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In contemporary oceans diatoms are an important group of eukaryotic

phytoplankton that typically dominate in upwelling regions and at high

latitudes. They also make significant contributions to sporadic blooms that

often occur in springtime. Recent surveys have revealed global information

about their abundance and diversity, as well as their contributions to biogeo-

chemical cycles, both as primary producers of organic material and as

conduits facilitating the export of carbon and silicon to the ocean interior.

Sequencing of diatom genomes is revealing the evolutionary underpinnings

of their ecological success by examination of their gene repertoires and the

mechanisms they use to adapt to environmental changes. The rise of the

diatoms over the last hundred million years is similarly being explored

through analysis of microfossils and biomarkers that can be traced through

geological time, as well as their contributions to seafloor sediments and fossil

fuel reserves. The current review aims to synthesize current information

about the evolution and biogeochemical functions of diatoms as they rose

to prominence in the global ocean.

This article is part of the themed issue ‘The peculiar carbon metabolism

in diatoms’.
1. Introduction
Microscopic photosynthetic plankton (phytoplankton) provide the organic

biomass on which almost all ocean life depends and fuel a range of essential bio-

geochemical processes, ranging from the generation of oxygen, the recycling of

elemental nutrients, and the removal of carbon dioxide from the atmosphere.

They are responsible for around 45% of global primary production and yet

represent only 1% of Earth’s photosynthetic biomass [1], due to their rapid pro-

liferation times and because all cells are photosynthetically active, unlike

multicellular plants. Our appreciation of the roles of these microscopic organisms

in the ocean has been transformed over the last decades by improved methods

to explore the chequered history of life on Earth and by new DNA sequencing

technologies. Scientists are using these resources to address the feedbacks

between plankton and the climate system, because planktonic organisms can

both influence climate and be affected by climate change [2]. As a major com-

ponent of plankton communities in today’s oceans diatoms are now key to

their functioning, yet they rose to prominence only quite recently. Through photo-

synthesis they provide large amounts of organic material that sustains marine

ecosystems as well as contributing to Earth’s carbon cycle, and play major roles

in the biogeochemical cycling of other nutrients such as nitrogen and silicon

[3–5]. Their evolution can be traced back to the origin of photosynthesis.
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2. Photosynthesis as the engine of life
Oxygenic photosynthesis is arguably the most important pro-

cess in nature. It boosted the remarkable history of life on

Earth following its appearance at least 2.4 billion years ago

[6] (figure 1a). In spite of its early evolution it represents

the most complex energy transduction system known; its

water oxidizing machine has no analogues elsewhere and

its functioning is still poorly understood [16]. The oxidizing

or ‘splitting’ of water was made possible by the coupling of

two photosystems that enabled oxygenic photosynthetic bac-

teria to use light energy to generate oxygen from water and

reducing power in the form of NADPH. The oxygen gener-

ated from the process subsequently accumulated in the

atmosphere and is one of Earth’s distinguishing features,

because molecular oxygen is extremely rare in the Universe

[17]. The utilization of light energy to split water in oxygenic

photosynthesis also allows the fixation of CO2 into organic

matter that fuels the food chain.

Oxygenic photosynthesis first evolved in the cyanobac-

teria, which remain the only prokaryotes capable of

performing it. Oxygen initially began to accumulate only

slowly in the atmosphere because it was first consumed in

oxidation reactions with abundant compounds that con-

tained reduced forms of iron, sulfur, carbon, nitrogen, and

other abundant materials, and because it was consumed in

the biological process of respiration, which evolved after

photosynthesis [8].

