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Summary

In this paper, we first propose a Bayesian neighborhood selection method to estimate Gaussian 

Graphical Models (GGMs). We show the graph selection consistency of this method in the sense 

that the posterior probability of the true model converges to one. When there are multiple groups 

of data available, instead of estimating the networks independently for each group, joint estimation 

of the networks may utilize the shared information among groups and lead to improved estimation 

for each individual network. Our method is extended to jointly estimate GGMs in multiple groups 

of data with complex structures, including spatial data, temporal data and data with both spatial 

and temporal structures. Markov random field (MRF) models are used to efficiently incorporate 

the complex data structures. We develop and implement an efficient algorithm for statistical 

inference that enables parallel computing. Simulation studies suggest that our approach achieves 

better accuracy in network estimation compared with methods not incorporating spatial and 

temporal dependencies when there are shared structures among the networks, and that it performs 

comparably well otherwise. Finally, we illustrate our method using the human brain gene 

expression microarray dataset, where the expression levels of genes are measured in different brain 

regions across multiple time periods.
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1. Introduction

The analysis of biological networks, including protein-protein interaction networks (PPI), 

biological pathways, transcriptional regulatory networks and gene co-expression networks, 

has led to numerous advances in the understanding of the organization and functionality of 

biological systems (e.g., Kanehisa and Goto 2000; Shen-Orr et al. 2002; Rual et al. 2005; 

Zhang and Horvath 2005). The work presented in this paper was motivated from the analysis 

of the human brain gene expression microarray data, where the expression levels of genes 

were measured in numerous spatial loci, which represent different brain regions, during 

different time periods of brain development (Kang et al., 2011). Although these data offer 

rich information on the network information among genes, only naive methods have been 

used for network inference. For example, Kang et al. (2011) pooled all the data from 

different spatial regions and time periods to construct a single gene network. However, only 

a limited number of data points are available for a specific region and time period, making 

region- and time- specific inference challenging.

Our aim here is to develop sound statistical methods to characterize the changes in the 

networks across time periods and regions, as well as the common network edges that are 

shared. This is achieved through a joint modeling framework to infer individual graphs for 

each region in each time period, where the degrees of spatial and temporal similarity are 

learnt adaptively from the data. Our proposed joint modeling framework may better capture 

the edges that are shared among graphs, and also allow the graphs to differ across regions 

and time periods.

We represent the biological network with a graph G = (V, E) consisting of vertices V = {1, 

…, p} and edges E ⊂ V × V. In this paper, we focus on conditionally independent graphs, 

where (i, j) ∈ E if and only if node i and node j are not conditionally independent given all 

the other nodes. Gaussian graphical models (GGMs) have been proven among the best to 

infer conditionally independent graphs. In GGM, the p-dimensional X = (X1, …, Xp) is 

assumed to follow a multivariate Gaussian distribution . Denote Θ = Σ−1 the 

precision matrix. It can be shown that the conditional independence of Xi and Xj is 

equivalent to Θij ≠ 0: Xi ⫫ Xj | XV\{i,j} ⇔ Θij = 0. In GGM, estimating the conditional 

independence graph is equivalent to estimating the non-zero entries in Θ. Various 

approaches have been proposed to estimate the graph (Meinshausen and Bühlmann, 2006; 

Yuan and Lin, 2007; Friedman et al., 2008; Cai et al., 2011; Dobra et al., 2011; Wang et al., 

2012; Orchard et al., 2013). Among these methods, Friedman et al. (2008) developed a fast 

and simple algorithm, named the graphical lasso (glasso), using a coordinate descent 

procedure for the lasso. They considered optimizing the penalized likelihood, with ℓ1 penalty 

on the precision matrix. As extensions of glasso, several approaches have been proposed to 

jointly estimate GGMs in multiple groups of data. Guo et al. (2011) expressed the elements 

of the precision matrix for each group as a product of binary common factors and group-

specific values. They incorporated an ℓ1 penalty on the common factors, to encourage shared 

sparse structure, and another ℓ1 penalty on the group-specific values, to allow edges included 

in the shared structure to be set to zero for specific groups. Danaher et al. (2014) extended 

glasso more directly by extending the ℓ1 penalty for each precision matrix with additional 
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penalty functions that encourage shared structure. They proposed two possible choices of 

penalty functions: 1. Fused lasso penalty that penalizes the difference of the precision 

matrices, which encourages common values among the precision matrices; 2. Group lasso 

penalty. Chun et al. (2014) proposed a class of non-convex penalties for more flexible joint 

sparsity constraints. As an alternative to the penalized methods, Peterson et al. (2014) 

proposed a Bayesian approach. They formulated the model in the G-Wishart prior 

framework and modeled the similarity of multiple graphs through a Markov Random Field 

(MRF) prior. However, their approach is only applicable when the graph size is small (∼ 20) 

and the number of groups is also small (∼ 5).

