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SUMMARY

In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key ele-

ments of a complex response network. Current paradigms depict the interaction of pathogen-secreted mole-

cules with host target molecules leading to the activation of multiple plant response pathways. Further

research will be required to fully understand how these responses are integrated in space and time, and

exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach

to reveal properties of molecular plant–pathogen interactions and predict the outcome of such interactions.

We first illustrate a few key concepts in plant immunity with a network and systems biology perspective.

Next, we present some basic principles of systems biology and show how they allow integrating multi-

omics data and predict cell phenotypes. We identify challenges for systems biology of plant–pathogen inter-

actions, including the reconstruction of multiscale mechanistic models and the connection of host and

pathogen models. Finally, we outline studies on resistance durability through the robustness of immune

system networks, the identification of trade-offs between immunity and growth and in silico plant–patho-

gen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated

models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge

for agriculture in the future.

Keywords: plant–pathogen interactions, systems biology, immunity, network, genome-scale metabolic

network, robustness, trade-off, modeling.

PLANT IMMUNITY 101, WITH A HINT OF NETWORKS

Plant immunity is an elaborate, multilayered system

involving several lines of defense. In order to get access to

nutrients from the plant and complete its lifecycle, a suc-

cessful pathogen has to pass first the plant passive

defense mechanisms. These include structural barriers

such as the cuticle, the cell wall, and constitutively pro-

duced anti-microbial compounds (H€uckelhoven, 2007;

Miedes et al., 2014). In addition to these passive mecha-

nisms, plants possess a two layered actively induced

immune system. The first layer of the immune response is

termed pathogen-associated molecular-pattern (PAMP)-

triggered immunity (PTI). PAMPs are broadly conserved

microbial molecules such as bacterial flagellin or fungal

chitin, that are perceived by plant surface-exposed recep-

tors called pattern recognition receptors (Medzhitov and

Janeway, 1997; Macho and Zipfel, 2014). A well character-

ized example is the recognition of the flg22 peptide from

bacterial flagellin by the plant FLS2 receptor (Zipfel et al.,

2004). This mechanism can be depicted as the simplest

network possible, containing two nodes, the flg22 and

FLS2 molecules, connected by one edge representing the

interaction between them (Figure 1a). The output of this

system corresponds to the phenotype observed upon the

interaction of these two molecules: PTI. In many cases, PTI

is sufficient to fend off pathogen attacks and keep plants

healthy. The second layer of plant defense, called effector-

triggered immunity (ETI), is mediated by intracellular resis-

tance (R) proteins that recognize molecules injected by

pathogens into plant cells designated effectors (Jones and

Dangl, 2006; Dodds and Rathjen, 2010). By contrast to PTI,

which confers resistance against a broad group of
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microorganisms, ETI is specific to isolates of microorgan-

isms producing a given effector, and leads to a complete

resistance response often accompanied by a rapid pro-

grammed cell death reaction called the hypersensitive

response (HR; Coll et al., 2011). In its simplest form, ETI

can result from the interaction of a pathogen effector, such

as Ralstonia solanacearum (R. solanacearum) PopP2, with

a plant R-protein such as Arabidopsis thaliana RRS1-R

(Deslandes et al., 2003) (Figure 1b). In this particular exam-

ple, PopP2 was shown to modify RRS1-R by acetylation (Le

Roux et al., 2015). This modification is not reciprocal and

can be depicted as a directional interaction.

Figure 1. Progression of network-like representations of molecular plant–pathogen interactions.

(a) The direct perception of a pathogen PAMP (such as flg22) by a plant receptor (FLS2) can be seen as the simplest form of network with two connected nodes.

(b) Similarly, the direct interaction of a pathogen effector (such as Ralstonia solanacearum PopP2) with its plant target (such as the Arabidopsis thaliana R-pro-

tein RRS1-R) is a simple two-node network. PopP2 modifies RRS1-R by acetylation. This modification is not reciprocal, the interaction is oriented.

(c) In the guard model, modification by effectors (such as AvrB, AvrRpm1 and AvrRpt2) of a plant target (such as RIN4) is monitored by plant resistance proteins

(RPM1 and RPS2), which are not directly interacting with effectors. In this example, RIN4 in connected to multiple nodes and can be designated as a hub.

(d) In the decoy model, a pathogen effector (such as AvrAC) interacts with an operative target (BIK1) to promote plant susceptibility, but can also interact with a

decoy target (PBL2), guarded by a R-protein complex (RKS1 and ZAR1) leading to plant resistance.

(e) Quantitative disease resistance likely involves a complex network integrating several input signals (Effector 1, Effector 2, toxin,. . .) perceived simultaneously

and signaling through common (‘core’) or specific pathways to initiate plant defense responses. Pathogen molecules are shown as brown circles and plant

molecules as green circles.
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Research over the past decades has shown however that

direct interaction between effector and R-protein is rather

the exception than the norm, leading to more complex

models and networks. Instead, the detection of effector

proteins usually depends on the detection of their activity

within the plant cell. For this, plant R-proteins monitor the

status of other plant proteins (called ‘guardees’), which are

the direct targets of pathogen effector proteins. This model

is referred to as the ‘guard’ hypothesis (Dangl and Jones,

2001). A typical guard system is composed of the AvrB

effector of the pathogenic bacterium Pseudomonas syrin-

gae (P. syringae) which directly interacts with the plant

RIN4 protein (the guardee) to modify it. The modified RIN4

protein is then recognized by the plant R-protein RPM1

(Figure 1c) (Jones and Dangl, 2006). In the absence of

modified RIN4 protein, RPM1 is not able to detect the AvrB

effector and mount ETI. Its function as a ‘guard’ therefore

only makes sense in the context of a gene network contain-

ing RIN4. This exemplifies so-called emergent properties

of a network, properties that emerge from the connections

between multiple elements of a network (see Glossary).

The RIN4 example is further complicated by the fact that

RIN4 can be modified by several bacterial effectors, AvrB,

AvrRmp1 and AvrRps2, and is guarded by two R-proteins,

RPM1 and RPS2 (Figure 1c). RIN4 forms a node with a high

number of connections, often designated as ‘hubs’.

In some situations, the modification of a guardee protein

by pathogen effectors may be detrimental to the plant.

