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A Predictive Mathematical 
Modeling Approach for the Study 
of Doxorubicin Treatment in Triple 
Negative Breast Cancer
Matthew T. McKenna1,2, Jared A. Weis   2, Stephanie L. Barnes3,8, Darren R. Tyson   4, Michael 
I. Miga2,5, Vito Quaranta4 & Thomas E. Yankeelov3,6,7,8

Doxorubicin forms the basis of chemotherapy regimens for several malignancies, including triple 
negative breast cancer (TNBC). Here, we present a coupled experimental/modeling approach to 
establish an in vitro pharmacokinetic/pharmacodynamic model to describe how the concentration 
and duration of doxorubicin therapy shape subsequent cell population dynamics. This work features a 
series of longitudinal fluorescence microscopy experiments that characterize (1) doxorubicin uptake 
dynamics in a panel of TNBC cell lines, and (2) cell population response to doxorubicin over 30 days. We 
propose a treatment response model, fully parameterized with experimental imaging data, to describe 
doxorubicin uptake and predict subsequent population dynamics. We found that a three compartment 
model can describe doxorubicin pharmacokinetics, and pharmacokinetic parameters vary significantly 
among the cell lines investigated. The proposed model effectively captures population dynamics and 
translates well to a predictive framework. In a representative cell line (SUM-149PT) treated for 12 hours 
with doxorubicin, the mean percent errors of the best-fit and predicted models were 14% (±10%) and 
16% (±12%), which are notable considering these statistics represent errors over 30 days following 
treatment. More generally, this work provides both a template for studies quantitatively investigating 
treatment response and a scalable approach toward predictions of tumor response in vivo.

When cytotoxic therapy was first applied to cancer, few principles existed to guide its use1. Skipper provided a 
framework through the formulation of the log-kill hypothesis, postulating that a given dose of chemotherapy 
would kill a fixed fraction of tumor cells regardless of tumor size2. Based on this framework, a systemic chemo-
therapy paradigm was established, in which cytotoxic agents were administered several times, even after disease 
could no longer be detected. Following this, investigators sought to improve response through dose escalation, 
but their efforts were met with limited improvement in tumor response3, 4. Dosing paradigms were updated after 
Norton and colleagues hypothesized that tumor kill is proportional to tumor growth rate5. This led to develop-
ment of dose-dense schedules, which decrease the time between doses to target smaller, faster-growing tumors. 
These dose-dense schedules resulted in a significant improvement over previous treatment protocols6 and remain 
the standard-of-care for triple negative breast cancer (TNBC) treatment. In recent years, several theoretical mod-
els have been developed to further refine treatment regimens7. Of note, Gatenby and colleagues proposed an 
adaptive model which adjusts doses based on tumor volume changes8, 9. Metronomic dosing schedules advocate 
smaller, more frequent dosing10, 11. These new dosing approaches are predicated on both the timing of therapy 
administration and response evaluation12 but have revealed a fundamental limitation in the current understand-
ing of the pharmacokinetic (PK) and pharmacodynamic (PD) properties of cytotoxic agents. While the potency, 
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efficacy, and mechanism of action of these agents have been the target of study for years, these pharmacologic 
properties are inherently insufficient to predict the spatiotemporal response of individual tumors to treatment, 
limiting the ability to realize these theoretical dosing schedules.

In this contribution, we propose a scalable experimental/modeling framework that incorporates the dynamics 
of therapy and response. In this way, we hope to complement theoretical dosing models with a precise approach 
to scale in vitro observations to in vivo experiments. The utility of this framework is demonstrated in the context 
of doxorubicin treatment in TNBC. Doxorubicin is a standard-of-care, DNA-damaging agent used in the treat-
ment of a host of malignancies, including TNBC13–15. As we review below, the current approaches to the study 
of doxorubicin are insufficient to generate temporally-resolved predictions of TNBC response to time-varying 
doxorubicin treatments.

Cellular response to a given therapeutic is often evaluated by one of a variety of in vitro assays and generally 
interpreted using dose-response curves. In these assays, drug is typically applied to a cell population over a wide 
range of concentrations. Following a predefined treatment time (usually 72 hours) drug effect is quantified with 
one of many end-point assays that measure the number of viable cells (often indirectly). These data are then 
analyzed with the Hill equation, a sigmoidal function that is used to describe the relationship between drug 
concentration and drug effect16. The Hill equation contains a number of free parameters including: the maximal 
drug effect (Emax), the concentration of drug that yields a half-maximal effect (EC50), the effect in the absence of 
drug (E0), and the Hill coefficient (h), which describes the slope of the dose response curve. The parameters that 
result from the best fit of the model to the dose-response curves are specific to each cell line, and those data are 
used to guide drug dosing for subsequent in vivo experiments. While this approach has great merit in evaluating 
drug efficacy and identifying new therapeutics, it necessarily overlooks the importance of the relative timing of 
treatments and response measurement. Further, slight changes in experimental duration or growth conditions 
have been shown to significantly impact estimation of model parameters17, 18. Even proposed metrics that analyze 
population rates of change to correct for varying cell line behaviors and experimental protocols assume a constant 
population rate of change following application of therapy17, 18. Consequently, the predictive potential of such 
approaches is fundamentally limited, particularly in the setting of cytotoxic agent use in vivo, in which agents are 
applied as impulses and resilient populations, which demonstrate temporally-varying population growth rates 
following therapy, are often observed.