In this paper, we formulate the model in a Bayesian variable selection framework to estimate 

the graph structure (George and McCulloch, 1993, 1997). The precision matrix is estimated 

in a second step with the graph structure fixed (Hastie et al., 2009). Meinshausen and 

Bühlmann (2006) proposed a neighborhood selection procedure for estimating GGMs, 

where the neighborhood of node i was selected by regressing on all the other nodes. 

Intuitively, our approach is the Bayesian analog of the neighborhood selection procedure. 

Our framework is applicable to the estimation of both single graph and multiple graphs. For 

the joint estimation of multiple graphs, we incorporate the MRF model. Compared with 

Peterson et al. (2014), we use a different MRF model and a different inferential procedure. 

In small scale simulations (20 nodes), our method performed slightly worse than Peterson et 

al. (2014), but better than the other competing methods (Friedman et al., 2008; Guo et al., 

2011; Danaher et al., 2014). One advantage of our approach is that it can naturally model 

complex data structures, such as spatial data, temporal data and data with both spatial and 

temporal structures. Another advantage is the computational efficiency. For the estimation of 

a single graph with 100 nodes (the typical size of biological pathways is around that range), 

the computational time on a laptop is ∼ 30 seconds for 1,000 iterations of Gibbs sampling, 

which is ∼ 3-folds faster than Bayesian Graphical Lasso, which implements a highly 

efficient block Gibbs sampler and is among the fastest algorithms for estimating GGMs in 

the Bayesian framework (Wang et al., 2012). For multiple graphs, the computational time 

increases roughly linear with the number of graphs. Our procedure also enables parallel 

computing and the computational time can be substantially reduced if multicore processors 

are available. For single graph estimation, we show the graph selection consistency of the 

proposed method in the sense that the posterior probability of the true model converges to 

one.

The rest of the paper is organized as follows. We introduce the Bayesian neighborhood 

selection procedure for single graph and the extension to multiple graphs in Section 2. The 

theoretical properties are presented in Section 3. The simulation results are demonstrated in 

Section 4 and the application to the human brain gene expression microarray dataset is 

presented in Section 5. We conclude the paper with a brief summary in Section 6.

Lin et al. Page 3

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Statistical Model and Methods

2.1 The Bayesian Neighborhood Selection Procedure

We first consider estimating the graph structure when there is only one group of data. 

Consider the p-dimensional multivariate normal random variable . We 

further assume that X is centered and . Let Θ = Σ−1 denote the precision 

matrix. Let the n × p matrix X = (X1, …, Xp) contain n independent observations of X. For 

A ⊆ {1, …, p}, define XA = (Xj, j ∈ A). Let Γi denote the subset of {1, …, p}, excluding the 

ith entry only. For any square matrix C, let  denote the ith row, excluding the ith element 

in that row. Consider estimating the neighborhood of node i. It is well known that the 

following conditional distribution holds:

(1)

where I is the n × n identity matrix, Θii is a scalar and finding the neighborhood of Xi is 

equivalent to estimating the non-zero coefficients in the regression of Xi on . Let β and γ 

be matrices of dimension p × p, where  and γ is the binary latent state 

matrix. The diagonal elements in β and γ are not assigned values. Conditioning on γij, βij is 

assumed to follow a normal mixture distribution (George and McCulloch, 1993, 1997):

where τi0/τi1 = δ and 0 < δ < 1. The prior on γij is Bernoulli: p(γij = 1) = 1 − p(γij = 0) = q. 
δ, τi1 and q are prefixed hyperparameters and are discussed in the Supplementary Materials. 

The off-diagonal entries in γ represent the presence or absence of the edges, which is the 

goal of our inference.

Let σ = (σ1, …, σp), where . The inverse gamma (IG) conjugate prior is assumed for 

:

In this paper, we assume that νi = 0 and the IG prior reduces to a flat prior (Li and Zhang, 

2010).

For each node, we implement the Bayesian procedure to select the neighbors of that node. 