This reasoning leads to the decoy model in which the guar-

dee is a mimic of a plant protein modified by pathogen

effectors to promote susceptibility (van der Hoorn and

Kamoun, 2008). For example the effector protein AvrAC

from Xanthomonas campestris (X. campestris) targets

BIK1, a central component of PTI signaling in A. thaliana to

promote susceptibility. But instead of guarding BIK1

directly, the plant evolved a related protein (PBL2) which is

‘mistakenly’ modified as well by AvrAC and guarded by a

preformed complex of RKS1 and the R-protein ZAR1 (Fig-

ure 1d) (Wang et al., 2015). Here, the decoy function of

PBL2 can only by understood in connection with BIK1,

RKS1 and ZAR1 function, providing another example of an

emergent property of plant immune response networks.

Recent work has revealed that some R-proteins include an

integrated decoy domain, combining guard and decoy

functions (Le Roux et al., 2015; Kroj et al., 2016; Sarris

et al., 2016).

Another form of plant immune response extensively

observed in crops and natural plant populations confers

partial resistance to pathogens and is usually referred to as

quantitative disease resistance (QDR) (Kover and Che-

verud, 2007; Poland et al., 2009; Roux et al., 2014). QDR

can be considered as the result of interplay between multi-

ple molecular events, including the activity of multiple

pathogen effectors and toxins on plant targets and the

activation of multiple plant response pathways (Figure 1e)

(Roux et al., 2014). However, there is still very limited infor-

mation about the molecular mechanisms underlying QDR.

QDR genes have been identified only in few cases and

encode diverse molecular functions underlying durable

and broad-spectrum resistance (Fu et al., 2009; Fukuoka

et al., 2009; Krattinger et al., 2009). Interestingly, one of

them is RKS1, an atypical kinase also found to play a key

role in ETI by interacting with the R-protein ZAR1

(Huard-Chauveau et al., 2013; Wang et al., 2015) revealing

interplay between different forms of resistance. Overall,

thousands of plant and pathogen genes are differently

expressed during pathogen infection (Tao et al., 2003; Win-

dram et al., 2012; Lewis et al., 2015), and so far the func-

tion of many of these gene products is unknown.

Furthermore, under natural conditions, plants are exposed

to constantly changing conditions, surrounded by a world

of pathogenic and non-pathogenic microorganisms (the

microbiota) and adjusting their physiology to fluctuating

environmental conditions (abiotic stress) (Agler et al.,

2016; M€uller et al., 2016). On the microbial side of the inter-

action, cell activity needs to be adapted not only to over-

come plant defense mechanisms, but also to enable

pathogen to feed from resources provided by the plant

host, cope with competing microbes and adapt to changes

in the environment. This notably implies the manipulation

of host cell functions, the conversion of host molecules

into easily assimilated compounds and their transport

(Chen et al., 2010). Hence, the metabolism of plants and

pathogens are interconnected and need to be seen as one

unit.

We argue in this review that systems biology

approaches are particularly well suited to tackle the com-

plexity of plant–pathogen interactions. In contrast with

more classical reductionist approaches, in which a limited

number of cell components are studied, systems biology is

the attempt to understand biology as the structure and

dynamics of cellular and organism functions altogether

(Kitano, 2002). The advancements in high-throughput

methods and new approaches in data analysis has made

possible the integration of multiomic data from genomic,

proteomic and metabolomic sources with the goal to

model biological networks and predict the effect of pertur-

bations on these networks. This review aims at providing

an overview of current approaches, challenges and appli-

cations of systems biology to describe plant–pathogen
interactions at the network scale, with the goal to model

and predict the outcome of plant–pathogen interactions.

BASIC PRINCIPLES OF SYSTEMS BIOLOGY

Systems biology aims at understanding the properties of

living organisms emerging at the network level (or system

level), also called emergent properties (Kitano, 2002).

Emergent properties are phenomena that cannot be
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associated to a single component of a system (a unique

gene or molecule for biological systems), but rather arise

from the interaction between multiple components. As a

methodology, systems biology aims at integrating obser-

vations on multiple components of the system (cell,

organs, or populations) by using mathematical models. As

a scientific field, it requires the development of tools in

order to: (i) collect qualitative and quantitative data on

many elements of the system, at the whole genome scale

when feasible, and for different types of cell components

such as the genes, RNAs, proteins or metabolites, (ii) the

reconstruction of models which are formal descriptions of

the components of the system and the interactions

between them. These models should be convertible in

mathematical format, and (iii) computational algorithms

should be able to calculate in a reasonable computational

time the behavior of such complex systems, based on the

experimental data collected and the model canvas (Sauer

et al., 2007).

The ‘omics, collecting data at the global scale

Systems biology has emerged as a broadly used method-

ology with the development of the so-called ‘omics tech-

niques and the spectacular progress in techniques for the

characterization of the main components of the cell during

the last two decades: DNA and RNA sequencing for genes,

and mass spectrometry (MS) for proteins and metabolites

(Metzker, 2010; Altelaar et al., 2013) (Figure 2). Plant and

filamentous pathogen genomes can represent several hun-

dreds of megabases and contain numerous repetitive

regions, which make genome assembly challenging. The

recent development of Single-Molecule, Real-Time

Sequencing technology (Eid et al., 2009), which sequences

DNA molecules longer than 10 000 base pairs with high

accuracy, is expected to fill the gap in whole eukaryotic

genome sequencing and assembly approaches (Faino

et al., 2015; Zapata et al., 2016). This technique has also

been emerging as a means to characterize DNA methyla-

tion patterns at the whole genome scale (Beaulaurier et al.,

2015). Concerning transcriptomics, RNA sequencing (RNA-

seq) technology (Wang et al., 2009) opens new perspec-

tives in measuring the transcriptional reprogramming of

any organism, or plant–pathogen pairs at once (Kawahara

et al., 2012). Indeed, no prior knowledge on the genomic

sequence is required. Thus, exhaustive measurements are

theoretically reachable even for non-sequenced organisms.

In addition, structural information on transcripts is avail-

able, like alternative splicing of eukaryotes transcripts. Pro-

teomics achieved high level of completeness with the

development of fast mass spectrometers performing pep-

tide sequencing within complex samples. Quantitative

assessment of a proteome in a sample can reach around

55% completeness (Schmidt et al., 2016), meaning that

55% of the theoretical proteome corresponding to the

entire predicted gene set in the genome can be measured.