Relative to the efficacy studies above, the temporal relationship between cytotoxic treatment and its effects has 
received little attention. Eichholtz-Wirth and colleagues first demonstrated the dependence of cell survival on 
doxorubicin exposure time, deriving an empirical relationship between surviving fraction of cells (SF), drug con-
centration (c), and length of exposure (t), through a sensitivity constant (k): SF = e−ktc 19. Others have proposed 
modifications to the classic Hill function to incorporate drug exposure times20, 21. To resolve the temporal dynam-
ics of the cellular response to therapy, Lobo and Balthazar proposed a transit compartment model to describe 
the relationship between drug application and the time lag until drug effects were realized22. These models were 
all built utilizing end-point assays evaluating the percent survival following various exposure times. Lankelma 
employed a host of clonogenic assays following treatment with various concentrations of doxorubicin for multiple 
exposure times23, 24. They quantified cell population size over time and constructed a model relating treatment 
parameters to these cell population dynamics. However, a model of therapy response that incorporates both the 
dynamics of therapy (pharmacokinetics) as well as the dynamics of cellular response (pharmacodynamics) has 
remained elusive. Such modeling would represent a critical advance, as it would allow more precise measure-
ments of response and customization of treatment protocols following estimation of PK parameters.

This work focuses on the construction of a mathematical model to predict TNBC cell population dynam-
ics in response to time-varying doxorubicin treatments. The approach outlined below incorporates a series of 
experiments in a panel of four TNBC cell lines designed to measure both the in vitro pharmacokinetics (PK) and 
pharmacodynamics (PD) of doxorubicin therapy. The PK/PD parameters are quantified through time-resolved 
fluorescent microscopy, and these data are used to drive the development of a treatment response model. This 
approach yields a mathematical model of doxorubicin therapy with distinct parameter value sets for each TNBC 
cell line. This model can generate hypotheses that are directly testable in both the in vitro and in vivo settings. 
Thus, the objectives of this contribution are to: (1) establish a model that describes in vitro doxorubicin phar-
macokinetics, (2) establish a model relating treatment variables (concentration and duration) to subsequent cell 
population dynamics, and (3) propose a prediction scheme leveraging doxorubicin pharmacokinetic and phar-
macodynamic data to predict response to various doxorubicin treatments (Fig. 1).

Methods
Cell culture.  TNBC is a subgroup of invasive cancers that lack significant expression of the estrogen receptor, 
progesterone receptor, and human epidermal growth factor receptor 225. Lacking specific receptor targets, the cur-
rent approach to adjuvant and neoadjuvant therapy (NAT) for locally advanced TNBC utilizes a combination of 
cytotoxic drugs with a particular emphasis on doxorubicin, cyclophosphamide, and docetaxel13–15. Lehmann and 
colleagues identified six subtypes of TNBC: two basal-like subtypes, an immunomodulatory subtype, a mesen-
chymal subtype, a mesenchymal stem cell-like subtype, and a luminal subtype expressing androgen receptor26, 27.  
One cell line from four of these groups was selected for the current studies: MDA-MB-468 (basal-like 1), SUM-
149PT (basal-like 2), MDA-MB-231 (mesenchymal), and MDA-MB-453 (luminal expressing androgen receptor). 
In selecting cell lines in this way, the proposed model of doxorubicin response can be assessed across a heteroge-
neous spectrum of TNBC cell lines.

All cell lines were obtained through American Type Culture Collection (ATCC, http://www.atcc.org) and 
maintained in culture according to ATCC recommendations. All cell lines were tested for mycoplasma after 
thawing using a PCR-based method (MycoAlert, Lonza, Allendale, NJ), and any positive cultures were imme-
diately discarded. To facilitate automated image analysis for identifying and quantifying individual nuclei in the 
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time-lapsed fluorescent microscopy experiments (described below), each of the four cell lines was modified to 
express a histone H2B conjugated to monomeric red fluorescent protein (HαmRFP; Addgene Plasmid 18982) as 
previously described17, 28, 29. Modified cells were grown in the same manner as their respective parental strains.

Doxorubicin imaging and image processing.  Time resolved fluorescent microscopy was employed to 
characterize the uptake of doxorubicin by each cell line. Doxorubicin is naturally fluorescent with excitation and 
emission peaks near 470 nm and 570 nm, respectively30. The intrinsic fluorescence of doxorubicin was lever-
aged to quantify the movement of doxorubicin from the extracellular space into cells. Each parental cell line was 
introduced into 96-well microtiter plates at ~10,000 cells per well. Each well was imaged at ~15 minute intervals 
via brightfield and fluorescent microscopy with a 20x objective in 2 × 2 image montages on a BD Pathway 855 
Bioimager (BD Biosciences, San Jose, CA). Imaging began one hour prior to application of doxorubicin and 
continued for approximately 24 hours following doxorubicin application. An 8-fold range of doxorubicin con-
centrations, from 2500 nM to 312 nM, were applied to cells using a two-fold dilution series. After 6 or 12 hours, 
drug was removed via media replacement. Each of the ten conditions (i.e., four concentrations plus a control each 
at two exposure times) were collected in duplicate. These treatment conditions were designed to approximate 
drug exposure of human tumors in vivo as measured by the area under the doxorubicin concentration-time 
curve (a range of 1875 to 30000 nM∙hr was used experimentally to approximate the 4427 ± 418 nM∙hr observed in 
vivo31) and peak doxorubicin concentration (312 to 2500 nM experimentally to approximate the 1000 to 5000 nM 
observed in vivo31).

Digital images were segmented into extracellular and intracellular compartments through a hybrid, 
semi-automated process. Prior to doxorubicin application, segmentation was performed exclusively on the 
brightfield images to identify cell boundaries. Following application of doxorubicin, segmentation was performed 
on the fluorescent images with a threshold-based approach. See Supplementary Materials for details.