Following the evolution of oxygenic cyanobacteria it took

around 2 billion years before complex multicellular animal

life evolved (figure 1a). During this time, eukaryotic organ-

isms appeared bearing the first mitochondria derived from

the endosymbiosis of a proteobacterium in an Archaean-like

cell, in which respiratory processes could occur [18]. Unam-

biguous fossils of eukaryotes have been found in shales as

old as 1.65–1.85 billion years [19]. Subsequently, chloroplasts

evolved following the invasion or engulfment of a cyanobac-

terium into the prototypic eukaryote. Photosynthetic

eukaryotes are considered to have evolved around 1.2 billion

years ago [12] although the forms that dominate today’s

ocean are predominantly derived from additional or ‘second-

ary’ endosymbiotic events in which eukaryotic green or red

algae were incorporated a second time into a eukaryotic cell

[20]. The timing of these events is not well resolved but it cer-

tainly happened prior to the appearance of multicellular

lifeforms during the Cambrian explosion and preceded a

major increase in atmospheric oxygen to levels similar to

those found today, from around 1–5% to about 20%

(figure 1a). The reason why the rise of photosynthetic eukar-

yotes stimulated such a dramatic increase in oxygen may be a

consequence of carbon export to the seafloor, because their

larger cells were more strongly ballasted and therefore more

likely to sink than cyanobacteria [2] (figure 2). The conse-

quent burial of carbon sequestered it away from the carbon

cycle and so it could not be remineralized back to CO2 by oxi-

dative respiration. Alternatively (or additionally),

photosynthetic activity may have increased significantly fol-

lowing the evolution of extensive planktonic ecosystems,

e.g. fuelled by increased nutrient availability during this

period. Regardless of the cause, atmospheric CO2 levels

dropped significantly during this period, which may have

contributed to one or more of the Snowball Earth events

that have been documented to have occurred [13]
(figure 1a,b), because CO2 is a powerful greenhouse gas. Fur-

thermore, the increase in molecular oxygen was probably

instrumental in permitting multicellular life to evolve

during more temperate periods because it allowed the devel-

opment of more complex organisms less constrained by

oxygen acquisition from a low oxygen environment.

Atmospheric oxygen concentrations have remained rela-

tively stable at around 20% since the early Cambrian

period. The emergence of land plants during the Devonian

around 400 million years ago (Ma) likely led however to a

further large increase in oxygen concomitant with CO2 draw-

down from the atmosphere (figure 1b) [23]. Although it did

not persist, the elevated oxygen concentrations may have

led to the evolution of giant insects and other large animals.

Atmospheric oxygen in today’s world, while being similar to

concentrations prior to the evolution of land plants, is now

likely to be maintained principally by terrestrial plants that

release oxygen directly to the atmosphere rather than by

photosynthetic plankton because the oxygen generated

within the water column is likely to be consumed by other

organisms rather than being outgassed [24,25]. The release

of biogenic oxygen from the ocean may nonetheless be sig-

nificant in some regions and is likely to be sensitive to

temperature changes [26].

The detailed analysis of the geological record left by dead

eukaryotic plankton sinking to the seafloor over the last hun-

dreds of millions of years, either based on biomarker

molecules or microfossils, has revealed their history during

major Earth transitions [27]. By likely underpinning the rise

of oxygen that led to the evolution of multicellular organ-

isms, they may have promoted the development of ever

more complex lifeforms, not only in the ocean, but also on

land as well. Besides the process of photosynthesis, the

later appearance of calcification and silicification in some

phytoplanktonic organisms (e.g. in coccolithophorids and

diatoms, respectively), in addition to more ancient organisms

such as foraminifers and radiolarians, permitted the precipi-

tation of hard materials to the ocean interior, as well as

organic carbon (figure 1a,b). A rich amount of data from

microfossils, biomarkers, and molecular clocks using con-

served marker genes indicate that these processes appeared

in photosynthetic organisms around 200 Ma and permitted

atmospheric CO2 to be further sequestered into the deep

ocean in the form of organic carbon and calcium carbonate,

which over time contributed to the formation of sedimentary

rocks such as limestones and cherts, as well as our oil and gas

reserves [12,28–30] (figures 1 and 2). This, together with

increased weathering and changes in ocean circulation, is

believed to have initiated a period of declining atmospheric

CO2 concentrations, contributing to the switch from a green-

house climate in the Mesozoic to an icehouse climate in the

Cenozoic [31]. The concomitant increase in atmospheric O2

(figure 1a,b) almost certainly contributed to the evolution of

large animals, including placental mammals that have very

high metabolic demands [29,32,33].
3. The rise of the diatoms
The composition of eukaryotic phytoplankton in the modern

