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Genome-wide expression profiling of normal tissue may facilitate our understanding of the etiology of diseased
organs and augment the development of new targeted therapeutics. Here, we have developed a high-density gene
expression database of 18,927 unique genes for 158 normal human samples from 19 different organs of 30 different
individuals using DNA microarrays. We report four main findings. First, despite very diverse sample parameters (e.g.,
age, ethnicity, sex, and postmortem interval), the expression profiles belonging to the same organs cluster together,
demonstrating internal stability of the database. Second, the gene expression profiles reflect major organ-specific
functions on the molecular level, indicating consistency of our database with known biology. Third, we demonstrate
that any small (i.e., n ∼ 100), randomly selected subset of genes can approximately reproduce the hierarchical
clustering of the full data set, suggesting that the observed differential expression of >90% of the probed genes is of
biological origin. Fourth, we demonstrate a potential application of this database to cancer research by identifying 19
tumor-specific genes in neuroblastoma. The selected genes are relatively underexpressed in all of the organs
examined and belong to therapeutically relevant pathways, making them potential novel diagnostic markers and
targets for therapy. We expect this database will be of utility for developing rationally designed molecularly targeted
therapeutics in diseases such as cancer, as well as for exploring the functions of genes.

[Supplemental material is available online at www.genome.org and at http://home.ccr.cancer.gov/oncology/
oncogenomics/.]

At present, it is estimated that the human genome encodes for
∼30,000 genes. However, it has been suggested that only a frac-
tion, perhaps 10,000 genes, are actively transcribed in normal
cell processes (Lander et al. 2001; Venter et al. 2001). High-
throughput genome-wide expression profiling is a logical ap-
proach to decipher the underlying biological processes of normal
organ function as well as pathological states such as cancer. The
identification of differential transcript levels between a diseased
and normal tissue will enhance our understanding of the mecha-
nism of disease and thus may provide clues for the identification
of new drug targets as well as facilitate the prediction of potential
side effects of therapies.

Previously, several groups have produced oligo-based array
transcriptome databases for normal human tissues (Haverty et al.
2002; Shmueli et al. 2003), normal human and normal mouse
tissues (Su et al. 2002, 2004), and normal rat tissues (Walker et al.
2004). Here, we have contributed to this field by constructing a
gene expression data set of 18,927 genes from 158 normal
samples of 19 different organs. To our knowledge, this data set is
the largest to date for the analysis of global gene expression pro-
files within individual organs from multiple patients and is
complementary to previously published data sets.

Our database of transcript levels in normal tissues was de-

veloped as a reference database that can be compared to data
attained from diseased tissues, allowing the detection of disease-
related aberrations in transcript levels. In order to produce cred-
ible findings from these types of analyses, it is crucial to first
validate this reference data set extensively. Therefore, the major
focus of this manuscript is on demonstrating the internal con-
sistency of gene expression profiles in the database and verifying
that these profiles are biologically meaningful. Additionally, we
report that >90% of the measured genes are differentially ex-
pressed between the different organs. We show that this finding
is not a statistical artifact but does, indeed, reflect biology. Fi-
nally, to show the powerful utility of our validated data set, we
describe one of many possible applications in which we identify
genes that are highly expressed in neuroblastoma, an embryonal
cancer of childhood, as compared to any individual organ type
profiled in our data set.

Results

Samples and cDNA microarray

A total of 158 samples across 19 different organs were collected
from the Brain and Tissue Banks for Developmental Disorders at
the University of Maryland (http://medschool.umaryland.edu/
btbank/) from 30 individual human donors (Supplemental Table
1). Of the donors, 17 were males and 13 were females. The me-
dian age was 20 yr (range 3 mo–39 yr), and the donors came from
three ethnic groups (Caucasian, African American, Pacific Ocean
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Islands). The median postmortem interval was 11 hr (range 4–19
hr). The cause of death varied (see Supplemental Table 1). The
median yield of RNA was 0.58 µg/mg (range 2.11 µg/mg for pan-
creas–0.2 µg/mg for skeletal muscle). Samples were profiled on
sequence-verified cDNA libraries containing 42,421 cDNA spots
representing 25,933 different UniGene clusters (13,606 known
genes and 12,327 ESTs). After quality filtering, 18,927 unique
UniGene clusters remained.