Nevertheless, the true proteome of the sample may be

lower than the theoretical proteome since many genes

may not have been expressed in conditions tested. Slightly

lower amount of proteome completeness are reported in

planta compared to ex planta samples. For instance 3168

proteins on the 10 952 predicted genes of Zymoseptoria

tritic, 29%, were measured within in planta samples, com-

pared with the 5731 proteins measured, 52%, for the

in vitro samples (Yang and Yin, 2016). Methods are now

available to characterize protein modifications, like phos-

phorylation, and obtain relative or absolute protein quan-

tification (Larance and Lamond, 2015). Metabolomics, the

analysis of small (<1000 g mol�1) molecules, deals with

Figure 2. The biochemical nature of the cell com-

ponents drives cell organization and thus methods

used to analyze them.

The cell organization links genes to transcripts to

proteins to fluxes of metabolites and backward reg-

ulation of the gene expression via biochemical rela-

tionships.
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compounds of very diverse chemical properties (lipids,

sugars, organic acids, etc.) requiring diverse techniques for

extraction and analysis. Liquid chromatography and gas

chromatography are often used to separate complex sam-

ples and are coupled with MS or nuclear magnetic reso-

nance for identification and quantification (Heuberger

et al., 2014). Classically, several hundreds of metabolites

can be unambiguously identified using untargeted meta-

bolomics on in planta samples (Cama~nes et al., 2015).

However this number is still one decade lower than the

potential metabolome expected from known metabolic net-

works. Stable isotopes, like 13C or 15N, can also be used to

facilitate metabolite identification and quantification, or

gain insight on metabolic activities (Freund and Hegeman,

2016). In addition, isotopic enrichment of molecules and

their mapping on metabolic networks (Szyperski, 1995)

allows the quantification of fluxes of atoms through the

cell. This so-called fluxomics analysis represents the obser-

vation of the system in action, and can be used to reveal

the cell physiology which results from the integration of

transcriptional, translational and metabolic regulation

(Sauer, 2004).

Model reconstruction: making sense of the ‘omics

Numerous studies begin with ‘omics experiments provid-

ing a large-scale description of cellular components. Future

development of new methodologies will seek to improve

the completeness of such system-scale measurements. If

further development of methods will be valuable to shed

light on not yet unmeasured components, this is however

generally not sufficient to provide new insights into biolog-

ical processes and their impact on life of the cell or the

organism. A classical approach is to follow up with func-

tional analyses focused on cellular components showing

the most extreme behavior, such as genes dramatically up-

regulated (Raffaele et al., 2008). However the function of a

single gene may be masked in such reverse genetics

approaches by redundant or compensatory genes. For

instance, single mutants in the Arabidopsis transcription

factors TGA2, TGA5 and TGA6 showed wild-type pheno-

type whereas a tga6-1 tga2-1 tga5-1 triple mutant was

strongly impaired in resistance, revealing redundant roles

for these genes (Zhang et al., 2003). This situation should

be frequent considering that biological systems, and the

plant immune system in particular, are tightly intercon-

nected networks of molecules and macromolecules of vari-

ous nature with many emergent redundant modules

(Pritchard and Birch, 2011) (Figure 2). Furthermore, func-

tional redundancy can emerge at various levels, like gene,

enzymatic complex or pathway redundancy. In other

words, two independent pathways, not sharing any com-

ponent, may have the same output and thus compensate

each other depending on the genetic perturbation or the

environmental conditions (Tsuda et al., 2009). Therefore, a

number of biological functions cannot be understood

based only on the systematic characterization of cellular

components, but also require knowledge on the nature of

the connections between components. This nature

includes connection between components of a same type

(such as protein–protein interactions, post-translational

modifications or catalytic activity for proteins) or between

cellular components of a different nature (such as protein–
DNA interactions) (Figure 2). Then, the causality between

the state of one component and the phenotype can be

studied from a network perspective. This effort of integra-

tion of the different layers of cellular components and

interactions in a formal way is called ‘model reconstruc-

tion.’

Models, what kind for what

A model containing molecular components and biochemi-

cal interactions is called a mechanistic model. Different

kinds of mechanistic models are used in systems biology

to analyze cell functions (Figure 3). In this review we will

discuss the three main classes used in systems biology,

according to the way the interactions between components

are described: (i) constraint-based models, (ii) logical mod-

els, and (iii) kinetic models (Bordbar et al., 2014; Le

Nov�ere, 2015). Alternative modeling approaches with

numerous variants and hybrids have been reviewed else-

where (Bordbar et al., 2014; Le Nov�ere, 2015).

Constraint-based models are historically used to study

networks of metabolic reactions. They were developed in

the frame of metabolic engineering with the aim to opti-

mize metabolic pathways to increase the production of

chemicals of interest or biomass (Schatschneider et al.,

2013). They are generally successful in predicting pheno-

types such as growth rate, based on knowledge of environ-

mental conditions. These models assume constant

variation for all properties of all components of the net-

work (called ‘steady states’ for the network; see Glossary),

and allow applying a strong constraint of equilibrium

between fluxes around each metabolite. As a result, all

possible combinations of states for all components of the

system (the ‘space of solutions’) can be determined by lin-

ear programming for more than 1000 reactions, within a

few seconds. The main type of constraint-based model

analysis is called flux balance analysis (Orth et al., 2010)

and allows the study of optimality principle in a biological

system, that is to say determine the combination of solu-

tions achieving a maximal output (see Glossary) (Poolman

et al., 2013).

Logical modeling is based on logical rules of interactions

between network entities and is suitable for large-scale

networks. It describes the changes in the state of a given

cellular component depending on the states of one or mul-

tiple others components. This approach is particularly

adapted to model regulatory events. For instance the

© 2016 The Authors.
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activation of signaling through the FLS2 receptor will

depend on the presence of its flg22 ligand in the extracellu-

lar space (Figure 1a). The states of the model are simulated

recursively over time, revealing feedback loops within reg-

ulatory networks and finding attractors, i.e. recurrent set of

network states toward which the regulatory cascades

evolved (Figure 3).

Kinetic modeling is the most refined modeling approach

to describe the dynamics of living systems. It is based on

ordinary differential equations (ODEs) describing the kinet-

ics of changes in the concentration or states of cellular

components, based on laws governing chemical equilib-

rium, such as mass action law (for binding of a ligand to a

receptor) and enzyme kinetics (Michaelis–Menten equa-

tion). Thus, the systems can be studied far from equilib-

rium and dynamically through time. However, they require

prior knowledge on numerous kinetic parameters which is

often not available, and thus the scaling-up at genome-

scale models remains challenging (Smallbone et al., 2010).

