

listed in Table I. These labels were used for training and evaluation of the classifiers.

The candidate segments were further classified into chewing and non-chewing segments by 

linear SVM models. Classification results are reported for leave-one-out cross-validation, 

where data from both laboratory experiment and the free-living experiment was aggregated 

before training and validation of the classification models. The best model achieved the 
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average F-score of 96.28 +/−5.91% (average precision and recall of 94.58 +/− 8.95% and 

98.41+/−3.68%, respectively) on the aggregated dataset. Table II shows the confusion matrix 

where 13 chewing segments were misclassified as non-chewing segments. Fig. 6 shows the 

ROC of the classifier for the whole dataset. AUC of the group model was 0.97.

The classification stage relied on the subset of features achieving the highest average F1 

score (from the feature selection stage), which was achieved by using 3 features. Selected 

features were mean absolute value; root mean square (RMS) value; and median values of the 

signal from the piezoelectric sensor.

In the chew count estimation stage, for the aggregated dataset (both laboratory and free-

living experiments), linear regression models estimated chew counts with a mean absolute 

error of 3.83% and standard deviation of 2.06%. Fig. 5 shows the individual scatter plots of 

features used in multivariate linear regression models for chew count estimation in both 

laboratory experiments and free-living experiments. These scatter plots show a linear 

relationship between these computed features and chew count estimation. Table III lists the 

coefficients of the multivariate linear regression model, fitted to the whole dataset. This 

model was able to achieve an R2 of 0.93 and adjusted R2 of 0.93. The corresponding p-

values for each feature suggest that all features are signification to the model. Based on 

human counting, there was a total of 5541 chews across 10 participants whereas the sensor 

estimated total chew counts were 5651. Table IV shows the error estimation for each 

participant along with the total human chew counts and algorithm estimated chew counts. 

Error values are listed for laboratory experiment, free living experiments and aggregated 

chew counts for each participant. Free-living testing has slightly higher chew count 

estimation error (mean absolute value: 6.24%) compared to controlled laboratory 

experiments (mean absolute error: 3.43%). In Table IV, note that the last two participants did 

not complete the free-living experiments, hence, free-living results are reported for 8 

participants.

IV. Discussion

The focus of the proposed work was the automatic detection and characterization of the 

chewing bouts in the presence of motion artifacts caused by physical activity and speech. 

Many of the earlier studies have considered food intake detection when participants were 

sedentary [12], [17], [19], [23], [24], [33]–[36]. The design of this study accounts for the 

possibility of consuming food while moderately active (“snacking/eating on the go”). The 

desired functionality is achieved by two innovations. First is a novel sensor system that 

monitors the activity of the temporalis muscle as opposed to previously reported chewing 

sounds [16], [17] and jaw motion [18] monitoring. Second is a novel algorithm that 

identifies candidate chewing segments and classifies these variable length segments as 

opposed to splitting the signal into epochs of fixed length and classifying each epoch 

individually. Experiments were performed in both controlled laboratory settings as well as 

unrestricted free-living daily conditions to evaluate the performance of the system and to 

establish the viability of the proposed approach.
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The sensor signals shown in Fig. 2 suggest that chewing segments have higher energy 

compared to non-chewing segments. This characteristic allows to segment the signal and 

identify the candidate chewing bouts using the energy envelope of the signal. The 

segmentation algorithm results in variable length segments compared to fixed size epoch 

based approach widely presented in the literature. This step was used to find the boundaries 

of potential chewing segments. However, these high energy segments may or may not be 

chewing (can be caused by other activities, such as walking). For example, the segmentation 

procedure resulted in a total of 617 high energy segments; however, only 215 segments out 

of them were actual chewing bouts. A possible reason is the excessive walking, especially in 

the free-living part of the experiments. Therefore, it was necessary to use a classifier to 

further verify whether a given high energy segment was indeed chewing or not.

Instead of using all computed features, a feature selection procedure was used to reduce 

feature dimensionality which resulted in the selection of three most prominent features, i.e. 

mean absolute value, RMS value and median values. Selected features suggest that 

amplitude based metrics of the signal can provide discriminatory information to the 

classifier. In the classification stage, participant independent linear SVM models were used 

to avoid participant dependent calibration which is necessary for the use of the trained 

models in the wider population.