ocean is dominated by diatoms, dinoflagellates and cocco-

lithophores [12]. Through photosynthesis and calcification

these organisms make a small but significant contribution
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Figure 1. Major evolutionary and biogeochemical events during the history of life on Earth. (a) Trends since the evolution of oxygenic photosynthesis, (b) trends
during the last 800 million years, and (c) diatom diversity and abundance data with respect to Pangaea rifting during the last 260 million years. Atmospheric O2 was
modified from Holland [7] according to Lyons et al. [8]; it is compared to d13C of carbonates [9], fraction of buried organic carbon [9], atmospheric CO2 [10], diatom
diversity [11] and C28/C29 sterane ratios [12], which is a geochemical proxy for diatom abundance. Snowball Earth events are shown in light blue and were taken
from Hoffman and Kopp et al. [13,14]. Pangaea rifting is illustrated with maps taken from the PALEOMAP Project [15]. The grey ranges on the plots represent the
estimated span of the events cited in the text. Note that because the oldest direct measurements of atmospheric O2 come from Pleistocene ice cores, all the detail in
the Phanerozoic curve is based on models. Prior to that we have represented the views of Lyons et al. [8]: no stable O2 trends before the Great Oxidation Event,
some atmospheric O2 (1 – 5%) through most of the Proterozoic, and then a rise to more or less modern values from the Ediacaran to the Silurian. The case is strong
that pO2 during the Carboniferous was higher than today’s, but other details in the Phanerozoic curve are conjectural.
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(probably around 10%) to the regulation of the partial

pressure of carbon dioxide in the upper ocean [34,35]. The

other 90% of oceanic carbon is derived from the physico-

chemically regulated solubility of CO2, which generates
carbonate ions in the upper ocean [36]. The biological draw-

down of atmospheric CO2 through the activity of

photosynthetic organisms in the ocean is known as the

biological carbon pump which results in the generation of
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Figure 2. The biological carbon pump in the ocean. (a) Inorganic atmospheric carbon (CO2) is transformed into organic carbon by phytoplankton in the euphotic
zone. This carbon is then grazed on by heterotrophic organisms. A fraction of it is exported out of the surface layer as particulate organic carbon (such as dead
organic material, faecal pellets produced by the zooplankton and aggregates of these materials) that sinks in the water column. Two other major processes help with
the transfer of carbon below the surface layer: physical mixing of dissolved organic material (DOM) and transport by zooplankton vertical migration. (b) Different
processes that can affect the decrease in the flux of particles in the ocean (adapted from [21]). The dimensions of the different areas represent the relative impor-
tance of phytoplankton fractions or rates of processes. The variation of the estimated flux with depth was modelled by fitting the Martin power relationship [22].
Carbon export is influenced by the phytoplankton composition in the euphotic zone: export is high when microphytoplankton (including diatoms) dominate the
plankton community in the euphotic zone, while low export values correspond to systems dominated by picophytoplankton. Ze ¼ depth of the euphotic zone. Note
that depth, organisms and particle sizes are not to scale.
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organic matter that can be consumed by other organisms, as

well as calcium carbonate (figure 2). The biological carbon

pump exports approximately 5–12 PgC yr21 from the sur-

face to the mesopelagic layer, from which approximately

0.2 PgC yr21 is stored in sediment for millennia [34,35],

thus contributing to the vertical gradient of carbon in the

ocean. The process also results in biological feedback on

atmospheric CO2 and thus the Earth’s climate [37,38]. This
structuring of the carbon cycle in the ocean appears to

have been established as the three phytoplankton groups

rose to prominence in the Mesozoic Era, perhaps as a conse-

quence of the availability of ecological space populated

previously by taxa that did not survive the Permian–

Triassic mass extinction event, which was Earth’s most

severe extinction event (resulting in the loss of around

96% of all marine species) [39].
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Figure 3. Extent of diatom-rich sediments compared with the distribution of modern diatoms in the ocean. Biosiliceous oozes are present in regions that, still today,
are largely dominated by diatoms, in particular the Southern Ocean. (a) Small dots represent seafloor sediment samples defined as containing predominantly diatom
ooze, siliceous mud, mixed calcareous/siliceous ooze, or others. Circles of varying size and blue colour correspond to diatom relative abundances determined by the
Tara Oceans survey (modified from Dutkiewicz et al. and Malviya et al. [47,48]). (b) Water column inventory of diatom biomass (mmol C/m2) from a biogeochemical/
ecosystem simulation (modified version of Dutkiewicz et al. [49]).
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The fossil record left behind by the elaborate siliceous

shells of diatoms indicates that they remained minor com-

ponents in the ocean until the Cretaceous [31,40], when the

supercontinent Pangaea began to break apart into the conti-

nents we know today and the major ocean basins were

formed (figure 1c). As well as creating more space in

marine ecosystems, the rifting of Pangaea was accompanied

by the delivery of more nutrients to the oceans because it

was concomitant with continental elevation. The increase in

nutrients favoured the selection of large-celled phytoplank-

ton that lived along the continental margins such as

diatoms [31,41–43]. Following the mass extinction event at

the Cretaceous/Paleogene boundary (65 Ma), the diatoms

continued to expand and further populate the oceans.