Unsupervised analysis using principal component analysis
and hierarchical clustering

In order to test the internal consistency of our data set, we used
principal component analysis (PCA) to check if the individual
samples clustered together according to their organ of origin. No
gene selection was performed prior to the PCA, except quality
filtering. Interestingly, despite the fact that the samples used in
this study were from 30 individual donors from different ethnic
groups, genders, ages, causes of death, and postmortem intervals
(Supplemental Table 1), the PCA plot showed that samples from
the same organ clustered together and were distinct from other
organs (Fig. 1). The gene expression profiles of cerebellum, cere-
brum, heart, skeletal muscle, liver, and testis had relatively
higher variance as evidenced by their segregation away from the
rest of the organs (Fig. 1A). After removing these organs and
recalculating the PCs, it can be seen that adrenal, kidney, pan-
creas, lung, and spleen also cluster according to organ type and
aggregate slightly away from the remaining organs (Fig. 1B).
These remaining organs—ileum, colon, stomach, bladder, uterus,
ureter, prostate, and ovary—grouped closer together upon recal-
culation of the PCs (Fig. 1C), but did, in fact, cluster according to
organ type. Tissues having similar cellular composition and func-

tion, like cerebellum and cerebrum or heart and skeletal muscle,
cluster closely together (Fig. 1A) but were clearly separated from
each other when examined apart from the rest of the organs (Fig.
1D).

We further investigated how the organs can be classified
according to transcript levels using hierarchical clustering (HC)
employing the Pearson metric on average expression levels for
each organ (Fig. 2A). For many of the organ types, the hierarchi-
cal structure reflects the known similarity of biological functions
between the organs. For example, cerebrum and cerebellum clus-
ter together, reflecting their physiological similarity. Likewise,
the reproductive organs—testis and ovary—and the muscle or-
gans—skeletal muscle and heart—group together. Bladder, colon,
ileum, uterus, and ureter, which form one subbranch of the hi-
erarchy, are known to have a similar cellular composition with
predominantly smooth muscle as a constituent (Albert et al.
1994).

To substantiate the biological relevance of the HC tree, we
identified which genes are differentially expressed at the branch
points (defined in Fig. 2A) and looked for statistically overrepre-
sented Gene Ontology (GO) terms in these selected genes
(Supplemental Table 2). The first branch point distinguished or-
gans with a high level of energy consumption (upper part: cere-
brum, cerebellum, liver, kidney, adrenal, skeletal muscle, heart)
from organs with lower energy consumption (lower part). Im-
mune response genes were very significant for branch point 8,
which divides ileum, colon, bladder, ureter, uterus, lung, and
spleen from ovary, testis, prostate, pancreas, and stomach. In
branching point 9, excretion-related genes were significant,
likely because of the function of prostate, pancreas, and stomach.
For the majority of the branch points, the significant GO terms
are in logical agreement with known organ functions.

Analysis of the robustness of the
hierarchical clustering structure

The hierarchical clustering (HC) of the
different tissues reflects well the similar-
ity between the expression profiles of
the different organs. In order to explore
if this result depends on the specific set
of genes, that is, if it reflects specific cell
functions, or if it is independent on the
specific choice of genes, we analyzed the
stability of the HC when small randomly
selected subsets of genes were used in
this analysis. If the hierarchical structure
is unchanged by various gene subset se-
lections, this would indicate that the
similarity is present on the whole range
of transcriptional regulation and conse-
quently over the majority of biological
processes. If, however, changes in gene
selection do produce significant changes
in the hierarchical structure, this would
indicate that the similarities extend only
over specific cellular processes. In order
to assess the stability of the hierarchical
structure to changes in the selected
genes, we regenerated 1000 new HCs
with randomly chosen subsets of 1000
genes and measured the similarity be-
tween the resulting trees where “similar-

Figure 1. Principal components analysis. (A) The top three principal components of all 158 samples
from all of the 19 organs. Cerebellum, cerebrum, heart, skeletal muscle, liver, and testis clustered
separately from the rest of the organs (gray color). (B) After the above six organs in A were removed,
PCA was recalculated with the samples from the remaining 13 organs. Adrenal, kidney, pancreas, lung,
and spleen clustered separately from the rest of the organs (gray color). (C) After the above five organs
in B were removed, PCA was recalculated with the samples from the remaining eight organs (ovary,
prostate, bladder, colon, ileum, stomach, ureter, and uterus). (D) Cerebrum, cerebellum, heart, and
skeletal muscle were separated completely with recalculated PCA.
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ity” was defined geometrically (i.e., the “distance” between any
two tissue samples A and B on the dendrogram was defined as the
number of branch points visited by a walker traversing the tree
from leaf A to leaf B). If these distances are approximately con-
stant for the trees generated with different gene sets, the hierar-
chical clustering is deemed insensitive to the specific choice of
genes. For the details of this procedure, see the Methods section.
To quantitate the stability of the hierarchical structure, we cal-
culated the variance of the distance between all pairs of organs
within each of the 1000 HC dendrograms. The heat map of Fig-
ure 2B visually depicts the interorgan variance. A blue color link-
ing two organs indicates essentially constant distance between
these two organs, while a red color indicates a variable distance.
Thus if two organs are linked by a red square, it indicates that
their relationship depends on the specific choice of genes while
a stable (blue) distance suggests that the similarity in the expres-
sion of genes is present in (almost) all of the gene sets. For the
majority of organs we find that the interorgan similarity is stable,
while certain organs cluster with different partners for different
gene sets. For example, the red squares for testis in Figure 2B
indicate that this sample clusters not only with ovary (Fig. 2A)
but with some gene sets clusters with cerebrum, cerebellum, pros-
tate, or adrenal. As a second example, ovary also clusters with
ureter, uterus, prostate, or spleen depending on the gene sets
used.