The graph selection consistency of our approach is shown in Section 3. Performing 

neighborhood selection is not equivalent to making inference on Θ (Dobra et al., 2004). 

Though  is a conditional likelihood for Gaussian distribution, the function ∏i 

 is not a Gaussian likelihood and it has the likelihood properties of a misspecified 

model with p regressions (Varin et al., 2011). We implement MCMC to estimate the 
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posterior distributions and details for the algorithm are provided in the Supplementary 

Materials. In our approach, the symmetric constraint of the graph structure can be 

incorporated when sampling γ by assuming γij = γji for j ≠ i. Under the Gaussian 

assumption, the regression coefficients β are directly related to the corresponding entries in 

Θ and are also related to the partial correlation. The symmetry of Θ can be satisfied if we 

impose the constraint when sampling β. Without the constraint on β, the partial correlation 

may not be estimated coherently: the magnitudes and signs may be different between nodes i 
on j and nodes j on i. However, imposing the constraint will lead to substantial loss in 

computational efficiency since β have to be updated one at a time, instead of one row at a 

time. Moreover, our simulation results suggest that the two approaches are comparable for 

graph structure estimation, whether or not the constraint is imposed (data not shown). We do 

not impose the constraint on β in practice. Although most applications tend to focus more on 

the graph structure estimation, it may be desirable to obtain a symmetric positive definite 

estimate for Θ. To achieve this, we propose a two-step approach. First, we estimate the graph 

structure with Ĝ following the neighborhood selection approach. Second, we estimate Θ 
with the mode of the conditional likelihood p(X | Ĝ, Θ), where Θ is subjected to the 

constraint of Ĝ. The mode can be obtained with a fast iterative algorithm presented in Hastie 

et al. (2009). There are two limitations in the two-step approach. First, uncertainty of the 

graph structure in step 1 is not taken into account in step 2. Second, priors on the regression 

coefficients are part of the modeling framework in step 1, but not in step 2. Examples 

implementing the two-step procedure are provided in the Supplementary Materials.

2.2 Extension to mutiple graphs

When there is similarity shared among multiple graphs, jointly estimating multiple graphs 

can improve inference. We propose to jointly estimate multiple graphs by specifying a 

Markov Random Field (MRF) prior on the latent states. Our model can naturally incorporate 

complex data structures, such as spatial data, temporal data and data with both spatial and 

temporal structures. Consider jointly estimating multiple graphs for data with both spatial 

and temporal structures. Denote B the set of spatial loci and T the set of time points. Our 

proposed model can be naturally implemented when there is missing data, i.e. no data points 

taken in certain locus at certain time point. For now, we assume that there is no missing data. 

The latent states for the whole dataset are represented by a |B|×|T|×p×p array γ, where | | 

denotes the cardinality of a set. Let γbt·· denote the latent state matrix for locus b at time t. In 

the real data example, b is a categorical variable representing the brain region and t is a 

discrete variable that represents the time period during brain development. Same as that in 

Section 2.1, the diagonal entries in γbt·· are not assigned values.

Consider estimating the neighborhood of node i. Let γbtij denote the latent state for node j ∈ 
Γi in locus b at time t. Denote γ··ij = {γbtij : ∀b ∈ B, ∀t ∈ T}, 

 and . Here 

contain all the pairs capturing spatial similarity and  contain all the pairs capturing 

temporal dependency between adjacent time periods. We do not consider the direction of the 

pairs: (γijbt, γijb′t′) and (γijb′t′, γijbt) are the same. Let I1(·) and I0(·) represent the indicator 
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functions of 1 and 0, respectively. The prior for γ··ij is specified by a pairwise interaction 

MRF model (Besag, 1986; Lin et al., 2015):

(2)

and conditional independence is assumed:

(3)

where Φ = {η1, ηs, ηt} are set to be the same for all i and j. η1 ∈ ℝ and when there is no 

interaction terms, 1/(1 + exp(−η1)) corresponds to q in the Bernoulli prior. ηs ∈ ℝ represents 

the magnitude of spatial similarity and ηt ∈ ℝ represents the magnitude of temporal 

similarity. In the simulation and real data example, η1 is prefixed, whereas ηs and ηt are 

estimated from the dataset. The priors on ηs and ηt are assumed to follow uniform 

distribution in [0, 2]. Sensitivity analyses on the choice of η1 and the priors on ηs and ηt are 

provided in the Supplementary Materials.