The different steps in model reconstruction

Model reconstruction consists in: (i) defining the purpose

of the model and therefore the type of model to be recon-

structed (Figure 3), (ii) collecting information on the bio-

logical system, by collecting omics data, performing

genome annotation, collecting physiological data or mea-

suring kinetics parameters of biochemical reactions, (iii)

converting and assembling the raw information in Systems

Biology Markup Language (Hucka et al., 2003; Chaouiya

et al., 2013), a standardized format suitable for further con-

version in mathematical format, (iv) curation of the model

by checking in detail the confidence of each component

properties and interactions, (v) converting the model in a

mathematical format, (vi) running simulations to correct

bugs and unveil missing components, and (vii) validating

the model by comparing predictions with experimental

data (Figure 4). In an ideal process, the data used for the

validation should not have been used for building the

model. The most time-consuming part is the curation step

which requires in-depth investigations through databases

like KEGG (Kanehisa and Goto, 2000) and BIOCYC (Caspi

et al., 2012) for metabolic networks, TCDB (Saier et al.,

2006) for transporters, BRENDA (Chang et al., 2015) for

reaction kinetics parameters, STRING (Szklarczyk et al.,

2015) for regulatory networks, and checking the validity of

properties assigned to components of the system, notably

by performing BLAST and extensive literature searches. A

protocol for generating a high-quality metabolic network

reconstruction has been proposed by Thiele and Palsson

(2010).

Interactions between regulatory components are difficult

to predict from genome annotation because homologous

regulatory proteins are easily recycled in different signal-

ing pathways across organisms. Therefore reconstruction

of regulatory networks often requires the collection of

specific biochemical data on the interactions within the

studied organism. Methods for inferring automatically or

semi-automatically regulatory networks from ‘omics data,

Figure 3. Main type of modeling approaches and

their usage.

The three main classes are the kinetic modeling,

the constraint-based modeling and the logical mod-

eling. Usage of one or the other depends of the nat-

ure of the network studied (metabolic network,

regulatory network), the amount of information

available (kinetic parameters) and the temporal

response of the system to be investigated (dynamic

or steady states).

© 2016 The Authors.
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called network inference, have been used from time course

gene expression data (Penfold and Wild, 2011). This pro-

cess, based on statistical algorithms, determines the prob-

ability of a dependency between two or more components

investigated, for instance how the expression of a gene is

dependent on the activity of a transcription factor previ-

ously expressed. This approach successfully predicted a

role for the expression of A. thaliana TGA3 transcription

factor in controlling Botrytis cinerea colonization (Windram

et al., 2012). It also allowed to identify the A. thaliana tran-

scription factors XND1 and FBH3 as putative targets of

effectors from P. syringae (Lewis et al., 2015). By providing

candidate interactions (direct or indirect), this method

should accelerate the discovery of interactions (Sato et al.,

2010) and expand the number of reconstructed regulatory

networks.

Predictive capacity of models

Systems biology approaches are often useful for their par-

ticularly high predictive capacity (Varma and Palsson,

1994). The predictive aspects of systems biology

approaches are provided in the one hand by considering

physical laws which are universal (Zwieniecki and Dumais,

2011; Barbacci et al., 2015) to govern interactions between

components, and in the other hand, by considering the

specific biochemical components of each organism.

Figure 4. Reconstruction process of mechanistic

models of living organisms.

The model can be used to generate hypothesis on

the function of a biological system and design

experiments to validate this hypothesis. Hence, dis-

covery may be accelerated thanks to focused exper-

iments. The new knowledge obtained can be

integrated in the model in an iterative process. In

the toy model depicted activation of X by A (hy-

pothesis A) or B (hypothesis B) in a given condition

is investigated.
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Indeed, the interaction rules have been deduced under rea-

sonable assumptions (steady-state, isobars and isothermal

environments) from general laws of thermodynamics (con-

servation laws, second principle of thermodynamics, see

Biophysical perspectives below). Hence, interactions in

models remain valid under known hypothesis and allow

the extrapolation of models behavior in conditions not yet

tested experimentally. Concerning the consideration of the

specific biochemical components of organisms, this con-

sideration allows to predict phenotypes on the basis of

known specific features of organisms like genomes. One

well established predictive capacity of models is related to

nutritional needs for the biomass growth of living organ-

isms (Varma and Palsson, 1994). Indeed, the nature and

the amount of matter and energy present in the environ-

ment fully constrain growth of organisms. In one side, the

amount represents a maximal growth capacity that cannot

be exceeded to respect the conservation law of matter and

energy. In another side, the specific metabolic capacities of

organisms to collect these nutrients are determined by

their transporters and enzymes repertoires, and confine

their habitat into specific niches (Zhu et al., 2016). In the

context of plant–pathogen interactions, growth of both

partners can be limited by the amount of matter and

energy they can extract from their local environment.

Modeling, an iterative process of knowledge accumulation

and validation

Mechanistic models are simplified mathematical represen-

tations of the knowledge collected so far on a living organ-

ism. Therefore, many yet undiscovered features of the

organism may be missing in reconstructed models. Hence,

the model performance in predicting observed phenotypes

must be assessed rigorously to validate the model (Thiele

and Palsson, 2010). When a high accuracy between the

model predictions and the experimental data is achieved,

the model can be used to explore phenotypes predicted in

conditions not yet tested experimentally. This is expected

to reveal novel key players in a phenotype of interest.

Then, the model can be used to test multiple hypotheses

by adding putative components or interactions followed by

the design of an experimental setup to validate these

hypotheses. This draws a virtuous iterative process

between the experimental and the in silico work, enriching

the model and the knowledge at each cycle (Figure 4).

CHALLENGES FOR PLANT–PATHOGEN SYSTEMS

Modeling the plant immune system

The knowledge collected so far depicts the plant immune

system as a tightly regulated temporal and quantitative

system (Schwessinger and Zipfel, 2008). For instance PTI

and ETI appear as tightly tuned responses via feedback

loop(s) ensuring a transient and appropriate level of

response depending on the invader, and compatible with

maintaining plant cell viability. Our global understanding

of the immune system functioning is mainly based on

expository models, i.e. drawn diagrams dedicated to clarify

and summarize data and concepts (Pritchard and Birch,

2014). In addition, many components of the immune sys-

tems and relationships between them remain to be discov-

ered. In this context, inference of the immune signaling

network of A. thaliana upon challenge with the bacterial

pathogen P. syringae expressing the effector protein

AvrRpt2 constituted an important step (Sato et al., 2010).