We next asked the question, how many genes are necessary
to produce essentially the same hierarchical structure obtained
for all genes? To do this, we repeated the procedure above with
an increasing number of genes starting from 100 and increasing
to 10,000. For each subset size, 1000 different random subsets
were used to generate HCs. For each of these replicates, R, we
estimated the similarity with the dendrogram, D, for the full set

of genes. As before, this similarity was quantified by comparing
the distances between any two tissues in R and D. A variability
index, the average variance of the distances (for details, see Meth-
ods), is shown in Figure 2C. It is interesting to note that for
subsets as small as 100 randomly selected genes, the dendrogram
is significantly more stable than the trees found for randomly
generated data (black line), which is shown in the same plot as a
reference point for variability. The variability is stabilized in our
real data when the size of the subsets approaches ∼1000 out of
18,927. Furthermore, we find that the hierarchical structure is
much more stable (lower variability index, green line) when
ovary and stomach, which showed the highest variability, were
removed from the analysis.

We observed a remarkable heterogeneity of the transcript
levels between the different tissues. Using a one-way ANOVA
analysis, we found that >90% of the 18,927 unique genes in our
study showed differential expression patterns at a 5% signifi-
cance level after adjustment for multiple comparisons.

Prevalent gene expression patterns

Next, we explored the simultaneous comparison of global pat-
terns of gene expression and their relationship to biological pro-
cesses by using the Gene Ontology (GO) annotations. We or-
dered the genes in this database using the reshuffling algorithm
(Lund technical report: http://www.thep.lu.se/pub/Preprints/00/
lu_tp_00_18.pdf; Cunliffe et al. 2003), which generates a unique
order of genes based on the Pearson similarity distance metric.
Prior to this step, we removed all genes with low variance in the
data set (i.e., <0.25, see Methods) because the current implemen-
tation of the reshuffling algorithm cannot effectively deal with
the full data set. We analyzed the sorted list of the remaining

Figure 2. Hierarchical clustering structure and stability. (A) Hierarchical clustering of the organs based on mean expression levels across organs for all
genes. The branch points are enumerated for reference in the text and Supplemental Table 2. (B) The heat map visualizes the variance of the distance
(see Methods) in the HC hierarchy estimated from 1000 HC trees using randomly selected subsets of genes of size 1000. (Black) Variability close to the
average for the whole dendrogram; (blue) a lower than average variability; (red) an increased variability. The interpretation of the increased variability
indicated by the red squares is that the corresponding organs are close in some of the HC graphs, while they are further away in other HC graphs. (C)
The variability index for the whole dendrogram is plotted as a function of the size of the sets of genes drawn randomly from the genes on the microarray.
The black line represents the variability index for randomly generated gene expression data (see Methods), the red line for the entire data set (19 organs),
and the green when ovary and stomach, which showed the highest variability, are removed from the analysis.
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7020 genes for regions in which specific GO annotations were
overrepresented. To this end, we calculated the probability of a
GO term occurring by random chance within a window of 160
adjacent genes (see Methods). The result of this analysis is shown
in Figure 3A, which has two parts: a traditional gene-expression
heat map (upper part) and a probability heat map (lower part) for
gene annotations representing a Gene Ontology term in each
row (Supplemental Table 5).

An advantage of this analysis is that it demonstrates how
different biological processes are shared between organs. For ex-
ample, the overrepresentation of the GO term “neurophysiologic
process” coincides with an overexpression of the corresponding
genes in the cerebrum and cerebellum. Likewise, the overrepre-
sented term “muscle contraction” coincides with an increased
expression in heart and skeletal muscle and the other smooth
muscle organs. Genes associated with the extracellular matrix
and immune response are specifically active in bladder, colon,
ileum, stomach, ureter, uterus, and lung. Liver and spleen show
the strongest expression of genes related to humoral immune
response. On the other hand, cerebellum, cerebrum, and testis
characterize the lowest expression of genes associated with im-
mune-related GO terms. Testis shows the highest expression level
in cell cycle- and reproduction-related genes.