Doxorubicin compartment modeling.  A three compartment model was employed to describe the uptake 
and binding of doxorubicin in cancer cells. Briefly, doxorubicin is thought to enter cells via diffusion, possibly 
through a saturable carrier-mediated process32, 33. Once in the cell, doxorubicin is translocated to the nucleus 
where it intercalates DNA and stabilizes the topoisomerase II complex34, 35. Doxorubicin may also be actively 
effluxed from the cell via p-glycoprotein36. This process is modeled via mass conservation in Eqs (1–3):

Figure 1.  Overview of cell-line specific modeling framework for doxorubicin treatment response prediction. 
A series of time-resolved fluorescence microscopy experiments were performed to quantify both the uptake of 
doxorubicin into TNBC cell lines (a) as well as the response of those cell lines to various doxorubicin treatments 
(b). Data from these experiments were used to fit the model (i.e., Eqs (1–5)) of treatment response in TNBC 
(c). After training the model on observed data, the model can be initialized with a cell count and a prescribed 
treatment timecourse to predict cell population dynamics following the proposed treatment (d). These 
predictions can then be compared to experimental results.
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where CE(t), CF(t), and CB(t) are the concentrations of doxorubicin in the extracellular, free, and bound com-
partments, respectively, at time t. Both the free and bound compartments were defined to share the same phys-
ical space (intracellular). The free compartment represents drug that has diffused into the cell, while the bound 
compartment represents drug that has bound to the DNA. The kij parameters are rate constants that describe the 
movement of doxorubicin between each of these compartments; for example, kFE describes the rate of drug trans-
fer from the free, intracellular compartment to the extracellular compartment. Similar definitions apply to kEF 
and kFB. The volumes of the intracellular and extracellular compartments are denoted with vI and vE, respectively. 
The model is illustrated in Fig. 2a. Of note, each cell line is assumed to have a single set of compartment model 
parameters (i.e., kEF, kFE, and kFB), and those parameters are assumed to be independent of drug concentration 
and drug exposure time. Further, to simplify the model, saturation kinetics for doxorubicin transport are not 
explicitly included.

The extracellular and intracellular compartments were defined from the cell segmentation. To create fluores-
cent intensity timecourses for the intracellular and extracellular compartments, fluorescence signal was averaged 
within the respective (segmented) compartments on each image. These two intensity timecourses (extracellular 
and intracellular) were converted to concentration, as doxorubicin concentration is proportional to observed 

Figure 2.  Overview of Doxorubicin Compartment Modeling. Doxorubicin pharmacokinetics is described 
with a three compartment model, illustrated in (a) and described by Eqs (1–3). To parameterize this model, 
each cell line is serially imaged via brightfield (b) and fluorescent microscopy (c) to monitor doxorubicin 
concentration over time. Images are separated into extracellular and intracellular (red overlay) compartments. 
As fluorescence intensity is proportional to doxorubicin concentration (d), the image intensities are converted 
into concentration, and extracellular and intracellular concentration timecourses are extracted from these 
images (e). Finally, the model is fit to these timecourses (e), and the model fit with 95% confidence interval are 
overlaid on the data. Experimentally-derived model parameter values with 95% CIs are reported for each TNBC 
cell line investigated (f–h).
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fluorescence intensity (Fig. 2d). The volume of the extracellular compartment, vE, was set to 250 µL, the volume of 
media in each well. The intracellular volume, vI, was estimated by multiplying the number of cells seeded (10,000) 
by an estimate of cell volume (an ellipsoid model was fit to cell segmentation results). A nonlinear least squares 
approach implemented in MATLAB (Natick, MA) was used to fit Eqs (1–3) to the concentration timecourses 
for each treatment condition to generate estimates for kEF, kFE, and kFB. Note that the extracellular compart-
ment was treated as a well-defined, experimentally-controlled input function and was not fit by the model. For 
example, to generate the extracellular compartment timecourse illustrated in Fig. 2e, a bolus of doxorubicin was 
added to the experimental well t = 0 hours. At t = 6 hours, the drug was removed via media replacement; i.e., all 
drug-containing media is removed from the well, and fresh, drug-free media was added. This input function was 
used to perturb the system to measure the underlying cell line-specific compartment model parameters. The com-
partment modeling approach is outlined in Fig. 2, and details of the model fitting are included in Supplementary 
Materials.

Treatment response monitoring.  Each H2B-labeled TNBC cell line was added to 96-well microtiter 
plates at ~2,500 cells per well. Cells were grown for at least three days to allow for a pre-treatment proliferation 
rate to be estimated. Doxorubicin was then introduced at concentrations ranging from 2500 to 10 nM with a 
two-fold dilution series and subsequently removed via media replacement after 6, 12, or 24 hours (areas under 
doxorubicin concentration-time curve ranging from 60 to 60000 nM∙hr). These experimental conditions were 
designed such that the areas under the doxorubicin curves overlapped those observed in vivo31. These cells were 
imaged daily via fluorescent microscopy for at least 30 days following application of doxorubicin. For these treat-
ment response studies, fluorescence microscopy images were collected using a Synentec Cellavista High End 
platform (SynenTec Bio Services, Münster, Germany) with a 20x objective and tiling of 21 images. Exposure times 
with 570 nm light were optimized for each cell line to account for varying label strength and ranged from 600–
650 ms. Nuclei were segmented and counted in ImageJ (http://imagej.nih.gov/ij/) using a previously-described 
method37 to quantify cell population. Six replicates of each of the 30 treatment conditions (nine concentrations 
plus a control for each drug exposure time) were collected for each cell line. Media was refreshed every 3 days 
for the duration of each experiment to ensure sufficient growth conditions for surviving cells. Representative cell 
count data from these experiments are shown in Figs 3 and 4.