Let γ··ij/γbtij denote the subset of γ··ij excluding γbtij. Then we have:

(4)

where

In the MCMC for multiple graphs, the Metropolis-Hastings (MH) algorithm is implemented 

to update ηs and ηt. The normalizing constant in p(γ··ij | Φ) is generally not tractable as one 

has to sum over all 2|B|+|T| possible configurations of γ··ij. The likelihood ratio need in the 

MH step is approximated with the ratio of pseudolikelihoods (Besag, 1986) and the 

pseudolikelihood is calculated as: ∏b∈B ∏t∈T p(γbtij | γ··ij/γbtij, Φ). Comparison between 

using the ratio of pseudolikelihoods with the bridge sampler (Meng and Wong, 1996) is 

shown in the Supplementary Materials.

In the prior specification (2), we made the following assumptions: a) the spatial similarity 

does not change over time and b) the time periods are evenly spaced and can be represented 
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by integer labels. The first assumption can be relaxed by allowing ηs to change over time. 

For the second assumption, ηt can be adjusted to a parametric function of the time interval. 

When there is only spatial or only temporal structure in the dataset, prior (2) can be adjusted 

by removing the summation over the corresponding pairs. The posterior probability-based 

false discovery rate (FDR) control (Newton et al., 2004) can be implemented to evaluate the 

marginal posterior probabilities (Supplementary Materials).

3. Theoretical Properties

We rewrite p as pn to represent a sequence pn that changes with n. Let 1 ≤ p* ≤ pn. 

Throughout, we assume that X satisfies the sparse Riesz condition (Zhang and Huang, 2008) 

with rank p*; that is, there exist some constants 0 < c1 < c2 < ∞ such that

for any A ⊆ {1, …, pn} with size |A| = p* and any nonzero vector .

Consider estimating the neighborhood for the ith node. We borrow some notations from 

Narisetty et al. (2014). For the simplicity of notation, let  and 

. Write τi0, τi1 and q as τ0n, τ1n and qn, respectively, to represent sequences that 

change with n. We use a (pn − 1) × 1 binary vector ki to index an arbitrary model. The 

corresponding design matrix and parameter vector are denoted by  and , 

respectively. Let ti represent the true neighborhood of node i.

Denote by λmax(·) and λmin(·) the largest and smallest eigenvalues of a matrix, respectively. 

For υ > 0, define

and

For K > 0, let

where |ki| denotes the size of the model ki and  is the projection matrix onto the column 

space of .
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For sequences an and bn, an ∼ bn means an/bn → c for some constant c > 0, an ≺ bn (or bn ≻ 
an) means an = o(bn), and  (or ) means an = O(bn). We need the following 

conditions.

(A) pn → ∞ and pn = O(nθ) for some θ > 0;

(B)  for some 0 ≤ α < 1 ∧ (1/θ);

(C)  and  for some δ1 > 1 + α;

(D) |ti| ≺ n/log pn and ;

(E) there exist 1 + α < δ2 < δ1 and K > 1 + 8/(δ2 − 1 − α) such that, for some large 

C > 0, ;

(F) p* ⩾ (K + 1)|ti|;

(G)
 and there exist some 0 < υ < δ2 and 0 < κ 

< 2(K − 1) such that

Theorem 1

Assume conditions (A)–(G). For some c > 0 and s > 1 we have, with probability at least 

, , where rn goes to 0 as the sample size increases to ∞.

To establish graph-selection consistency, we need slightly stronger conditions than (D)–(G). 

Let

(D′) t* ≺ n/logpn and ;

(E′) there exist 1 + α < δ2 < δ1 and K > 1 + 8/(δ2 − 1 − α) such that, for some large 

C > 0, ;

(F′) p* ⩾ (K + 1)t*;

(G′)  and there exist some 0 < υ < δ2 and 0 < κ < 

2(K − 1) such that

Let  denote the true graph structure and γ is the latent state matrix for all the nodes.
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Theorem 2

Assume conditions (A)–(C) and (D′)–(G′). We have, as n → ∞, .

The proofs of Theorem 1 and 2 are provided in the Supplementary Materials. In the proof of 

Theorem 1, we borrowed the general framework and some ideas from Narisetty et al. (2014). 