Organ-specific gene expression

We next identified the genes that are specifically overexpressed
in one organ in comparison to all other 18 organs, by requiring
that the P-value for each pairwise t-test was <0.01. Figure 3B
shows the heat map of all the organ-specific genes that passed
this selection criterion. We observed that testis, liver, cerebrum,
cerebellum, skeletal muscle, and heart had the largest number of
specifically expressed genes. For example, we found that sexual
reproduction, spermatogenesis, mitosis, and fertilization were
the dominating annotations in testis-specific genes. The 639
genes that were specifically expressed in liver were associated
with the major physiological functions of the liver including
energy process, lipid metabolism, cholesterol metabolism,
complement production, detoxification, alcoholic metabolism,
and urea cycle. The exact numbers of differentially expressed
genes are presented in Supplemental Table 3, where we also list
the top 10 genes (lowest P-value) for each organ. We found that
in most cases, these genes reflected the organ function, as can be
seen from the result of the GO analysis (Supplemental Table 4).

Application of database: Identification of potential
therapeutic targets

One potential application of this database is to identify uniquely
expressed genes in cancer that may be used as potential diagnos-
tic markers or targets for therapy. We used neuroblastoma (NB) as
a model and performed a t-test comparing the gene expression
profiles of 100 NB tumors of different stages (1 through 4 includ-
ing MYCN amplified tumors) with 100 normal organ samples
(randomly selected with approximately equal numbers from
each organ) from our database. Next, we selected the genes
whose (1) NB expression levels were significantly overexpressed
(see Methods) compared with the expression ratio of the highest
expressed organ for that gene, and (2) GO annotations would
suggest good therapeutic targets (see Methods). In all, 19 genes
passed this stringent filter (Fig. 3C), of which the top most dif-
ferentially expressed gene was PHOX2B.

Figure 3. (A) Gene Ontology densities on reshuffled data. The upper
heat map represents the average gene expression in 19 tissues. The genes
were ordered by the reshuffling algorithm and analyzed for regions
where the density of genes annotated to GO terms was higher than
expected by random chance. The results of this analysis are shown in the
lower heat map, where the probability of finding a GO term by chance is
represented by a red color according to the scale shown. A red color thus
represents a nonrandom density of genes associated with the corre-
sponding GO term around this position (x-direction) in the gene list. The
GO terms (y-direction) were selected if at some location the density of
genes annotated with the corresponding GO terms was considered sta-
tistically significantly overrepresented. The selected 98 GO terms were
then sorted in the y-direction by HC with respect to the pattern of P-
values. A detailed list of the GO terms is given in Supplemental Table 5.
We have highlighted in white ellipses some of the most predominant GO
terms. (B) Organ-specific gene expression. Heat map of the expression
level of all samples for 4291 organ-specific genes identified by performing
pairwise t-tests between each organ and all the remaining organs. (C)
Neuroblastoma-specific gene expression. (Left panel) The heat map of
the median values for gene expression for the differentially expressed
genes in NB and each of the normal organs. The color scale represents
the z-scored gene expression ratio (number of standard deviation of the
median expression ratio from the mean). (Right panel) The GO terms of
the 19 genes, where a black square in the grid indicates that the gene is
associated to that GO term. The numbers in the NB/max(NS) column are
the ratios of the median NB gene expression ratio divided by the maxi-
mum median expression ratio of all 19 organs.
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Discussion