Figure 3.  Impact of doxorubicin concentration and exposure time on response of SUM-149PT cells. The 
SUM-149PT cell line was plated and serially imaged via fluorescence microscopy for 30 days following time-
resolved doxorubicin treatments. Nuclear counts from these images are displayed below in black with error bars 
representing the 95% CI from the six experimental replicates. These counts are fit to Eqs (4 and 5) as described 
Section 2.5. Model fits with 95% CI are superimposed on the cell counts. The SUM-149PT cell line demonstrated 
a graded dose-dependent and time-dependent response to doxorubicin treatment. At low concentrations, no 
appreciable treatment effect is noted regardless of exposure time (a–c). At higher concentrations and exposure 
times, the population growth rate slows (d,e), eventually demonstrating a prolonged response to therapy with 
subsequent regrowth of the population (f–h). At very high concentrations and exposure times, no population 
regrowth is observed (i).

http://imagej.nih.gov/ij/
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Treatment response model.  Doxorubicin canonically induces DNA damage by intercalating DNA bases, 
stabilizing the topoisomerase II complex, and inducing DNA damage via free radical formation35. At high doses 
(here, dose is defined as a summary statistic of a treatment condition, consolidating drug concentration and drug 
exposure time, and is denoted D), extensive DNA damage often results in cell death via apoptosis. Low to mod-
erate doses of doxorubicin induce cell senescence, and cell death occurs primarily via mitotic catastrophe38, 39.  
Whereas apoptosis is immediate (on the order of hours to days), mitotic catastrophe is a relatively protracted 
process (on the order of several days). This is likely due to the fact that cells must progress through the cell cycle 
to reach mitosis for this mode of death to occur, and doxorubicin is known to cause cell cycle arrest. These pro-
cesses were modeled by a logistic growth model, Eq. (4), modified by either one of two time-dependent response 
functions, Eq. (5A) and (B), reflecting the distinct forms of cell death, as follows:
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where kp and kd are the proliferation and dose-specific death rates, respectively, r is a dose-specific constant 
describing the rate at which treatment induces an effect, θ is the dose-specific carrying capacity describing the 
maximum number of cells that can be supported by the experimental system, and NTC(t) is the number of tumor 
cells at time t. Prior to treatment (i.e., t < 0), cells are modeled to have a constant proliferation rate, kp. Following 

Figure 4.  Dose-response curves in a panel of TNBC cell lines. Each cell line was plated and serially imaged 
via fluorescence microscopy for 30 days following a 6-hour doxorubicin treatment. Nuclear counts from 
these images are displayed below in black with error bars representing the 95% CI from the six experimental 
replicates. Each column corresponds to an individual cell line, and each row corresponds to a doxorubicin 
concentration. These counts are fit to Eqs (4–5) as described Section 2.5. Model fits with 95% CI are 
superimposed on the cell counts. While there is significant variability in cell line sensitivity to doxorubicin 
treatment, the dynamics of each cell line follows a similar pattern: following treatment the population growth 
rate slows as a function of treatment, and depending on the treatment duration and concentration, a rebound in 
population growth rate is observed.
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treatment at t = 0, Eq. (5A), assumed an immediate transition from the pre-treatment growth rate to a stable, 
post-treatment rate. Eq. (5B), allowed for a smooth induction of drug effect following treatment, while ultimately 
allowing for recovery of the cell population. A weighted averaging approach, detailed below, was used to incorpo-
rate both Eq. (5A) and (B) in the treatment response model. Cell populations are assumed to be homogeneous in 
that the average behavior of the population is used to describe population dynamics. Of note, an analytic solution 
of Eqs (4 and 5) was derived to improve computational speed.

For each cell line, Eq. (4) was fit to pre-treatment and untreated control data, yielding a single, cell-line specific 
estimate for the proliferation rate, kp, and carrying capacity, θ. Fixing kp for each cell line, the treatment response 
models, Eq. (5A) and (B), were then fit to the post-treatment data.

For each cell line, all data from a single doxorubicin exposure time experiment were considered simultane-
ously in the parameter optimization. Separate parameter estimates were made for each doxorubicin concentration 
in each exposure time dataset. Specifically, parameter estimates and the corresponding 95% confidence intervals 
were obtained for kd,A and θ in Eq. (5A), and kd,B, r, and θ in Eq. (5B) from the post-treatment cell counts. To per-
form this estimation, a nonlinear least squares approach was implemented in MATLAB, utilizing the trust-region 
reflective algorithm. Notably, in fitting each model, a regularization term was introduced to the objective func-
tion, G(x), to penalize non-smooth variation in parameter values with respect to treatment conditions as follows:
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where x is the set of parameters, Yt,c is the measured cell counts at time t and concentration c, Ŷt,c(x) is the 
model-estimated cell counts at time t and concentration c when the model is evaluated with parameters x, ci and 
cf are the minimum and maximum drug concentrations respectively, ti and tf are the initial and final timepoints 
respectively, and α is an empirically-determined positive constant that weights the contribution of the regular-
ization term, Dc(x), which is a first derivative operator that estimates the local derivative of the parameters with 
respect to treatment condition (as described below). The regularization term provides structure to parameter 
estimates that are otherwise unable to be resolved with the treatment response data. In turn, the regularization 
term improves performance of the local regression approach used for predictions in Section 2.6, which is sensitive 
to local variance in parameter estimates. Details of the fitting approach are included in Supplementary Materials.

The maximum bound concentration of doxorubicin (CB,max) and the area under the curve of the extracellular 
concentration timecourse (AUC) were both used to summarize each treatment condition (D in Eqs (4 and 5))35. 
We hypothesized that the CB,max metric would sufficiently describe both the topoisomerase-II mechanism of dox-
orubicin as well as doxorubicin’s free-radical mechanism, due to redox cycling of doxorubicin that persists within 
cells40. To calculate CB,max, the compartment model (i.e., Eqs (1–3)) was populated by cell-line-specific parameters 
and run forward in time using the specified extracellular concentration timecourse for each treatment condition. 
CB,max was defined to be the maximal concentration in the bound compartment during the model evaluation. 
As doxorubicin is hypothesized to also have an extracellular effect21, 41, the AUC was also used as a descriptor of 
treatment condition. AUC was defined as the integral of the extracellular concentration timecourse with respect 
to time (simply (doxorubicin concentration) × (exposure time) in the pulsed treatments used in this study).