The key difference in our proof is that (1) we need to simultaneously control the posterior 

probability for p regressions, while allowing p to diverge with the sample size; (2) we allow 

the true model size to diverge while Narisetty et al. (2014) assumed that it is fixed. Some 

prior specifications are also different. The maximum a posteriori (MAP) estimate is hard to 

achieve in practice as the searching space is too large: 2number of possible edges. Instead, we use 

the marginal posterior probability to select the edges. The consistency of joint posterior 

probability implies the consistency of marginal posterior probability.

4. Simulation examples

4.1 Joint estimation of multiple graphs

We first considered the simulation of three graphs. For all three graphs, p = 100 and n = 150. 

We first simulated the graph structure. We randomly selected 5% or 10% among all the 

possible edges and set them to be edges in graph 1. For graphs 2 and 3, we removed a 

portion (20% or 100%) of edges that were present in graph 1 and added back the same 

number of edges that were not present in graph 1. 20% represents the case that there is 

moderate shared structure. 100% represents the extreme case that there is little shared 

structure other than those shared by chance. For the entries in the precision matrices, we 

considered two settings: a) the upper-diagonal entries were sampled from uniform [−0.4, 
−0.1] ∪ [0.1, 0.4] independently and then set the matrix to be symmetric b) Same as that in 

a), except that for the shared edges, the corresponding entries were set to be the same. To 

make the precision matrix positive definite, we set the diagonal entry in a row to be the sum 

of absolute values of all the other entries in that row, plus 0.5.

The simulation results are presented in Figure 1. Our method (MRF) was compared with 

Guo’s method (Guo et al., 2011), JGL (Danaher et al., 2014) and graphical lasso (glasso) 

(Friedman et al., 2008). In glasso, the graphs are estimated independently. In JGL, there are 

two options, fused lasso (JGL-Fused) and group lasso (JGL-Group). For Guo’s method, 

glasso and JGL, we varied the sparsity parameter to generate the curves. For our method, we 

varied the threshold for the marginal posterior probabilities of γ to generate the curves. 

There are two tuning parameters in JGL, λ1 and λ2, where λ1 controls sparsity and λ2 

controls the strength of sharing. We performed a grid search for λ2 in {0, 0.05, …, 0.5} and 

selected the best curve. In Figure 1, our method performed slightly better than Guo’s 

method. When there is little shared structure among graphs, our method performed slightly 

better than glasso, which is possibly due to the fact that we used a different modeling 

framework. When the entries were different for the shared edges, JGL-Fused did not 

perform well. However, when the entries were the same, JGL-Fused performed much better. 

The fused lasso penalty encourages entries in the precision matrix to be the same and JGL-

Fused gains efficiency when the assumption is satisfied. We also performed simulations 

under high dimension settings (p < n) and simulations with a larger scale (p = 500). The 
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results are similar and are shown in the Supplementary Materials. Moreover, we compared 

the methods for the detection of differential edges and shared edges in the graphs. We did 

not include JGL in the comparison as the similarity of the graphs is controlled with a tuning 

parameter. For the detection of shared edges, our method is better than Guo’s, and Guo’s 

method is better than glasso; for the detection of differential edges, our method is 

comparable to Guo’s, and glasso is slightly better than both methods. In addition, we 

compared our method with Peterson et al. (2014), a Bayesian approach using G-Wishart 

priors. Peterson’s method may not be applicable when p is moderately large or the number 

of graphs is more than a few (Supplementary Materials). We performed simulations with 

smaller scale and more replicates (p = 20, n = 100), where the setting is similar to that in 

Peterson et al. (2014). The results are shown in the Supplementary Materials. Our method 

performed slightly worse than Peterson’s method, but better than Guo’s method and JGL-

Fused. Neighborhood selection methods may favor random graphs over graphs with hub 

structures. We also performed simulation for single graph, where the degree of nodes 

follows a power law distribution. Our method is comparable with glasso.

4.2 Joint estimation of multiple graphs with temporal dependency

In this setting, we assumed that the graph structure evolved over time by Hidden Markov 

Model (HMM). We set p = 50. At time t = 1, we randomly selected 10% among all the 

possible edges and set them to be edges. At time t + 1, we removed 20% of the edges at time 

t and added back the same number of edges that were not present at time t. The entries in the 

precision matrix were set the same as that in a) in Section 4.1. We present the simulation 

results in Figure 2, varying n and |T|. We compared our method with Guo’s and JGL-Group, 

where the graphs were treated as parallel. Our method performed better than Guo’s method 

and JGL-Group in all three settings, and the difference was greater when either n or |T| 
increases. We did not include JGL-Fused in the comparison as the computational time for 

JGL-Fused increases substantially when the number of graphs is more than a few.