We have constructed a gene expression database capturing the
mRNA transcriptional levels for 19 different organs from 158
normal human tissues from 30 donors. Previously, three groups
(Haverty et al. 2002; Su et al. 2002; Shmueli et al. 2003) estab-
lished human transcriptomic databases using oligonucleotide
microarrays. Our database builds on the published studies by an
increased number of samples, an increased number of biological
repeats for the same tissue, an increase in the number of detected
unique clones, and the different array technology used (cDNA).
Biological repeats were hybridized individually, allowing us to
estimate intraorgan variation of transcript levels. In our analysis,
18,927 unique genes passed our quality filtering. To our knowl-
edge, our work herein represents the largest normal sample data
set profiled in a single study. The second largest data set (Su et al.
2004) contained 79 human samples, and the number of unique
clones detected in at least one tissue was only slightly smaller at
16,454 genes. The strength of that work was the use of a custom-
made oligonucleotide array, which complemented the commer-
cial array they used in parallel. The custom array focused on
expressed sequences predicted by RefSeq, Celera, and Ensembl
that were not present on the commercial array. This setup makes
that database very valuable for the detection and annotation of
novel genes. For our database, the emphasis is to allow research-
ers to compare their own data to our reference database of nor-
mal tissues. Therefore, we only used commercially available and
frequently used cDNA libraries for the production of our micro-
arrays to increase the probability that the researcher’s genes of
interest will be in our data set. Furthermore, our cDNA-based
arrays will simplify data analysis for research groups already us-
ing cDNA technology and may help them avoid potential cross-
platform problems (Park et al. 2004). The main focus of our data
analysis was to establish the validity of our database so that it can
be used with confidence. In addition, we provide one demon-
stration of a possible application in the context of identifying
cancer-specific genes. For the first part, the statistical analysis of
the data therefore aimed at confirming that this database (1) is
consistent and (2) contains relevant biological information.

In order to establish consistency, we first analyzed the ho-
mogeneity of transcriptional information within samples of the
same organ by using PCA. Without prior information, we
showed that samples from the same organ but different donors
clustered together. This result is remarkable given the potential
variability that could have been introduced for each sample with
respect to the different source, cause of death, age, sex, postmor-
tem interval, and sampling site. An example of the variability
introduced by sampling site was reported by one group, who
identified distinctive patterns of gene expression from discrete
portions of kidney (Higgins et al. 2004). In our study, despite the
fact that there was no prior selection of which part of each organ
was selected for profiling, our results showed a very strong ho-
mogeneity in the pattern of gene expression for each organ type.

To establish the analysis of similarities and differences be-
tween the expression profiles for the 19 organs, we used hierar-
chical clustering. The dendrogram generated by this analysis re-
flected functional and morphological relationships between or-
gans. Previously, Guo et al. (2003) showed by HC analysis that
the expression pattern between testis and brain is similar. They
interpreted this as a manifestation of the fact that both share the
common specificity in the blood-barrier property (Sites et al.
1997). However, this is only partially compatible with our results

because the stability analysis revealed that testis also neighbors
with other hormone-predominant organs (ovary, prostate or ad-
renal) depending on which genes are used to perform the HC
(Fig. 2B).

Our results show that gene expression profiling can distin-
guish each of the 19 organs. Furthermore, by an identification of
overrepresented annotations using terms from the Gene Ontol-
ogy, we demonstrated that the transcriptome reflects major or-
gan functions. This result, although apparently not surprising, is
nontrivial. Firstly, it provides experimental evidence that despite
the importance of post-transcriptional regulation and signaling
pathways, the regulation of transcript levels plays a major role in
controlling normal cell functions. Secondly, our conclusions
were based on an observation, which is unique to high-
throughput measurements: collective phenomena. Rather than
deriving conclusions from individual genes, we used ensembles
of genes and identified overrepresented annotations in these en-
sembles. The fact that this procedure selected biologically mean-
ingful annotations confirms that this type of information can be
used to draw meaningful biological conclusions. The advantage
of this “collective” approach is that it better reflects the under-
lying biology, which almost always involves multiple genes for
specific biological processes and phenotypes. In addition, it
avoids potential ambiguities that arise because individual genes
often contribute to several different processes.

When we asked the question, how many of the genes in our
experiment showed some form of differential expression,
ANOVA analysis revealed that >90% of the 18,927 unique genes
were differentially expressed at the 5% level of statistical signifi-
cance after adjustment for multiple comparisons (data not
shown). In order to exclude the possibility that this may have
been caused by some unknown, technical bias not related to the
function of the organ, we analyzed the stability of the HC struc-
ture. We found that randomly selected sets of genes of 100 or
more could reproduce this HC structure, and the stability ap-
proached its maximum with 1000–2000 genes. Together with the
observation that the HC dendrogram properly reflected known
biological facts, this finding implies that small sets of arbitrarily
selected genes contain sufficiently many differentially expressed
genes to reconstruct the dendrogram and that these differential
expressions are of biological origin, even though the absolute
difference in transcript levels is often quite small.

Next, we used the reshuffling analysis and the Gene Ontol-
ogy annotations to simultaneously compare the transcriptional
patterns and biological processes shared by the 19 organs in our
study. This method allows for a global analysis of the processes
involved in each organ, and the interpretations of the results are
based on the hypothesis that highly correlated or coexpressed
genes may belong to the same functional pathway (Stuart et al.
2003). Our results corroborate this idea as we found, for instance,
that the digestive, genitourinary, and respiratory organs showed
a strong expression of extracellular matrix and immune-response
genes in agreement with current knowledge (Sites et al. 1997).
But, only stomach shows a lower expression of immune-related
genes, which may be explained by the fact that it does not have
Payer’s patch (Sites et al. 1997). Also, cerebellum, cerebrum, tes-
tis, prostate, and pancreas show lower expression of immune
genes and are known to contain a paucity of immunity-related
cells (Abbas et al. 1997; Sites et al. 1997; Bernstorff et al. 2002).