An integrated regulatory network comprised of 22 compo-

nents including most of the genetically defined regulators

of immunity in Arabidopsis, was inferred based on mRNA

profiles for 571 immune response genes of Arabidopsis

mutants with defects in immune regulatory genes. Exis-

tence of signaling inhibitions in the network suggests that

only part of the signaling network is usually used and this

organization balances the trade-off between a high robust-

ness of the plant immune signaling and minimizing nega-

tive impacts of the immune response on plant fitness.

Moreover, Naseem and co-workers conducted pioneer

research on mathematical modeling of the immune system

of A. thaliana by reconstructing a hormonal interaction

network merged with the immune network (Naseem et al.,

2012). Interaction between components was described

using logical-modeling approach. Then, they converted the

logical rules into ODEs to simulate the dynamic of the sys-

tems. Among others, the model predicted that cytokinin

does not influence early events of PTI during infection by

P. syringae and the prediction was experimentally vali-

dated. Antagonism between cytokinin and auxin signaling

in plant immunity was also predicted (Naseem and Dan-

dekar, 2012; Naseem et al., 2012). This pioneer modeling

study should be extended by adding kinetics information

and by including recent data. In addition, integration of

pathogen network pieces (PAMPs, and effectors) to simu-

late the presence or absence of the pathogen is clearly a

strategy to pursue for a better integration of the pathogen

model into the game.

Integrating pathogen and host systems

Until now, pathogens and plants have rarely been studied

together as an interacting system, in the sense of systems

biology. Systems biology studies on plant cell wall archi-

tecture and on pathogen enzymes degrading the plant cell

wall are for instance usually conducted separately. So far,

to our knowledge, there is no such study coupling gen-

ome-scale models of a phytopathogen with that of a plant,

like the analysis of the model for the human pathogen

Mycobacterium tuberculosis in combination with the

macrophage model to reveal nutritional coupling (Bordbar

et al., 2010). This may appear paradoxical for studies aim-

ing at understanding interaction between organisms. The
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detection of plant cell wall degrading enzymes (PCWDE) in

the genome of pathogens is for instance often associated

with the ability to feed on dead plant cells, although

PCWDE may exclusively be used to overcome physical bar-

riers to plant tissue colonization (Kraepiel and Barny, 2016)

(see Biophysical perspectives). The integration of plant and

pathogen metabolic networks would be required to deter-

mine the exact role of PCWDE in pathogenic lifestyles.

More generally, pathogens produce molecules that

evolved to function in plant cell systems (effectors sensu

lato), and reciprocally. Connecting the models of the two

partners is therefore critical to capture fully the dynamics

of plant–pathogen interactions.

Data and model integration across scales: from the cell to

the environment

Plant–pathogen interactions can be characterized from cell

to organism level and depend strongly on abiotic factors.

The span of temporal and spatial scales involved in the

interaction challenges multiscale data integration and bot-

tom-up modeling approaches (Figure 5) (Cunniffe et al.,

2015). At early steps of the infection process, microbial

pathogens initiate primarily cell to cell molecular combat

with their hosts which may lead later to systemic invasion

and/or systemic host responses (Gjetting et al., 2004; Asai

et al., 2014). At the single-cell level, biological systems are

prone to stochasticity, the existence of random noise in

the state of network components (see Glossary) (McAdams

and Arkin, 1997). Stochasticity, in addition to microenvi-

ronment fluctuation, may lead to heterogeneity within cell

populations, and to variability in the final output of the

interaction (Ackermann, 2015). Besides, the response of

the system over time may depend on the initial states for

the pathogen and the plant cell. For instance, pathogen

success can be impaired by resistance priming due to pre-

vious infection events or other signals (Conrath et al.,

Figure 5. Scale of model and data integration from

molecule to ecosystem.
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2015). Current models are often built at the cellular level,

and are well adapted to analyze localized plant–pathogen
interactions. However, computing kinetics of such complex

interaction networks, notably considering stochasticity,

remains challenging. Besides, investigations of single-cell

dynamics are mostly carried out via microscopy using

reporter genes (Asai et al., 2014), while single-cell ‘omics

data are emerging but remain scarce (Lin et al., 2014;

Schiefelbein, 2015). Further efforts will be needed to estab-

lish libraries of models for various cell types with time res-

olution in the minute range.

At the multicellular scale and at a time frame of

hours, the challenges concern modeling approaches

rather than data collection. Indeed, to date most tran-

scriptomics data have been collected at tissue or cell-

type scale using dissection methods like laser microdis-

section (Nelson et al., 2008; Gautam and Sarkar, 2015).

Also, metabolomic analyses of intercellular fluid (like

xylem) or whole organs were performed (Abeysekara

et al., 2016). However, extraction methods remain limited

in their ability to distinguish between intracellular and

intercellular metabolites. One promising method is imag-

ing MS. Ryffel et al. (2016) used this technique to reveal

the spatial heterogeneity of substrates available at the

surface of leaves upon challenge with P. syringae.

Although some properties of plant and pathogen organ-

isms can only be studied at the multi-cellular level, such

as intercellular communication and cooperation, the spa-

tial dimension is rarely considered in mechanistic mod-

els. One key phenomenon of plant resistance appearing

at this scale is the spread and restriction of the HR

(Pog�any et al., 2009). Modeling the spatial dimension of

the plant tissue may be crucial to gain insight in how

cell death during HR is restricted only to the infection

site. Modeling plants at the organism level has been

achieved recently through a digital multiscale model of

Arabidopsis (Chew et al., 2014). This model is a hybrid,

bridging multiple model modules and can depict the

contribution of one individual organ on the whole plant

for different environmental conditions. Such bottom-up

modeling requires the coupling between cellular and

multicellular oriented methods. The latter was mostly

developed by the biophysics scientific community (cf.

next subsection). The next step will be to bridge bio-

physics multicellular models with cellular genome-scale

models (Figure 5).