In contrast to dinoflagellates and coccolithophores, diatom

diversity continued to increase through the Cenozoic; in par-

ticular two pulses of diversification occurred at the Eocene/

Oligocene boundary interval (33.9 Ma) and the middle to

late Miocene (5–20 Ma) [44] (figure 1c). Environmental

changes such as sea-level rise, silicate bioavailability, preda-

tion, ocean chemistry, increased latitudinal thermal

gradients and circulation all likely played a role in driving

such diversification [31,41,42]. As one case in point, corre-

lations between increased diatom abundance and carbon

export to the deep ocean with reductions in atmospheric

CO2 and reduced temperatures during the opening of the

Drake Passage between 19 and 49 Ma suggest that the result-

ing Antarctic Circumpolar Current may have generated a

highly favourable environment for diatom proliferation in

the Southern Ocean, that today is still characterized by

diatom-rich plankton communities [45,46].

Diatoms today are found throughout the world’s oceans,

wherever there is sufficient light and nutrients (figure 3).

They typically dominate well-mixed coastal and upwelling

regions, where the organic carbon they generate supports

productive fisheries such as in the Peruvian and Benguela

upwelling systems. They appear well adapted to surviving

long periods of nutrient and light limitation and often dom-

inate oceanic spring blooms because they can divide more

rapidly than other phytoplankton when conditions become

favourable for growth, at least as long as silicon is not limit-

ing [50]. They also dominate at high latitudes and in polar

environments, in particular along the sea-ice edge where
other photosynthetic organisms are rare, making the Arctic

and Southern Ocean ecosystems especially dependent on

them [3,4] (figure 3). Their importance for the biogeochemis-

try of these regions over geological time periods is evidenced

by the enormous deposits of siliceous mud and oozes more

than 1 km thick in places [47] (figure 3a). The rise of diatoms

in the last few millions of years is accompanied by the estab-

lishment of the main petroleum source rocks, derived from

carbon export. The often spatial coincidence of silica and

fossil fuels, together with the worldwide survey of bio-

markers (such as 24-norcholestane or C28-C29 steranes) in

sediments and source rocks, indicate a crucial role of diatoms

in the formation of today’s reserves [44]. Moreover, several

petroleum basins overlap with regions where diatoms

thrive, such as oceanic coastal environments and the Arctic

Ocean [51]. Although previous assessments suggest that pet-

roleum source rocks are relatively low in abundance in the

Southern Ocean [52], this region may hold significant

resources as well.
4. Diatom evolution through the lens of
genomics

While sedimentary rocks and the biomarkers within them

provide a coarse-grained record of the intertwined histories

of life, geology and climate, the evolutionary trajectories of

different organisms can best be found by finding remnants

of them in their genome sequences (for example, see [53]).

Already prior to the advent of genome sequencing, bio-

chemical and ultrastructural data had provided persuasive

evidence that diatoms were derived from a secondary endo-

symbiotic event involving a red alga that had occurred

sometime between 1200 and 700 Ma (figures 1a and 4) and

that was common to all stramenopiles, the phylum in

which diatoms sit, as well as the chromalveolate supergroup

of eukaryotes that includes dinoflagellates and coccolitho-

phores [55–57]. The diatom genome sequences analysed to

date do provide support for a red algal endosymbiont

[58,59], but the abundance of genes apparently derived

from a green algal source has led to the controversial hypoth-

esis that a green algal endosymbiont preceded the red alga

and that many of its genes were retained prior to the arrival
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of the red alga, whereas the red algal genes that were acquired

later were not [60,61] (figure 4). In such a scenario, diatoms

(and other photosynthetic chromalveolates) bear red algal-

derived chloroplasts driven to a significant extent by green

algal genes encoded in the nucleus, which may have provided

a selective advantage in ocean environments and thus underlie

why such organisms have come to dominate in the

ocean whereas photosynthetic organisms harbouring green

algal-derived plastids dominate terrestrial habitats [62,63].