Next, we identified the genes that are most highly expressed
in one organ compared to all other organs. These identified genes
can potentially be used as markers for the origin of metastatic
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tumors, where the primary location of the tumor is unknown.
We demonstrated a strong relevance of these genes to the func-
tions of the corresponding organs through GO analysis (Supple-
mental Table 4). Many of the high-ranking genes in each organ
are associated with organogenesis and organ-specific functions.
For example, the top-ranking cerebellum-specific gene, ZIC2, is
known to control cerebellar development (Aruga et al. 2002), and
the top-ranking cerebrum-specific gene, GABRA5, has been im-
plicated in the pathogenesis of mood disorders (Papadimitriou et
al. 2001; Supplemental Table 3). Additionally, we found GKN1
(CA11), which is known to be underexpressed in gastric cancer
(Oien et al. 2004), uniquely overexpressed in stomach. The ob-
servation that colon, stomach, and ileum have the fewest num-
ber of uniquely expressed genes is probably due to a common
pool of genes that are coexpressed in these organs since our pair-
wise t-test would have excluded these genes. Further analysis
could be performed to identify these genes, but has not been
done for the purpose of this study.

From these results we show that the global gene expression
profiles for these 19 normal organs contain high-quality reliable
data that reflect the biological function of each organ. We next
showed one possible application of this database by the identi-
fication of potential targets for diagnosis and/or therapy in one
cancer type. We chose neuroblastoma (NB), which is the most
common extracranial pediatric solid tumor, and accounts for
7%–10% of all childhood cancers (Brodeur 2003). We identified
19 genes whose expression levels were significantly overex-
pressed when compared with all the normal samples that were
associated with GO terms that would imply potential “drug-
gable” targets, for example, apoptosis, growth, proliferation, and
transcription. Since our comparison was between malignant and
normal tissue, several of the genes identified (e.g., the cell cycle
genes CCND1 and CDK6) are up-regulated in other cancers, but
nevertheless represent legitimate targets for therapy. PHOX2B
was the most highly expressed gene in NB that passed our selec-
tion process, and represents a NB-specific gene. It is a neurode-
velopmental gene, expressed in both the central and the periph-
eral autonomic nervous system during human embryonic devel-
opment (Amiel et al. 2003). It has recently been found to be
mutated in familial neuroblastomas (Trochet et al. 2004). Other
genes include MYCN, which is amplified in a subset of neuro-
blastomas and important in the etiology of these tumors, in that
transgenic mice that express this gene develop NB with a high
penetrance (Weiss et al. 1997). Indeed, in this mouse model the
MYCN transgene is driven by the TH gene, which is also among
these 19 genes. Other genes of note in this list include L1CAM, a
membrane glycoprotein that belongs to a large class of immuno-
globulin superfamily cell adhesion molecules that mediate cell-
to-cell adhesion in the nervous system. Interestingly, this gene
was originally named MIC5, because it was discovered through
the use of monoclonal antibodies to be expressed in a NB cell line
(Hope et al. 1982) and was subsequently shown to be a serum and
immunohistochemical marker of NB as well as other embryonal
cancers. All of these 19 genes represent potential biomarkers for
diagnosis, targets for therapy as well for development of im-
mune-based vaccine treatments.

In conclusion, we have developed a genome-wide database
of mRNA expression across a large number of human organs. We
demonstrate that the data are internally consistent and the glo-
bal pattern of gene expression reflects the function of the organs.
We have released the raw data for all 42,421 cDNA clones, which
are open to the public at http://home.ccr.cancer.gov/oncology/

oncogenomics/. This database allows investigators to make
simple queries of the data to extract gene expression profiles
based on IMAGE Clone ID, LocusLink number, Gene Ontology
Terms, Gene Ontology ID, Gene Symbol, UniGene ID, Clone
Title, Cytoband, and Chromosome. Additionally, investigators
can identify correlated genes or download the entire or subsets of
the data for their own analysis. We believe that our database will
be of wide interest and utility to both basic and translational
scientists.