At an even larger-scale, ecosystems are well known to

influence plant disease epidemics, through the presence of

beneficial or competing organisms in the microbiota asso-

ciated with the plant (Wei et al., 2015; M€uller et al., 2016)

or by changes in nutrient availability, humidity and tem-

perature notably (Hacquard et al., 2016). For instance, Wei

and co-workers manipulated the diversity of bacterial spe-

cies present in the soil to demonstrate that rhizosphere

bacteria competing specifically with the soil pathogen

R. solanacearum for plant nutrients prevented tomato

infection and disease onset (Wei et al., 2015). This experi-

mental evidence calls for investigating the function of

ecosystems associated with plants. Systems biology may

allow in the future the connection of well established epi-

demiology models at the population level with the molecu-

lar level understanding of plant–pathogen interactions.

Biophysical perspectives

The finest description of biochemical network behavior is

provided by kinetics-based models (Figure 3). The state of

the system can be described by kinetics of chemical reac-

tions driven by chemical potentials of biomolecules. Such

a framework provides a quantitative description of Gibbs

free energy which corresponds only to the chemical part of

the whole internal energy of compounds (see Glossary)

(Callen, 1985). Interaction between chemical energy and

other forms of energy (mainly thermal and mechanical) are

often not regarded in kinetics-based models. A finer

description of kinetics of reactions, especially in fluctuating

temperature conditions, would require consequently the

extension of classical framework to other forms of energy.

At a higher scale, taking into account other forms of

energy is indispensable. Indeed, plant–pathogen interac-

tions are also physical in nature as host successful colo-

nization requires penetration and movement through the

host tissue (Abramovitch and Martin, 2004; Money, 2008;

Sanati Nezhad and Geitmann, 2013). Thus, the sole chemi-

cal description of the system is likely to be insufficient to

explain plant–pathogen interactions at the higher scale. To

address this limitation, the description of how molecular

networks and molecules interfere to provide geometrical

and mechanical properties through scales must be consid-

ered. At the cellular and molecular scale, the colonization

of plant tissues by filamentous pathogens requires the fine

regulation of water quantity, mechanical properties and

shape of the apical cell (Goriely and Tabor, 2008; Money,

2008). On the plant side, mechanical properties determine

the intensity of mechanical signals perceived during inter-

action. These signals are involved in many regulation and

feedback loops (Coutand and Moulia, 2000; Moulia et al.,

2015) and may prime QDR (Mbengue et al., 2016). Hence,

to have a better understanding of molecular events gov-

erning plant–pathogen interactions, a description of how

mechanical properties are generated by the assembly of

polysaccharides and proteins is crucial. Genome-scale

metabolic models can reveal functional links between

genes and cell wall polysaccharides, but modeling the

emergence of mechanical properties of a cell from knowl-

edge on polysaccharide regulation remains challenging

(Somerville et al., 2004).

These themes have enjoyed a long history of research

in biophysics (Ali et al., 2014) and many models have
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been developed to understand the links between mole-

cules, physical properties and growth (Bartnicki-Garcia

et al., 1995; Barbacci et al., 2013; Ali and Traas, 2016) or

shape (Dumais et al., 2006; Goriely and Tabor, 2008).

Frameworks allowing the integration of mechanical regu-

lation loops in biological processes to design systems

biology approaches have also been proposed (Moulia and

Fournier, 2009; Moulia et al., 2011, 2015). Feedback of

mechanical forces on growth regulation has also been

emphasized for key mechanisms such as growth (Hamant

et al., 2008; Moulia et al., 2015), proprioception (Hamant

and Moulia, 2016) or cell division (Louveaux et al., 2016),

illustrating how bottom-up approaches can integrate a

physical framework and knowledge on molecular

components of the cell (Figure 5). This integration should

provide powerful tools to investigate the link between

genetic regulation and plant function through multiscale

mechanisms.

The pursuit of metabolic model reconstruction for

pathogens and plants

Enrichment of the plant–pathogen field with studies using

systems biology approaches will go hand in hand with

the release of freely available models for pathogens and

plants. Although the metabolic reconstruction for

microorganisms should be easier than for plants due to

the smaller size of their genomes, models exist only for

X. campestris (Schatschneider et al., 2013) and

R. solanacearum (Peyraud et al., 2016) (Figure 6), and the

R. solanacearum model is the only genome-scale model.

The first plant genome-scale metabolic reconstruction

was performed by Poolman et al., (2009) on A. thaliana.

This model was dedicated to study heterotrophic cell sus-

pension culture, whereas the later AraGEM model was

used to simulate C3 photosynthesis (de Oliveira Dal’Molin

et al., 2010). The same authors built C4GEM, a model-

frame dedicated to study C4 photosynthesis (Dal’Molin

et al., 2010). Several crops such as rapeseed (Pilalis et al.,

2011), barley (Grafahrend-Belau et al., 2009), maize (Saha

et al., 2011), rice (Poolman et al., 2013), millet (de Oliveira

Dal’Molin et al., 2016) and tomato (Yuan et al., 2016)

were reconstructed, with either complete genome-scale

models or specific metabolic pathways only. Considering

the few pathogen models reconstructed so far and the

remarkable diversity of plant–pathogen lifestyles and

infection strategies, systems biology should be a fertile

ground for future advances in plant–pathogen interaction

studies.

Figure 6. Reconstructed models of plants and

plant-associated microbes across the tree of life.

The phylogenetic tree was generated using PhyloT

with a selection of fully sequenced plants (green)

and associated microbes, including fungi (brown),

oomycetes (purple) and bacteria (red). Circles at the

tip of branches are scaled to whole genome sizes

(given as the number of predicted genes). Genomes

for which a reconstructed model exists are shown

with a black line and the number of reactions in the

model is indicated.
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THE PROMISES OF SYSTEMS BIOLOGY TO PLANT

PATHOLOGY: WHAT CAN WE DO WITH THIS?

Robustness of the plant immune system and the virulence

effector interactome, a network paradigm

The organization of biological pathways in networks

underpins several emergent properties that individual sig-

naling pathways do not have, such as robustness, the

ability of a system to maintain its function(s) despite exter-

nal or internal perturbations. The plant immune system

and the arsenal of virulence factors used by pathogens can

be considered as robust biological networks (Figure 7a).

Microbial pathogens typically possess a battery of effectors

aimed at disabling immunity after being translocated into

plant cells: the bacterial pathogen R. solanacearum injects

up to 75 Type III effectors into plant cells (Peeters et al.,

Figure 7. Robustness of plant–pathogen interaction

network.