To generate a single best-fit model, a weighted averaging approach was employed. Model weights were cal-
culated from the Akaike information criterion (AIC) for each kd(t) model (i.e., Eq. (5A) and (B))42. The AIC is a 
measure of model likelihood that balances goodness of fit with the number of free parameters. The AIC for model 
i can be calculated with the following equation:

= +AIC n RSS
n
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where n is the number of data samples, RSS is the residual sum of squares of the fit-optimized model, and p is 
the number of model parameters. The normalized probability of model i being the best model, wi, among all 
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where Δi is the difference in AIC values between model i and the model with the minimal AIC value and R is 
the total number of models43, 44. The best-fit model, NTC(t), can then be calculated by weighting Eqs (4 and 5) as 
follows:

= +N t w N t w N t( ) ( ) ( ),TC A TC A B TC B, ,

where NTC,A(t) and NTC,B(t) are the solutions to Eq. (4) populated with Eq. (5A) and (B) respectively, and wA and 
wB are the respective weights for those models.

This fitting approach was validated on a synthetic dataset to ensure that parameter estimation routines suc-
cessfully returned true model values (Supplementary Figs S4 and S5). To determine the effect of parameter var-
iance on model behavior, the sensitivity of model predictions at the end of the experiment to each parameter 
was measured using the extended Fourier Amplitude Sensitivity Test45. The total-order sensitivity index, STI, is 
reported. This metric is scaled from 0 to 1 and represents the fraction of model output variance that can be appor-
tioned to variance in the parameter under investigation (Fig. S6, Supplementary Materials).

http://S4
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Prediction of treatment response.  The proposed model, as constructed, can accommodate a range of 
treatment times and concentrations. While this model is intended as a more general predictive framework, to 
demonstrate the utility of the modeling approach, the ability of the model to predict population changes following 
treatment at new concentrations and exposure times was evaluated. In this example, data from a single exposure 
time (12 hours; i.e., the ‘training set’) is used to train the model (i.e., Eqs (4 and 5)) to predict cell counts following 
treatments for 6 and 24 hours (i.e., the ‘test set’). This analysis was repeated using each exposure time dataset as a 
training set (e.g., 6- hour dataset used to predict cell counts following 12- and 24-hour treatments).

Model parameters and weights first were fit to the treatment response data in the training set as described in 
Section 2.5. Next, each treatment condition in the test set was described by its CB,max and AUC values. As these val-
ues in the test set may not overlap exactly with those values in the training data, localized linear regression models 
were used to interpolate parameter space to generate parameter estimates at the specified CB,max and AUC values46. 
This approach fits a linear model to training data near the CB,max and AUC of interest. Model weights (i.e. wA and 
wB) for the test set then were estimated through a binomial logistic model. This logistic function was trained to 
define the relationship between estimated model weights in the training set and the corresponding CB,max, AUC, 
and model parameter values. Finally, models were initialized with the first post-treatment measurements in the 
test set and run forward using the estimated parameter values to produce cell count predictions. This approach is 
outlined in Fig. S9 (Supplementary Materials).

The mean percent error across all timepoints and mean percent error at the end of the experiment are reported 
for the predicted models and corresponding best fit models. Confidence intervals on the predicted timecourses 
were constructed through a bootstrap analysis described in Supplementary Materials.

Results
Doxorubicin uptake.  A three compartment model was sufficient to describe doxorubicin uptake in all cell 
lines. The mean percent errors of the model fit across all treatment conditions were 31.8%, 34.6%, 23.5%, and 
26.8% for the SUM-149PT, MDA-MB-231, MDA-MB-453, and MDA-MB-468 cell lines respectively. Model 
residuals are shown in Fig. S2 (Supplementary Materials). A sample doxorubicin uptake curve is displayed in 
Fig. 2e along with compartment model parameter fits for each cell line with 95% confidence intervals. Significant 
differences were observed when comparing parameter fits from different cell lines. For example, kEF is signifi-
cantly greater in the MDA-MB-231 line than in the MDA-MB-468 line, indicating that doxorubicin diffuses more 
quickly into MDA-MB-231 cells (p < 0.05).

Doxorubicin treatment response.  Experimentally, all cell lines demonstrated a graded 
concentration-dependent and time-dependent response to doxorubicin treatment. Prior to treatment with 
doxorubicin at t = 0, each cell line displayed exponential growth. The proliferation rate (kp) of the SUM-
149PT, MDA-MB-231, MDA-MB-453, and MDA-MB-468 cell lines were 2.69 × 10−2 hr−1, 2.23 × 10−2 hr−1, 
1.64 × 10−2 hr−1, and 1.18 × 0−2 hr−1, respectively. In untreated controls, each cell line demonstrated logistic 
growth with cell-line specific carrying capacities (θ) of 3.81 × 104, 1.86 × 104, 2.21 × 104, and 1.64 × 104 for the 
SUM-149PT, MDA-MB-231, MDA-MB-453, and MDA-MB-468 cell lines (Fig. S3, Supplementary Materials).

Following treatment, responses varied from continued, positive growth up to immediate population 
regression. This spectrum of responses is illustrated by the SUM-149PT response data in Fig. 3. At low doses 
(AUC < 480 nM∙hr) doxorubicin has little effect, and cell populations continue to grow exponentially up to a car-
rying capacity (3a–c). As concentration and exposure time increase, the population growth rate appears to slow 
(3d). Eventually, a nonlinear response defined by a protracted slowing of population growth rate with a recovery 
back to pre-treatment growth rate is observed (3e–h). At high doses (AUC > 25 × 103 nM∙hr), the cell population 
rapidly declines (kd,a ≥ 2.9 × 10−2 hr−1), and no population rebound is observed during the experiment (3i).