4.3 Joint estimation of multiple graphs with both spatial and temporal dependency

We simulated graphs in |B| = 3 spatial loci and |T| = 10 time periods. We set p = 50, n = 100, 

and sparsity∼ 0.1. We first set the graphs in different loci at the same time point to be the 

same. The graph structure evolved over time by HMM similarly as that in Section 4.2, and 

40% of the edges changed between adjacent time points. For all graphs, we then added some 

perturbations by removing a portion (10%, 20%, 50%) of edges and adding back the same 

number of edges. In each time period, the 3 graphs have similar degree of similarity with 

each other. The entries in the precision matrix were set the same as that in a) in Section 4.1. 

The simulation results are presented in Figure 3. Our method achieved better performance 

than all the other methods. We also compared the posterior distribution of ηs and ηt between 

real data and simulated data (Supplementary Materials). Based on ηs and ηt, the temporal 

dependency in the simulations is weaker than that in the real data; the simulations with 10% 

and 20% perturbations have stronger spatial dependency than that in the real data, and for 

the 50% one, it has similar degree of spatial similarity.
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4.4 Computational time

We evaluated the computational speed of our approach in the estimation of single GGM and 

multiple GGMs. For single GGM, we compared our method (B-NS) with Bayesian 

Graphical Lasso (B-GLASSO) (Wang et al., 2012) in Figure 4a. Our algorithm took 0.5 and 

4.5 minutes to generate 1,000 iterations for p = 100 and p = 200, and B-GLASSO took 1.6 

and 17.9 minutes. The performance of graph structure estimation is comparable 

(Supplementary Materials). We also evaluated the speed of our algorithm for the joint 

estimation of multiple graphs, where n and p were both fixed to 100. The CPU time was 

roughly linear as the number of graphs increased (Figure 4b). When multiple processors are 

available, parallel computing will result in substantial gain in computational speed (Figure 

4). Our model enables parallel computing in two levels: 1. for single graph estimation, the 

rows in β can be updated in parallel (“rows parallel”); 2. for multiple graphs estimation, the 

matrix β for each graph can be updated in parallel (“graphs parallel”). “graphs parallel” 

requires more memory and tends to outperform “rows parallel” on data with a smaller scale. 

The computations presented in Figures 4a and 4b were implemented on a dual-core CPU 2.4 

GHz laptop running OS X 10.9.5 using MATLAB 2014a. The other computations were 

performed on the Yale University Biomedical High Performance Computing Center. The 

computational cost of our algorithm is O(p3).

5. Application to the human brain gene expression dataset

Next we apply our method to the human brain gene expression microarray dataset (Kang et 

al., 2011). In the dataset, the expression levels of 17,568 genes were measured in 16 brain 

regions across 15 time periods. The time periods are not evenly spaced over time and each 

time period represents a distinct stage of brain development. The median number of 

biological replicates per time per region is 5. Because of the small sample size, we collapsed 

the 16 regions into two regions: neocortical regions (11 regions) and non-neocortical regions 

(5 regions). The neocortical regions are more similar with each other (Kang et al., 2011). We 

excluded the data from time periods 1 and 2 in our analysis because they represent very 

early stage of brain development, when most of the brain regions sampled in future time 

periods have not differentiated. We first studied the network of 7 high confidence genes 

associated Autism Spectrum Disorders (ASD): GRIN2B, DYRK1A, ANK2, TBR1, POGZ, 

CUL3, and SCN2A(Willsey et al., 2013). ASD is a neurodevelopment disorder that affects 

the brain and have an early onset in childhood. With a good understanding on the networks 

of the 7 ASD genes, we hope to gain insight into how these genes interact to yield clues on 

their roles in autism etiology. The posterior mean and standard deviation for ηs were 0.61 

and 0.47, respectively. The posterior mean and standard deviation for ηt were 1.27 and 0.48, 

respectively. The estimated model parameters suggest strong temporal dependency of the 

network structure. The estimated graphs are shown in Figure 5, and in the Supplementary 

Materials.