(a) The interaction between plant and pathogen

involved a complex network. Here is depicted a

sensing pathway recognizing the presence of the

pathogen by PRR or R-protein and the clearance of

pathogen infection via PTI or ETI activation. The

redundancy of pathogen effectors or plant compo-

nents may provide robustness to each system.

(b) Predicted behavior of the previous toy model (a)

depending of the pathogen and the plant geno-

types. None of the outputs (resistance or suscepti-

bility) can be deduced from knowledge on only one

single component illustrating that plant resistance

is an emergent property of the complex network of

interaction between plant and pathogen.

(c) Example of robustness provided by redundancy

in Phytophthora infestans effectors (EPIC1, EPIC2B

and AVRblb2) that suppress the activity of tomato

C14 protease.

(d) Example of robustness provided by redundancy

in rice receptor (OsCEBiP, OsLYP4 and OsLYP6) that

all detect fungal chitin.
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2013), and the genome of some filamentous plant patho-

gens encodes hundreds of effector proteins (Haas et al.,

2009; Pedersen et al., 2012). With few exceptions, the dele-

tion of a single (or even multiple) effector gene(s) has no

or only a minor impact on microbial virulence (Schirawski

et al., 2010; Cunnac et al., 2011; B€uttner, 2016), supporting

the view that effector networks exhibit robustness (Fig-

ure 7b). Several pathogen effectors can have at least partly

redundant functions, such as Phytophthora infestans

EPIC1, EPIC2B and AVRblb2 that suppress the activity of

tomato C14 protease at different levels (Kaschani et al.,

2010; Bozkurt et al., 2011) (Figure 7c). Such robustness

might be evolutionarily favorable for pathogens by facili-

tating evolvability, allowing frequent gains and losses of

effector genes to avoid recognition by the plant immune

system, without compromising global virulence (Yoshida

et al., 2016). The loss of complete dispensable plasmids

and chromosomes has also been associated with virulence

in some pathogen species (Jackson et al., 2011; Raffaele

and Kamoun, 2012). Reciprocally, the plant immune sys-

tem generally ensures an invariant output (immune

response) in the presence of considerable noise (e.g. non-

self recognition) (Figure 7b). In the arms race with patho-

gens, the plant immune network has evolved to detect

invasion in spite of selection acting on microbes to escape

recognition (Cook et al., 2015). Such robustness can be

achieved through the deployment of partly redundant

receptors at the cell surface, such as the rice OsCEBiP,

OsLYP4 and OsLYP6 that all detect fungal chitin (Kaku

et al., 2006; Liu et al., 2012) (Figure 7d). These extracellular

receptors lack a cytoplasmic transduction domain and

require interaction with OsCERK1 acting as a hub in chitin

signaling (Gust, 2015, for review). Redundancy in the plant

immune system is also notable for plant decoy proteins

that detect the molecular activity of pathogen effectors and

likely arose from gene duplication of high-value guarded

targets or convergent evolution (Figure 1d) (Cesari et al.,

2014). Establishment of the Arabidopsis protein–protein
interactome (Arabidopsis Interactome Mapping Consor-

tium, 2011)and subsequent mapping of the interactome

network between pathogen effectors and Arabidopsis pro-

teins revealed that hubs of the plant immune system are

targeted by numerous pathogen effectors (Mukhtar et al.,

2011; Weßling et al., 2014).

Remarkably, the output of the interaction between differ-

ent plant and pathogen genotypes shown in Figure 7(b)

and deduced from the simple theoretical network shown in

Figure 7(a) cannot be predicted based on knowledge lim-

ited to a single plant or pathogen component, highlighting

the value of systems biology approaches in plant–patho-
gen interactions. These approaches are powerful to under-

stand how remodeling of the plant network conditions the

system’s response towards disease susceptibility or resis-

tance, and how different sets of effector molecules

influence this remodeling. This knowledge should allow in

the future better prediction of durability (i.e. robustness) of

the plant resistance phenotype, especially if modeling

studies also integrate the impact of environmental factors

on interactions and their evolution (see below).

Studying trade-offs between complex traits

Systems biology approaches, such as flux balance analy-

sis, are powerful to predict the energetic cost of specific

biochemical pathway(s), function(s) or even complex traits.

Energetic costs are essential drivers for resource allocation

to various biological traits in organisms. In turn, resource

allocation is classically associated to the concept of trade-

off, by which gaining benefit for a trait then involves losing

benefit for another trait (see Glossary). This resource allo-

cation dilemma is paramount when resources are limited;

however, some growth/defense trade-offs are not always

governed by metabolic competition and can be a conse-

quence of hormone-linked transcriptional network rewiring

(Campos et al., 2016). There is a substantial cost of resis-

tance to pathogens for plants which results in a trade-off

between growth and immunity (Todesco et al., 2010; Chae

et al., 2016). Therefore, maintenance of R and other

defense-associated genes in plant populations can nega-

tively impact growth and development (Tian et al., 2003;

Todesco et al., 2010). Several plant hormones, including

auxins, abscisic acid, ethylene, cytokinins, and gibberellins,

that have been thoroughly described to regulate multiple

aspects of plant growth, have recently emerged as key reg-

ulators of plant immunity (Denanc�e et al., 2013). Mechanis-

tic studies revealed for example a hub transcriptional

factor involved in brassinosteroid signaling and immunity

(Lozano-Dur�an and Zipfel, 2015). Although representing

undeniable progress at the mechanistic level, these studies

remain fragmentary and need to be interconnected to eval-

uate the impact of these cellular trade-offs on complex

phenotypes.

Virulence is a costly trait for pathogens, involving the

secretion of a broad set of macromolecules, so that a

trade-off between virulence and growth exists in phy-

topathogens (Thrall and Burdon, 2003; Meyer et al., 2010).

Such a trade-off was recently illustrated using the genome-

scale model of R. solanacearum (Mansfield et al., 2012).