The dose levels that correspond to the effects described above were specific to each cell line. In Fig. 4, cell 
counts from each cell line following doxorubicin treatment for six hours at three concentrations are shown. The 
SUM-149PT line is relatively insensitive to doxorubicin therapies, demonstrating continued growth in all treat-
ment conditions shown in Fig. 4. Comparatively, the MDA-MB-468 line is very sensitive to doxorubicin therapy, 
demonstrating complete population regression at low doxorubicin doses (AUC ≥ 186 nM∙hr). The MDA-MB-231 
and MDA-MB-453 cell lines displayed intermediate sensitivity. Despite the differential sensitivities, each of these 
cell lines followed the same general pattern described above.

Model fits.  As described in Section 2.5, the treatment response model was fit to each treatment condition. 
These model fits and 95% confidence intervals are superimposed on the cell counts in Figs 3 and 4. The mean 
percent error across all timepoints and mean percent error at the end of experiment (EoE) for the best-fit model 
to the SUM-149PT cell line after 6 and 24 hours of doxorubicin treatment are reported in Table 1. As shown in 
Table 1, the model was able to accurately capture a wide range of treatment conditions very accurately with mean 
percent errors of ≤15% for concentrations less than 625 nM after 6 hours of treatment. At higher concentrations, 
the model appears to perform poorly with mean errors >25%. However, in these cases, the small number of cells 
results in noisier measurements at all timepoints. Corresponding statistics for MDA-MB-231, MDA-MB-468, and 
MDA-MB-453 cell lines can be found in Table S1 (Supplementary Materials).

Model parameter values changed with respect to treatment conditions within a given cell line. In Fig. 5, the 
parameter values with corresponding 95% confidence intervals extracted from experiments with the SUM-
149PT cell line are reported. Note that the parameter values extracted across all exposure-time experiments for 
all investigated cell lines appear to collapse to a single curve for each parameter when plotted as a function of 
CB,max. Similarly, the carrying capacity (θ) appears to change slightly as a function of treatment condition (Fig. S7, 
Supplementary Materials). However, θ was unable to be estimated for high doxorubicin doses that induce popu-
lation regression. Further, different models are selected over the range of treatments. Eq. (5B) is favored at lower 
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CB,max values (wB ≈ 1) for the SUM-149PT cell line, while Eq. (5A) is selected at higher values (wB ≈ 0) (Fig. S8, 
Supplementary Materials). Of note, the model is relatively insensitive to values of r at low CB,max with STI ≤ 0.3 
(meaning that other parameters account for 70% of model variation in this range).

Model predictions.  The prediction scheme in Section 2.6 was trained on the 12-hour exposure time data-
set in the SUM−149PT cell line to generate predictions of population dynamics following 6- and 24-hour 

Concentration 
(nM)

SUM-149PT

6 hour Doxorubicin Treatment 24 hour Doxorubicin Treatment

Average % Error Mean % Difference EoE Average % Error Mean % Difference EoE

Best-fit Predicted Best-fit Predicted Best-fit Predicted Best-fit Predicted

10 5.3 5.5 3.8 4.7 6.4 7.1 5.7 5.7

20 5.3 5.6 3.0 3.6 5.6 9.5 4.3 7.0

39 6.1 6.6 4.6 6.3 5.5 10.2 4.9 8.1

78 6.1 7.1 5.0 6.6 10.3 10.5 8.7 9.1

156 4.6 5.3 4.5 4.0 22.7 22.5 12.0 9.9

312 9.4 13.6 6.8 5.9 31.4 32.5 25.2 26.9

625 15.0 16.9 13.1 11.9 50.8 53.6 120.3 150.9

1250 34.0 37.3 34.3 34.2 30.2 40.6 23.1 101.0

2500 24.4 42.5 61.1 159.9 40.0 59.0 32.0 117.3

Average Errors 12.2 15.6 15.1 26.3 22.5 27.3 26.2 48.4

Table 1.  Table of model statistics for SUM-149PT cell line following 6 and 24 hours of treatment with 
doxorubicin.

Figure 5.  Parameter fits from Eq. (5) in a panel of TNBC cell lines as a function of CB,max. The parameters in 
Eq. (5) are fit to each treatment condition as described in Section 2.5 and plotted with 95% confidence intervals 
against the cell-line specific simulated CB,max from Eqs (1–3). The blue X’s, red O’s, and green Δ’s represent the 
parameter fits extracted from the 6, 12, and 24 hour exposure time datasets respectively. Model parameters 
estimated from each exposure time appear to collapse on each other, when described by CB,max – a summary 
statistic of each treatment condition. This indicates that the compartment model is effective at describing the 
treatments. Further, given that each cell line appears to follow a single trajectory for each parameter, this model 
can be used to predict cell population response to any predefined input function. The gray areas for parameter r 
represent treatment ranges where the total-order sensitivity index (STI), which describes the effect of parameter 
variation on model prediction variation, is ≤0.3. Thus the large variance in parameter estimates here has a 
limited impact on model predictions.

http://S8


www.nature.com/scientificreports/

1 0Scientific Reports | 7: 5725  | DOI:10.1038/s41598-017-05902-z

doxorubicin treatments. A set of model predictions is shown in Fig. 6 overlaid on experimental data, and pre-
dictions appear to qualitatively match experimental data. Table 1 reports the mean percent error across all time-
points and mean percent error at the EoE of the predictions for the SUM-149PT cell line at each concentration. As 
shown in Table 1, the error rates of the predicted model compare favorably to those of the best fit model, with the 
average percent error differing by 3.4% between the groups, on average. Further, the predictive model performs 
very well according to average error at concentrations up to 625 nM with an average error of 8.7% across those 
concentrations. The predictions degrade along with the best-fit model at higher concentrations. Similar results 
were obtained when the prediction scheme was trained with the 6-hour and 24-hour datasets (Tables S2 and S3 
respectively, Supplementary Materials). The average percent error differed by 4.1% between the best fit and pre-
dicted models on average in these experiments.