An additional feature is the presence of several hundreds

of bacterial genes scattered throughout diatom genomes [59],

representing around 5% of total gene content. Many such

genes appear to have ancient origins because they are

shared among several diatoms, and encode functions essen-

tial for diatom biology [3]. Diatom-specific transposable

elements additionally appear to have been instrumental

in generating the rich diversity of species found today

[3,64] (figure 4).
The chimeric nature of diatom genomes has brought

together unique combinations of genes that collectively

encode non-canonical pathways of nutrient assimilation and

metabolite management, including for a urea cycle that is

integral to nitrogen metabolism [65], and a novel configur-

ation coupling photosynthesis and respiration between

diatom chloroplasts and mitochondria [66]. The combined

findings have profound and unanticipated implications for

our understanding of the role of diatoms in biogeochemical

cycles, and highlight the utility of genome sequences for

revealing an organisms’ metabolic potential. Diatom genomes

have furthermore been found to encode large numbers

of cyclins [67], key regulators of cell division, that may

underlie their impressive proliferative capacity during oceanic

blooms, as well as specialized stress-responsive light-harvesting

chlorophyll-binding proteins that may be of particular

importance for survival in polar-adapted diatoms [68,69].

The peculiarities of the diatom toolbox used to manage

silicon metabolism and to generate their silicified cell walls

are also being revealed (e.g. [70]), and it is emerging that

such processes are deeply integrated within diatom primary

metabolism, e.g. for the generation of frustule-localized

long chain polyamines as offshoots of the urea cycle

[65,71,72]. Notwithstanding, genomics has yet to reveal any-

thing about what ecological or physiological advantages are

associated with frustule biogenesis.

The extension of findings from genomics to natural

environments will likely reveal further innovations [73].

Evidence is already emerging that some diatoms may have

evolved permanent genome-level adaptations to certain con-

ditions (e.g. related to iron bioavailability [74]) whereas

others have retained the ability to acclimate to a wider

range of conditions through more flexible responses at the

transcriptional level [75]. The recent evaluation of the impor-

tance of epigenetic processes mediated at the level of DNA

methylation or chromatin structural changes [76,77] will

reveal whether diatoms have retained or acquired other

features from their ancestors that permit additional opportu-

nities for responding to a fluctuating environment over

shorter timescales than are operative over macroevolutionary

timescales [78].
5. Diatoms in the contemporary oceans
For decades, morphological studies have revealed diatoms to

be one of the most ecologically important groups of phyto-

plankton in the modern oceans and one of the largest

components of marine biomass [30,79,80]. More recent

environmental omics studies have confirmed this. In particu-

lar, in the metabarcoding survey based on the V9

hypervariable region of 18S rDNA performed as part of the

Tara Oceans global plankton sampling campaign, diatoms

are the most abundant group of obligate photosynthetic

eukaryotes and the fifth most abundant group of marine

eukaryotes [48,81]. Moreover, in some Antarctic stations

they represent more than 25% of the sequenced metabar-

codes. Metabarcoding studies have allowed a refinement of

the diversity estimation and the biogeographic distribution

of diatoms even at the genus and species level. Meanwhile,

metagenomics and metatranscriptomics data (unpublished

results from the Tara Oceans consortium) will deepen our

knowledge about the role of diatoms in the modern ocean.



correlation

–0.6 –0.3 0 0.3 0.6

environmental
parameters

NO2
NO2NO3
PO4
chlorophyll
carbon export
temperature
NPP
latitude
longitude
salinity
oxygen

organisms

correlation to carbon export > 0.2

other organisms

se
qu

en
ce

s
ab

un
da

nc
e

diatom

O2

salinity

O2 concentration

other
organisms carbon

export
temp-
erature

no significant correlation

NO3 NPP

pH

significant correlation of communities
versus environmental parameters

positive
significant
correlation

detection of communities
(group of

co-occurring sequences)

diatom
sequence

co-occurrence
network
analyses

correlation matrix
(sequences abundance)