This model encompasses a metabolic network module and

a macromolecule module dedicated to the secretion of vir-

ulence factors (Peyraud et al., 2016). Simulations using this

reconstructed model suggested that the massive produc-

tion of virulence factors, such as exopolysaccharides, sig-

nificantly impairs bacterial growth. These predictions were

experimentally confirmed using bacterial mutants and by

identifying PhcA, the major regulatory player shown to

govern this trade-off. Flux balance analyses also revealed

that a drastic reduction of growth is observed in the pres-

ence of substrates that cannot be efficiently used to
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support growth in addition to virulence. Interestingly, sub-

strates with high usage capacity were found to be the most

abundant metabolites present in apoplastic and xylem flu-

ids of the host plant tomato (Zuluaga et al., 2013). This

example illustrates how the growth–virulence trade-off

constraints metabolic adaptation of pathogens towards a

specific host plant for a broad host range pathogen like

R. solanacearum. Systems biology approaches allow quan-

tification of the costs and constraints based on multicellu-

lar and multi–organs models (Martins Conde et al., 2016)

and therefore hold immense potential in understanding

the trade-offs between complex traits linked to agricultural

productivity.

Replaying the tape of evolution

Predicting adaptive trajectories is crucial to understand the

constraints that lead to the emergence of phenotypes

observed in nature and anticipating the impact of external

constraints on biological systems. Because genetic compo-

nents are interconnected and do not evolve independently,

the evolution of genes should be considered in the context

of the systems in which they function. Evolutionary sys-

tems biology is an integrative approach aiming at generat-

ing mechanistic and evolutionary understanding of

genotype-phenotype relationships at multiple levels (Soyer

and O’Malley, 2013). In plant–pathogen interaction sys-

tems, network components encoded by pathogen genes

have typically co-evolved with the plant network to alter its

function, and vice-versa (Dong et al., 2014). Determining

how evolutionary forces shape the structure of gene net-

works in the context of plant–pathogen interactions is

therefore particularly relevant. To this end, mechanistic

models can be combined with in silico evolution to replay

the tape of evolution. To date, this approach has mostly

been implemented on virtual host-pathogen systems, mak-

ing generic assumptions about the architecture of immune

systems. This allowed showing that co-evolution with par-

asites is expected to promote gene redundancy and robust

network architectures in hosts (Salath�e and Soyer, 2008). A

similar approach showed that evasion from host immune

receptors by pathogens shifts the optimal strategy towards

constitutive over inducible defense in hosts. Evasion from

downstream defense pathways however did not alter opti-

mal host defense strategy (Kamiya et al., 2016). Account-

ing for realistic mechanistic models, such as by coupling

flux balance analysis and in silico evolution, managed to

reconcile simulations with the results of long-term experi-

mental evolution in E. coli (Großkopf et al., 2016). Hence,

the likelihood of pathogen emergence may be predicted by

generating in silico pathogens and comparing their pre-

dicted performance on different hosts. For instance, hori-

zontal gene transfer, a well known phenomena allowing

quick acquisition of new traits (metabolic enzymes or effec-

tors) (Richards et al., 2011; Danchin et al., 2016; Yin et al.,

2016) could be modeled to predict risk of pathogen emer-

gence. These developments would greatly enrich our

understanding of plant–pathogen co-evolution at the

molecular level.

CONCLUSION

The recent extension of international trading, movement of

people and global changes is associated with an increase

of emerging disease outbreaks (Fisher et al., 2012; Bebber

and Gurr, 2015). In this context, an in-depth knowledge on

how pathogens and their hosts adapt to the environment

is a prerequisite for further developments of rapid patho-

gen identification, treatment and surveillance strategies.

For agriculture, a major challenge is to develop sophisti-

cated models of plant diseases that incorporate more sub-

tle climate predictions. Several studies have underlined

that one of the most important predictors of the magnitude

of climate change effects is the adaptive potential of plant

and pathogen populations (Bebber, 2015). However,

including adaptation parameters in models for disease pre-

dictions remains challenging due to the lack of knowledge

for predicting the pathogen and host fitness in varying

environments. Systems biology may provide a framework

to fill this gap by predicting pathogen and host fitness and

their evolution from the profusion of molecular knowledge

collected in the past decades.

GLOSSARY

Biological network: a group of multiples biological enti-

ties connected to each other via biochemical interac-

tions.

Biochemical interaction: any kind of biochemical rela-

tionship between biomolecules interacting physically,

e.g. substrate of an enzyme, co-factor binding, gene

transcription, etc.

Omics: technologies measuring the entire set, or at

least a large part, of a single kind of biomolecules

(RNA, proteins, etc.). For instance proteomics provide

experimental measurement of cellular proteins. The

entire set of proteins expressed in the cell is called the

proteome.

Mechanistic model: mathematical representation of a liv-

ing organism based on chemical and physical laws. It

contains information on a set of molecular components

and nature of the biochemical interactions between them.

An alternative, the statistical model, describes the rela-

tionships between system variables without constraints

on their chemical and physical properties, but rather

based on correlation or probability of dependencies.

Emergent property: property of a living system arising

at the network level, that is to say a property that can-

not be associated to particular elements of the system

(genes or molecules), but rather results from the way

elements of the system are organized and interact.
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Attractor: An attractor is a recurrent set of network

states toward which the network evolves.

Functional redundancy: identical functions provided by

two different biological entities. Classically, the two

entities can complement each other in at least one con-

dition.

Robustness: emerging property of a system resulting in

an invariant phenotype upon genetic or environmental

perturbations.

Evolvability: ability of a system to generate novel phe-

notypes with adaptive value upon environmental

changes

Cellular noise: variation in quantity of biomolecules, like

gene expression, within the cell which is not genetically

determined but instead results from random.

Guard: R-Protein monitoring the biochemical status of

host proteins, which are targeted by pathogen effectors.

Decoy: Host protein which evolved to mimic pathogen

effector targets, and which is guarded by R-proteins.

Hub proteins: proteins which are highly connected in a

protein–protein interaction network, being in limited

number and interacting with many other proteins.

Steady-state: stable conditions in which molecule con-

centration and rate of conversion are stable, i.e. do not

change in time, like during exponential growth of

microorganisms.

Optimality principle: maximal performance of the sys-

tem toward one or multiple objective(s) under limitation

of the environmental or structural constraints of the

system.

Stochasticity: uncertainty in biological systems behav-

ior due to cellular noise.

Trade-off: Constrain on the range of phenotypes open

to organisms: it occurs when a beneficial change in one

trait is linked to a detrimental change in another trait,

e.g. expressing resistance genes may be detrimental to

plant growth and yield.

Gibbs free energy: also coined free enthalpy. Mathe-

matically, It is a Legendre’s transformation of the inter-

nal energy. It corresponds to the maximum reversible

work that may be performed by a system under the

assumptions of constant pressure and temperature.
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