Time period 10 corresponds to early childhood (1 years ≤ age ≤ 6 years), which is the typical 

period that patients show symptoms of autism. Of particular interest are the genes that are 

connected with TBR1, which is a transcription factor that may directly regulate the 

expression of numerous other genes. GRIN2B is a potential target of TBR1 (Bedogni et al., 
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2010) and Tbr1 has been shown to mediate the expression of Grin2b in adult mouse brain 

(Chuang et al., 2014). Interestingly, the edge between TBR1 and GRIN2B tends to be shared 

over time in the non-neocortical regions, but not in the neocortical regions: the edge 

inclusion probability tend to decrease after period 10 in the neocortical regions. Further 

biological experiments are required to validate the temporal dynamics of TBR1 and 

GRIN2B interaction. The marginal posterior probabilities of edge inclusion are compared 

between our approach (MRF) and the simpler approach not considering the data structure 

(B-NS) (Figure 6a). For a fair comparison, we set q = 1/(1 + exp(−η1)) in B-NS. 

Considering the data structure leads to a better separation of the marginal posterior 

probability.

To demonstrate the temporal dependency, we shuffled the time periods and re-implemented 

our approach. ηt tends to be smaller in the shuffled data while ηs has similar posterior 

distribution (Figures 6b, and 6c). Collapsing the neocortical and non-neocortical regions, we 

implemented our approach on three manually curated biological pathways: long-term 

potentiation (65 genes), long-term depression (57 genes), and GABAergic synapse (86 

genes). Long-term potentiation and long-term depression are associated with memory and 

learning; Gamma aminobutyric acid (GABA) is the most abundant inhibitory 

neurotransmitter in the mammalian central nervous system. When we shuffled the time 

periods, ηt tends to be smaller in long-term potentiation and long-term depression and it is 

slightly smaller for GABAergic synapse (Figures 6d, 6e, and 6f). Only in long-term 

potentiation, one gene is overlapped with the ASD gene set. The estimated graphs for the 

three pathways are shown in the Supplementary Materials. A large fraction of the top edges 

are shared in the adjacent periods (Supplementary Materials). Before birth, from period 6 to 

7, the networks tend to rewire and the trend is similar in the three pathways (Supplementary 

Materials).

6. Conclusion

In this paper, we proposed a Bayesian neighborhood selection procedure to estimate 

Gaussian Graphical Models. Incorporating the Markov Random Field prior, our method was 

extended to jointly estimating multiple GGMs in data with complex structures. Compared 

with the non-Bayesian methods, there is no tuning parameter controlling the degree of 

structure sharing in our model. Instead, the parameters that represent similarity between 

graphs are learnt adaptively from the data. Simulation studies suggest that incorporating the 

complex data structure in the jointly modeling framework would benefit the estimation. For 

the human brain gene expression data, we applied our method on the autism genes and three 

biological pathways related to the nervous system. We identified some interesting 

connections in the networks of autism genes. We also demonstrated the graph selection 

consistency of our procedure for the estimation of single graph.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparisons of different models for the estimation of three graphs. For the shared edges, the 

corresponding entries in the precision matrices take the same (“same entry values”) or 

different (“different entry values”) non-zero values. The x-axis was truncated to be slightly 

larger than the total number of true positive edges. The curves represent the average of 100 

independent runs.

Lin et al. Page 15

Biometrics. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparisons of different models for the estimation of mutiple graphs with temporal 

dependency. The x-axis was truncated to be slightly larger than the total number of true 

positive edges. The curves represent the average of 100 independent runs.
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Figure 3. 
Comparisons of different models for the estimation of mutiple graphs with temporal and 

spatial dependency. The x-axis was truncated to be slightly larger than the total number of 

true positive edges. The curves represent the average of 100 independent runs.
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Figure 4. 
Comparing the running time. (a) Single graph with increasing number of nodes, we 

compared our method (B-NS) with Bayesian Graphical Lasso (B-GLASSO) (Wang et al., 

2012); (b) Multiple graphs with increasing number of graphs; (c–e) we implemented parallel 

computing.
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Figure 5. 
The estimated graphs for the ASD genes. Period 10 corresponds to early childhood (1 years 

≤ age ≤ 6 years), which is the typical period of autism onset. Some periods are skipped and 

are shown in the Supplementary Materials. The rank of the marginal probabilities is 

represented by the color gradient of the edges. NCX: neocortical regions; non-NCX: non-

neocortical regions.
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Figure 6. 
The posterior distributions. (a) The posterior distribution of the edge inclusion marginal 

probabilities, ASD genes; (b, c) The posterior distribution of the MRF model parameters, 

ASD genes; (d–f) The posterior distribution of ηt, the three pathways.
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