omics abundance matrix

detection of a
carbon export
community

detection of a
NPP community

se
qu

en
ce

s

samples

other sequencesdiatom sequences

massive datasets of
environmental omics data

regression
analyses

environmental quantitative matrix

samples

en
vi

ro
nm

en
ta

l
pa

ra
m

et
er

s

Figure 5. A new context for marine ecosystems biology. High-throughput sequencing technologies nowadays allow the production of massive omics datasets (meta-
genomics, meta-transcriptomics, meta-barcoding datasets) from microbial planktonic communities. Such massive datasets can be analysed in parallel with large
quantitative matrices of environmental data, and have notably produced a first global picture of microbial organisms correlating with carbon export in oligotrophic
oceans [83]. In the framework of the biological carbon study, bioinformatics analyses thus help to establish on one hand the list of the most correlated lineages to
NPP (Net Primary Production) or carbon export (e.g. using regression analyses such as sparse partial least square (sPLS) analysis; upper part of the figure), or to
detect the communities linked to NPP and carbon export (e.g. using co-occurrence network analyses such as weighted correlation network analyses; lower part of
the figure; see more details on methods in Guidi et al. [83]). Today, the roles of diatoms in the oceans can thus be considered in a global and integrative context.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160397

7

In terms of their biogeochemical roles, diatoms are believed

to be the principal contributors of primary production and

carbon export among all photosynthetic organisms in the

modern oceans, in particular because of their dominance in

highly productive regions [1,5]. Estimates based on time-

series of surface chlorophyll from the SeaWiFS Project indicate

that microphytoplankton (mostly diatoms) may contribute up

to 70% of the net primary production in coastal upwelling sys-

tems and 50% in temperate and sub-polar regions during the

spring-summer seasons [82]. Overall, diatoms are estimated

to contribute around 40% of the total primary production in

the oceans, and therefore around one fifth of all the photosyn-

thesis on Earth, similar to all terrestrial rainforests combined

[1]. Similarly, both carbon export and remineralisation vari-

ations at global scale seem to be partially explained by the

phytoplankton community where diatoms and their resting

spores may play critical roles [21,83,84]. Diatoms are also a

key component in the biogeochemical cycling of silicon

(reviewed extensively in [85]).

The combination of genomics data collected during the

Tara Oceans expedition with ancillary environmental data

allows a new framework, summarized in figure 5, to pinpoint
the importance of individual planktonic groups in specific pro-

cesses, in a holistic context of the entire plankton communities

that they are part of. Such network-based methods have

already been used to disentangle the key players in euphotic

zone communities related to carbon export to deeper layers

in the oligotrophic ocean [83] (figure 5). Regression-based ana-

lyses on the entire eukaryotic metabarcoding dataset currently

available from Tara Oceans [81] reveal the dominant roles of

diatoms in contributing to net primary production and

carbon export, in particular in areas characterized by low temp-

eratures, high oxygen and nutrient concentrations (figure 6). It

should therefore be possible to test the robustness of these

results by bioinformatic analysis and to further disentangle

the roles of diatoms in marine ecosystems using more extended

datasets. Such studies could also be performed in the context

of different climate simulations to better understand how

diatoms affect the carbon cycle and climate regulation.

6. Perspectives
Incontrovertible evidence shows that the Earth’s climate has

begun to change markedly over the last decades as a
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consequence of CO2 released into the atmosphere from the

burning of fossil fuels. The overprint of human activities

on Earth’s biogeochemical cycles is evident from the

simple fact that we are currently burning the equivalent of

around 1 million years of buried carbon derived from

diatoms and other plankton each year [2]. While we can be

confident that the oceans will continue for some time to

be the major sink absorbing excess heat and CO2, and will

consequently warm, acidify, and deoxygenate in the coming

centuries [87,88], we have no consistent view about how the

life support system of the oceans, the plankton, will fare.

Regarding diatoms, we can expect shifts in several aspects

of diatom diversity and biogeography, which could not

only affect biogeochemical cycles but may also pose a chal-

lenge for the functioning of marine food webs, in which

diatoms are intensely grazed. Given the rise of diatoms to

global importance in marine ecosystems over the last tens of

millions of years it is crucial that future research addresses

their capabilities to adapt to changing environments,

both by investigation of the geological record and by the

exploration of diatom genomes.
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2016 Biochemical composition and assembly of
biosilica-associated insoluble organic matrices from
the diatom Thalassiosira pseudonana. J. Biol.
Chem. 291, 4982 – 4997. (doi:10.1074/jbc.M115.
706440)
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