Methods

Samples
A total of 158 tissue samples across 19 different organs were col-
lected from the Brain and Tissue Banks for Developmental Dis-
orders at the University of Maryland from 30 individual donors,
consisting of 17 males and 13 females with a median age of 20 yr
(range 3–469 mo). The donors came from three ethnic groups
(Caucasian, African American, Pacific Ocean Islands) (see Supple-
mental Table 1). Soon after surgical removal (median postmor-
tem hours [PMH] of 11 h), specimens were snap-frozen in liquid
nitrogen and kept in a deep freezer (�80°C) until RNA extrac-
tion. The profiles from 100 primary NB samples from various
tumors’ banks consisting of equal numbers of stage 1–4 and stage
4 with MYCN amplification were obtained from a prior study
(Krasnoselsky et al. 2004).

RNA extraction and construction of reference RNA
Total RNA extraction from tissue samples and seven human can-
cer cell lines (CHP212 RD, A204, RDES K562, CA46, and HeLa)
was done by published protocols (Wei and Khan 2002). We used
an Agilent BioAnalyzer 2100 (Agilent) to assess the integrity of
total RNAs. Equal quantities of total RNA from seven cancer cell
lines were pooled for RNA reference, which was used in all cDNA
microarray experiments.

RNA amplification and labeling of cDNA probes
mRNA amplification was done by a modified Eberwine RNA am-
plification procedure (Sotiriou et al. 2002) followed by indirect
fluorescent labeling of cDNA probes as described by Hegde et al.
(2000). In brief, amplified RNA was converted into cDNA with
incorporation of amynoallyl-dUTP (Sigma-Aldrich) by using Su-
perscript II RT enzyme (Invitrogen). After purification and drying
of cDNA, monoreactive-Cy3 for tissue samples or Cy5 (Amer-
sham Pharmacia) for reference were conjugated with amynoallyl-
dUTP on cDNA. Fluorescent-labeled probes were purified with
QIAGEN PCR purification kits (QIAGEN) according to the manu-
facturer’s instruction.

Fabrication of cDNA microarray, hybridization, image
acquisition, and analysis
Sequence-verified cDNA libraries were purchased from Research
Genetics, and a total of 42,421 cDNA clones, representing 25,933
UniGene clusters (13,606 known genes and 12,327 ESTs), were
amplified and purified. Then cDNA microarrays were printed us-
ing a BioRobotics MicroGrid II spotter (Harvard Bioscience). After
hybridization and washing of microarrays as described by Hegde
et al. (2000), we acquired images by an Agilent DNA microarray
scanner (Agilent), and analyzed them using the Microarray Suite
program as described previously (Chen et al. 1997), coded in
IPLab (Scanalytics).
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Data normalization and principal component analysis
Fluorescence ratios were normalized for each microarray by set-
ting the average log ratio for each subarray element to zero (com-
monly referred to as “pin-normalization”). The data were quality-
filtered by removing those clones that had poor quality measure-
ment (quality <0.5) for more than 20% of all the samples,
modified from Chen et al. (1997). Out of the 42,421 clones on
the chip, 36,153 passed this filter. For the clones that passed this
filter, the ratio of low-quality spots was set to the average obser-
vation for the other samples of the same tissue. This procedure
substituted one or more values per organ in 7% of the clones and
more than three values in <1% of the clones. The clones were
then assigned to UniGene Clusters (Unigene Build 166). For the
UniGene clusters represented by multiple spots or clones, mean
fluorescence ratios of those points are used. After these processes
we had 18,927 unique UniGene clusters remaining from the ini-
tial 42,421 clones. Where mentioned in the text, expression lev-
els averaged over organ samples were used. PCA was performed
using the log2 gene expression ratios of all the samples of the 18,
927 genes using Matlab (The Mathworks).

Stability of hierarchical clustering
All HC was performed using the Pearson correlation coefficient
distance metric. In order to analyze the stability of the results of
hierarchical clustering, we introduced a measure of similarity be-
tween two trees based on a comparison of the geometry of the
dendrograms. This approach was motivated by the observation
that dendrograms that appear very different by visual inspection
may actually encode identical relations. We therefore analyzed
the distances between leaves of the HC structure and how those
distances vary if different data sets were used for HC. The dis-
tance dAB between leaf A and B was defined in terms of the num-
ber N of internal nodes (branch points of the tree) passed to get
from A to B: dAB = 2�N. The exponent reflects how strongly the
average linkage algorithm of HC coupled the two leaves: at each
node the contribution of the pattern of A and B is reduced by 1⁄2
because of averaging of both sides of the branch. The variability
of dAB was defined as the variance of dAB when different sets of
genes were used for the clustering. The variability index for
whole HC structure was defined as the variability averaged over
all pairs of leaves. These observables were estimated numerically
by drawing 1000 random subsets of a given size from the genes
on the microarray. In order to set a scale for this observable, we
have also analyzed the variability index for trees generated from
random data. Owing to the lack of information, this type of data
does not generate a stable tree; therefore, the index obtained for
these data set a scale for data containing no reproducible struc-
ture. These random data were generated from a Gaussian distri-
bution. The decrease of variability for larger subsets, which was
found even for the random data, is of a technical nature, because
the random subsets have a considerable overlap if the size of the
random subsets is not small compared to the whole data set.