For training and validation of the classification models as well as for chew count estimation 

regression methods, participant independent leave-one-subject-out cross-validation 

procedure was used. Cross-validation was performed on participant level to ensure that data 

from the validation participant is not present in the training set (compared to leave-one-

sample out). This procedure ensures that there is no over-fitting of the model to the 

participants due to information leakage and also ensures the applicability of the models to a 

wider population. Further, classification results are reported on participant level by 

combining data from laboratory and free-living experiments. This was done to present 

results which are independent of experimental conditions (laboratory vs. free-living 

experiments) and participants. A similar approach was adopted for chew count estimation 

models i.e. separate models were not trained for laboratory and free-living experiments.

Results in Table II show that only 13 chewing segments were misclassified as non-chewing 

segments whereas only 3 of the non-chewing segments were misclassified. The classifier 

achieved an average F-score of 96.28% for leave-one-out cross-validation (participant level). 

Several sensor systems have been presented where the accuracy of food intake detection 

varies from 80% to 96% [18], [19], [24], [25], [34]. For most of these sensor systems, their 

ability to detect food intake was tested when the participants were sedentary. In comparison 

to state of the art for automatic detection of food intake, the proposed device presents a more 

accurate system tested under challenging conditions that include eating while being 

physically active as well as testing of the system in daily free-living conditions where 

participants followed their daily routine.

For estimation of chew counts, linear regression models were used since linear relationship 

was observed between the computed features and chew counts for chewing bouts (Fig. 6). 

Actual chew counts were available only for chewing bouts marked by participants using the 
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pushbutton and not for chewing bouts identified by the classification model. Therefore, 

during the training of the regression models, features computed from chewing bouts marked 

by participants were used, but for the validation phase, the chewing segments identified by 

the classifier were used. For the same reasons, errors were computed for the cumulative 

chew counts over the whole experiment rather than for individual chewing bouts. Table III 

presents an example of the regression model, where slopes of the linear fit are positive which 

indicates that there is a positive relationship between the dependent variable (chew count 

estimation) and the explanatory variables. In the case of the multivariate regression model, 

adjusted R2 indicates that the model explains about 93% of the variation in the estimation of 

chew counts which shows a very good fit.

Several studies have utilized chew count for studying different aspects of eating e.g. studies 

which rely on modification of eating behavior by increasing the number of chews per bite or 

modifying the chewing rate [5]–[10]. Other studies have proposed the use of chew counts or 

chewing rate for estimation of mass per bite [12] or energy intake estimation in a meal [11]. 

In order to automate these systems/approaches, there is a need to developed methods for 

accurate estimation of chew counts. For current methods (both automatic and semi-

automatic), the chew count estimation error varies between 8 – 20%, while tested in 

laboratory conditions [12]–[15], [37]. However, the segmentation and chew count estimation 

procedure proposed provides a better estimation of chew counts (overall error rate of 3.83%, 

aggregated over laboratory and free-living experiments), which should be in acceptable 

range for developing methods both for eating behavioral modification as well as energy 

estimation from chew counts/rate.

The wearable sensor system presented in this study combines all components into a single 

module which is connected to the temple of the eyeglasses, hence reducing the participant 

burden. There is a possibility of further miniaturizing the electronics to improve the user 

comfort. Further research is needed to study the social acceptability and user compliance 

with using the sensor system.

A possible limitation of this study is the exclusion of liquids, which were not included in the 

study since the main goal was to test the ability of the system for capturing chewing. 

Previous research suggests that during continuous intake of liquid, characteristic jaw 

motions similar to the ones produced by chewing are present which can be captured by the 

proposed device [23]. Further studies are required to test the ability of the proposed sensor 

system for detection of liquid intake. Another limitation of the current approach is the use of 

medical tape to attach the sensor to the temporalis muscle, which might impact the comfort 

and long-term use. Further research is needed to explore new methods of sensor attachment 

such as the inclusion of the sensor in the temple of the glasses. The study included both 

laboratory and free-living testing; however, there is a need to further test the device in long-

term studies. The current study presented results for 10 participants as preliminary results; 

larger studies with a wide variety of food items will be conducted in future to test the 

system.
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V. Conclusion

This work presents a novel wearable sensor system for detection and characterization of 

chewing bouts in the presence of motion artifacts originating from physical activity and 

speech. The proposed sensor relies on monitoring of the activity in the temporalis muscle to 