Discussion
A modeling approach has been introduced that can be used to summarize the PK/PD properties of doxorubicin 
in TNBC cell lines. Cell-line specific model parameters can be estimated from experimental data, revealing phe-
notypic heterogeneity in PK/PD properties not previously quantified. Further, the PD properties were found to 

Figure 6.  Model prediction results in SUM-149PT cell line. As described in Section 2.6, model parameters (kd,A, 
θ in Eq. (5A) and kd,B, r, θ in Eq. (5B)) were fit to each treatment condition in the training set (12-hour exposure 
dataset). These parameter fits were then described by local regression models to generate model parameter 
estimates for treatments in the test set (6- and 24-hour exposure datasets). Final predictions represent a 
weighted average of Eq. (5A) and (B), and a bootstrap analysis was used to generate a 95% confidence interval 
for these predictions (red overlay). A series of predictions in the SUM-149PT cell line following 6- and 24-
hour doxorubicin treatments at three doxorubicin concentrations are shown. Nuclear counts from these 
experiments are displayed in black with error bars representing the 95% CI from the six experimental replicates. 
Each column corresponds to an exposure time. The response of a TNBC cell line can be predicted using 
experimentally-derived PK and PD parameters.

http://S2
http://S3


www.nature.com/scientificreports/

1 1Scientific Reports | 7: 5725  | DOI:10.1038/s41598-017-05902-z

vary as a function of CB,max and AUC, summary statistics of doxorubicin PK. This allows for accurate prediction of 
cell population behavior for up to one month following prescribed doxorubicin treatments in vitro.

The pharmacokinetics of doxorubicin binding in a panel of cell lines can be characterized by a three compart-
ment model. Similar to findings by Shin et al., there are significant differences in doxorubicin pharmacokinetics 
among TNBC cell lines32. Interestingly, these parameters are only loosely correlated with response. For example, 
the MDA-MB-231 has a greater uptake of doxorubicin (as estimated by CB,max) than the MDA-MB-468 line; 
however, the MDA-MB-468 line is more sensitive to doxorubicin therapy. This suggests that each cell line has an 
intrinsic sensitivity to stress by doxorubicin. More generally, this model can be leveraged to isolate and normalize 
for variable uptake dynamics in the context of doxorubicin resistance. This could help refine approaches to iden-
tify mechanisms of resistance and subsequently develop targeted agents to address those mechanisms.

The model relating treatment variables (concentration and duration) to subsequent cell population size 
dynamics proposed in this work captures behavior across a range of TNBC cell lines. While each cell line can be 
described by a specific set of parameters, there is an underlying behavior common to all cell lines that is described 
by the model: an apparent continuum of responses from exponential growth to population regression as doxoru-
bicin concentration and exposure time are increased. Further, TNBC response to doxorubicin therapy generally 
appears to be a deterministic process. Over a wide range of treatment conditions, cell populations responded con-
sistently, as evidenced by the confidence intervals on the cell count data in Figs 3, 4 and 6, the overlapping param-
eter curves in Fig. 5, and the accuracy of predictions in Table 1. Several models in the literature have assumed 
a direct relationship between treatment variables and cellular response – either immediate47 or following some 
fixed delay22, 48. Consistent with those delay models, the data presented in this work indicate that drug effects 
occur on a slower timescale relative to drug binding. Characterizing and reporting on these dynamic measures 
would enhance information from traditional potency-based assays. Understanding the dynamics of therapeutic 
administration and treatment response can inform drug treatment schedules and will provide guidance to opti-
mize response monitoring.

Interestingly, there appears to be an upper threshold on doxorubicin treatment above which all cells die. As 
that concentration threshold is approached, increased variance is observed in population dynamics, especially at 
later timepoints. For example, in this range of therapy, one or two experimental replicates would regrow while no 
growth was observed in the other replicates (e.g., Fig. 3h). This contributes partly to the high error rates at high 
concentrations in Table 1. In these cases, the heterogeneity of the cell population or stochastic cell fate decisions 
may likely have an increased influence on population dynamics49. We emphasize that such increases in variance 
are more often observed as this treatment threshold is approached. This observation questions the use of maxi-
mum tolerated dosing schemes, which operate in this high-variance range50, 51. Considering the data presented 
in this work in the context of proposed adaptive dosing and metronomic dosing approaches8–11, there may exist a 
framework in which drug schedules can be customized for each patient to generate predictable changes in tum-
ors. Indeed, the PK/PD modeling framework proposed in this work provides a means to more precisely test those 
alternative therapeutic approaches. Even in the current state of TNBC therapy, doxorubicin is often delivered on a 
predefined schedule for all patients with only doses adjusted for patient body-surface area. The demonstrated het-
erogeneity among TNBC cell lines, both in their uptake of doxorubicin and the effect of doxorubicin on those cell 
behaviors, suggests that additional metrics are needed for proper dosing of doxorubicin in TNBC. Tumor-specific 
PK properties may be required to normalize tumor response measurements to delivered doxorubicin dose.