Gene Ontology analysis
The Gene Ontology (GO) consortium (Ashburner et al. 2000)
provides annotation for 47% of the clones in our experiment.
From the directed acyclyic graph structure of the GO, each node
is coupled to over- or underlying nodes via an “isa” or “part-of”
relation. A clone mapped to any given annotation is therefore
also associated with the parent nodes. The LocusLink database
provides a link to GO terms. We therefore mapped each clone to
a UniGene cluster and used the LocusLink identifier to associate
the clones with GO terms.

Reshuffling
We first selected genes with a variance larger than 0.25 (n = 7020
genes). The reshuffling algorithm has been previously used by
Cunliffe et al. (2003). A detailed description of the algorithm can
be obtained from http://www.thep.lu.se/pub/Preprints/00/
lu_tp_00_18.pdf. For this algorithm a Pearson correlation dis-
tance metric was used, and the end result of this procedure is to
place the genes in a unique order where the most correlated pairs
of genes are adjacent to each other. Using a window of size 160,
we tested overrepresentation of GO terms in this subset of clones
by estimating with the hypergeometric distribution the probabil-
ity to find the same number or more clones in this GO term by
chance alone. GO terms were selected as significantly enriched if
at any location the P-value for a nonrandom density of genes was
smaller than � = 0.0001. The P-values obtained in this way were
visualized by a heat map, where higher intensities represent
lower P-values [I = �log(P)].

Selection of genes
Differentially expressed genes were selected by a two-sided t-test.
In the analysis of genes driving the bifurcation of the hierarchical
clustering a threshold � = 10�8 was used, which reflects a correc-
tion for multiple comparison. Genes were selected as “uniquely”
up- or down-regulated in a tissue if by pairwise t-test with all the
other tissue samples the gene was significantly up-regulated
(down-regulated) with a threshold � = 0.01.

Identification of NB-specific genes
To select the genes that were highly overexpressed in NB com-
pared to the normal samples, we used a set of highly stringent
filters. We first identified differentially expressed clones using
the t-test (P < 0.01) and Bonferroni adjustment for multiple com-
parisons between a set of 100 neuroblastoma tumors (unpubl.) of
various clinical stages and a randomly selected set of 100 normal
samples distributed evenly throughout all 19 organs. From this
set of genes, we selected only those where the ratio of median
gene expression in NB to normal samples was >3. Next, we se-
lected those genes whose median ratio value in NB was twofold
greater than the maximum median value of all 19 organs. Finally,
we selected those genes that were associated with preselected GO
terms that would suggest good targets (Fig. 3C).

Web-based database development
The database contains the raw data for all 42,421 cDNA clones,
and is open to the public at http://home.ccr.cancer.gov/
oncology/oncogenomics/. The backend of the database uses
MySQL (http://www.mysql.com) to house the data. Perl scripts
are used both to query the database (DBI) and generate the HTML
(CGI) to display the query results. The publicly available data-
bases GeneKeyDB (http://genereg.ornl.gov/gkdb/) and Gene On-
tology (http://www.geneontology.org) form the backbone for
producing rich annotation associated with each cDNA clone. Us-
ers will be able to query genes based on IMAGE Clone ID, Lo-
cusLink number, Gene Ontology Terms, Gene Ontology ID,
Gene Symbol, UniGene ID, Clone Title, Cytoband, and Chromo-
some. Three normalization options exist for the user to choose
from: log2, median-centered log2, and median z-scored log2. The
results of the query can be viewed by either a heat map for mul-
tiple genes grouped by organ type or a bar chart for individual
genes also grouped by organ type. The raw data are available and
can be freely downloaded from http://www.genome.org or
http://home.ccr.cancer.gov/oncology/oncogenomics/ to the lo-
cal workstation for further individual analysis. Links to various
external databases populate the details page when an individual
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clone is selected. In the details page, clones that correlate (Pear-
son |correlation| �0.5) with that individual clone can be ex-
tracted. Future database developments will focus on enhanced
queries that will allow the user to search based on gene expres-
sion ratios for the various organ types.
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