detect chewing. A multistage algorithm first identifies candidate chewing segments and then 

uses linear SVM models to classify chewing bouts with the average F1 score of 96.28%, in 

both controlled laboratory situations as well as unrestricted free living experiments. In the 

last stage, a multivariate linear regression model estimates the chew counts with the mean 

absolute error of 3.83% (aggregate error over laboratory and free-living experiments). The 

results suggest that the system is able to detect the presence of food intake and can 

accurately estimate chew counts in complex situations involving speech and physical activity 

as well as activities performed in daily living.
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Fig. 1. 
(a) A participant wearing smart glasses. The wearable sensor system is connected to the 

temple of glasses. (b) Temporalis muscle is involved in controlling jaw movements during 

chewing and the sensor location on the muscle. (c) Data collection device which comprises 

of an interface for piezoelectric strain sensor signal, signal conditioning circuitry, Bluetooth 

and a microprocessor.
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Fig. 2. 
Sensor signals captured during laboratory session and during the free-living experiment. (a) 

The first row shows the activities performed by the participants in the laboratory session and 

the corresponding piezoelectric sensor signal. The second row shows the pushbutton signal. 

(b) Third row shows the piezoelectric strain sensor during free living experiment. Last row 

shows the pushbutton signal during the free-living experiment.
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Fig. 3. 
Three stages of the proposed algorithm. (a) In the segmentation stage short-time energy is 

used to isolate low and high energy segments. High energy segments are potential chewing 

segments. (b) Second stage is the classification stage, where features are computed from 

both potential chewing and non-chewing segments and subject independent classification is 

performed with selected features from a feature selection procedure. (c) Chew count 

estimation stage employs multiple regression models using features computed from 

segments classified as chewing to estimate chew counts.
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Fig. 4. 
A segment of chewing in free-living with corresponding pushbutton signal. The first row 

shows the energy envelope computed from the sensor signal. Second shows the results of the 

segmentation procedure. White segments indicate low energy segments whereas dark 

segments show high energy segments. The third row indicates the pushbutton used by the 

participants to mark chewing and non-chewing. There are some high energy segments which 

are not actual chewing.
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Fig. 5. 
Scatter plot of chew counts versus 3 features computed from piezoelectric strain sensor 

signal. Computed features were number of peak, duration and number of zero crossings 

(ZC) in a chewing sequence. First row shows the scatter plots for laboratory experiments. 

Blue line indicated the regression fit when only one variable is used. Each plot shows 

regression fit where dependent variable is the number of chew counts (a) Regression 

equation: y = 1.4*(No. of Peaks) + 3.1 (b) Regression equation: y = 0.96*(Duration) + 3.4 

(b) Regression equation: y = 1.6*(ZC) + (−3.8). Second row shows linear regression models 

for data collected during free living. (d) Regression equation: y = 1.2*(No. of Peaks) + 6.6 

(e) Regression equation: y = 0.88*(Duration) + 6. (f) Regression equation: y = 0.83*(ZC) 

+ 10. Scatter plot suggests that there is a linear relationship between the number of chews 

and the three computed features.
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Fig. 6. 
Receiver Operation Characteristics (ROC) curve for participant independent SVM models. 

AUC of 0.97.
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Table I

Chewing Bouts Marked By Participants, Results of the Segmentation Stage and Label Assignment for 

Classification Stage.

Chewing Bouts marked with Pushbutton

Bouts Laboratory Free-living Total

Chewing Bouts 127 75 202

Segmentation Stage (High energy segments)

Segments Laboratory Free-living Total

High Energy 130 487 617

Label Assignment for training of the classifier

Laboratory Free-living Total

Chewing Segments 130 85 215
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Table II

Confusion matrix for linear SVM classification.

Bouts Non-Chewing Chewing

Non-Chewing 1056 3

Chewing 13 202
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Table III

Coefficients of the multivariate linear regression fitted to the data. At 0.05 significance level, the results show 

that all predictors/features are significant.

Estimate SE t-Stat p-value

Intercept 1.47 0.54 2.75 0.006

Number of Peaks 0.28 0.08 3.49 0.0006

Duration of chewing 0.72 0.05 14.27 2.76e-32

Number of zero Crossings 0.15 0.05 2.86 0.0047

*
R2 = 0.93 and Adjusted R2 = 0.93, Root Mean Squared Error: 2.21
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