This work is further distinguished through its use of a model averaging approach; i.e., the best-fit PD model 
is a weighted average of two distinct treatment response models (Eq. (5A) and (B)). Fundamentally, different 
cellular processes dominate over the dose range investigated (apoptosis at high doses, mitotic catastrophe at low 
to intermediate doses)38, 39. These disparate behaviors are observed in the data, and the model was constructed to 
account for these behaviors. Notably, Eq. (5A) is unable to explain the regrowth seen at low doses, and Eq. (5B) is 
unable to describe permanent population regression seen at high doses. The model averaging approach demon-
strated here can be used to summarize the behavior of cell populations over the entire range of doses investigated. 
Further, this approach can be used to gain biological insight into the behavior of cell lines. Apoptosis is com-
monly treated as a switch-like process, which commits a cell to death at some biologically-defined threshold52. 
Similarly, a switch in model weights towards Eq. (5A) (apoptosis) is observed for each cell line as doxorubicin 
dose increases (Fig. S8, Supplementary Materials). Model averaging approaches can limit the insight gained from 
modeling as different models can be selected over the range of experimental conditions without an apparent 
pattern. However, explicitly incorporating biologically-motivated models into a model averaging framework may 
improve both model accuracy and expand the insight derived from modeling approaches.

As demonstrated in Fig. 6 and Table 1, the prediction framework proposed in this paper performs well across 
the range of treatments and cell lines investigated. This predictive modeling framework is dependent on: (1) the 
observation that model parameters are functions of treatment variables, and (2) these treatment variables can 
be summarized by CB,max and AUC. Despite the relative simplicity of the models proposed in this work and the 
pharmacokinetic features used to predict parameter values, this framework is able to generate relatively accurate 
predictions to all experimental treatments in the SUM-149PT cell line, regardless of the training set used. While 
doxorubicin has been in clinical use for several decades, to our knowledge, measurements of its cellular effects 
have not previously been coupled to intracellular concentrations in a predictive framework. More broadly, this 
framework is readily amendable to predict response to other cytotoxic therapies. Although it is nearly certain 
that other cytotoxic therapies will require different parameter sets or, even, mathematical models, the coupled 
experimental-modeling approach presented in this work can be used to generate predictions following construc-
tion of those drug-specific models.

While the results of this study are promising, several limitations exist in the current approach. With respect to 
the compartment model proposed to describe doxorubicin pharmacokinetics, model parameters may change as 
a function of treatment concentration and duration, as suggested by the distribution of residuals seen in Fig. S2 
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(Supplementary Materials). Characterization of such variation through more extensive experiments may be pos-
sible, but doxorubicin exerts an effect on the cells over the course of the experiments – inherently changing the 
values of the compartment model. For example, cell size was observed to shrink during doxorubicin exposure. 
This reduced volume would enhance the fluorescent signal measured from intracellular space in these experi-
ments. While the compartment model explicitly incorporated the volume of these compartments with estimates 
of cell volume, additional parameters would be needed to account for the time-dependent variation in compart-
ment volumes. Indeed, when each treatment condition in the compartment modeling experiment was fit inde-
pendently, the value of kFB appeared to increase with concentration and duration of therapy (data not shown). 
While no significant violations of model assumptions are seen, it is difficult to rigorously test the assumption that 
parameters are independent of concentration and exposure time in the current dataset, which only contains four 
doxorubicin concentrations and two exposure times. Further, heterogeneity in the uptake of doxorubicin was 
observed. Within the field of view of the experiment, variation was noted from one cell to the next (Fig. 2c). As 
the modeling approach collapsed all cells into a single drug uptake timecourse, this heterogeneity was not consid-
ered. It would be of interest to track these cells over time to determine cell-specific parameters in relation to drug 
administration53. Further, this model does not explicitly include saturation kinetics for doxorubicin transport, 
which may contribute to the observed error rates. However, incorporating this heterogeneity would significantly 
increase the complexity of the proposed model, requiring additional equations and additional experimental data 
to describe each compartment model rate. Despite these limiting assumptions, the CB,max term calculated with the 
three compartment model allowed for prediction of pharmacodynamic properties.

The treatment response model was inspired by observations of treatment response in these cell lines. While 
the treatment conditions were designed to replicate those observed in vivo, it remains unknown how the pro-
posed model would respond to more complex treatment curves; e.g., biexponential decay curves observed in 
vivo31. Such dynamics should, in theory, be captured by the proposed doxorubicin PK model, but work remains 
to validate that assumption. Application of the model to an in vivo system will also require spatial considera-
tions. For example, significant heterogeneity in perfusion exists within a tumor, impacting both tumor growth 
and drug delivery54. The variable and immature vasculature may induce local microenvironmental changes 
(hypoxia, acidic extracellular pH) that alter the response to therapy55, 56. This modeling framework may need to 
be expanded to account for such spatial heterogeneity which can be characterized by (for example) quantitative 
imaging data57. However, the translation of the logistic growth formulation has already been realized in several 
in vivo models58–62.

In summary, these time-resolved treatment protocols sought to replicate the clinically observed pharmacoki-
netics of doxorubicin therapy more closely than the constant concentrations in previous dose-response assays. 
The proposed model, initialized with cell-line specific parameters, can describe the response to doxorubicin 
across a range of TNBC cell lines and treatment conditions. Further, within each cell line, the behavior collapses 
into a single path through parameter space as a function of treatment conditions. This observation allows for the 
in vitro response of each cell line to doxorubicin treatment to be predicted. Through the development of a mathe-
matical model that explicitly considers both doxorubicin pharmacokinetics and pharmacodynamics, exploration 
of a wide range of treatment protocols that would be intractable experimentally is now possible. Specifically, 
this model provides an imminently scalable approach to predicting tumor changes in response to doxorubicin 
pharmacokinetics in vivo. This approach should allow for further refinement of biological models of doxoru-
bicin treatment response, scalable predictions of tumor response in animal models, and, eventually, personalized, 
computationally-optimized treatment regimens that maximize tumor control with doxorubicin.
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