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ABSTRACT

We developed an automated approach for generating quantita-
tive image analysis metrics (imaging biomarkers) that are then 
analysed with a set of 13 machine learning algorithms to generate 
an overall risk score that is called a Q-score. These methods were 
applied to a set of 120 “difficult” dermoscopy images of dysplastic 
nevi and melanomas that were subsequently excised/classified. 
This approach yielded 98% sensitivity and 36% specificity for 
melanoma detection, approaching sensitivity/specificity of expert 
lesion evaluation. Importantly, we found strong spectral depend-
ence of many imaging biomarkers in blue or red colour channels, 
suggesting the need to optimize spectral evaluation of pigmented 
lesions.

1  | BACKGROUND

Clinical melanoma evaluation depends largely on recognizing abnor-
mal pigmentation patterns that distinguish benign or atypical nevi 
from cancerous growths. Detection through screening saves lives 
but remains challenging visually, as the degree of disorder that exists 
between these different pigmented growths is highly variable and, 
at times, can be quite subtle and difficult to determine. This level of 
diagnostic difficulty is reflected across the general practice of derma-
tology in which melanomas are confirmed by histopathology in only 
3-25%[1] or a mean of 10%[2] of excised suspicious lesions. However, 
visual examination of pigmented lesions by expert dermatologists 
using dermoscopy and following criteria such as the Menzies (or 
CASH[3]) method has yielded diagnostic accuracy as high as 98% 
sensitivity and 68% specificity in some studies. At present, there is 
an ongoing effort across the medical and scientific communities to 
improve melanoma diagnosis by developing standardized evaluation 
criteria of pigmented lesions that can be performed by more medi-
cal care givers (beyond expert dermoscopists) and, if possible, might 
even be performed by automated analysis systems that use image 
processing and artificial intelligence algorithms.[4,5] However, cur-
rent methods yield specificity and sensitivity outcomes that are far 
inferior to expert dermoscopy evaluations. Furthermore, proprietary 

computational algorithms use “black box” image feature extraction 
and diagnostic algorithms that do not help healthcare providers to 
identify possible new lesion features that may be useful in clinical 
evaluation. Thus, there is a need for transparent methods that extract 
discrete diagnostic image features and combine them in screening 
algorithms.

2  | QUESTIONS ASKED

We sought to determine whether automated image analysis of pig-
mented lesions could generate useful (and potentially novel) mela-
noma imaging biomarkers (MIBs) to assess risk. Our digital, analytical 
framework for dermoscopy interpretation was used to answer two 
key questions: how sensitive and specific is the diagnostic, and do 
MIBs exhibit any spectral dependence whose exploitation may im-
prove diagnosis?

3  | EXPERIMENTAL DESIGN

In our study (Figure S1), 120 dermoscopy images (60 melanomas, 60 
atypical nevi) were analysed by a series of computer programs (all 
detailed in supplement) that determined the border of the lesion, its 
centre and from that point a radius was projected along which differ-
ent image features were calculated over a 360° sweep (similar to a 
clock sweep). Figure 1A,B, with further detail in Figure S2, exempli-
fies this approach by plotting lesion brightness vs a sweep in angle θ, 
using blue channel colour information and graphically yielding MIB 
B12 (B=from the blue colour channel, metric #12). Other programs 
evaluated symmetry and organization of pigmentation patterns, net-
works and substructures across red, green and blue (RGB) colour 
channels. Programs also determined the number of colours present in 
lesions (Figure 1C) and the pigmented network pattern (Figure 1D). 
This set of programs was run on each pigmented lesion to generate 
50 quantitative metrics. The 33/50 metrics that had a significant dif-
ference (P<.05) in values between atypical nevi vs melanomas be-
came the MIB set. MIBs, evaluated in particular colour channels, 
became the basis of machine learning classification algorithms to 
construct an overall quantitative score (Q-score) between zero and 
one, in which a higher number indicate a higher probability of a lesion 
being a melanoma (Figure S3).
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4  | RESULTS

The single most significant MIB (P<10−6) was number of colours in a 
lesion (MC1, Figure 2). Individual MIBs that evaluate features, such 
as the lesion brightness, border, diameter and symmetry, were often 
highly significant only in the red or blue colour channels, while green-
channel MIBs were not as important. A visual example of the selection 
of a representative MIB in a particular colour channel to maximize its 
diagnostic power is shown in Figure S4. The most significant MIBs for 
the red and blue channels, respectively, were MIB R1: variation in the 

sharpness of lesion demarcation (Figure S5, Equation S24) and MIB 
B1: angular lesional brightness variation (Figure 1A,B, Equation S10). 
Figure S5 shows all MIBs on all data, and Figure S6 shows raw MIB 
values for the most significant six MIBs on representative normal and 
abnormal lesions.

The MIBs became inputs for a series of 13 machine learning/classi-
fication algorithms (Figure S3, Table S2), which individually computed 
probabilities of melanoma diagnosis. An example of classification 
using the C5.0 (decision tree) approach is illustrated in Figure S8. The 
Q-score was calculated as the median value of melanoma probabil-
ity across all 13 machine learning approaches. As shown in Figure S9, 
most lesions with a high Q-score were diagnosed as melanomas and 
most lesions with a low Q-score were diagnosed as nevi. This classi-
fication approach achieved 98% sensitivity for melanoma detection 
and there was 36% specificity for predicting a melanoma diagnosis as 
illustrated in the receiver-operator curve of Figure S3. Examples of 
accurate and inaccurate Q-scores are presented in Figure S10.

F IGURE  1 Example melanoma imaging biomarkers. (A) and (B) 
show a melanoma and a nevus, respectively, where lesion centre 
(white circle) and peripheral border (black line) between lesion and 
normal skin are illustrated. The mean lesion brightness along the 
sweeping arm as a function of angle θ is plotted (black line) to the 
right with the standard deviation shown in blue. The melanoma 
imaging biomarker (MIB) B12 is graphically shown to be the 
brightness range over an angular sweep of the mean lesion pixel 
brightness. The range is divided by the mean to achieve the final B12 
MIB. The images shown are of a melanoma that yields a large B12 
value and a nevus that yields a small B12 value. A melanoma with 
multiple colours (C) is shown in colour map illustrating MIB MC1. A 
melanoma with an atypical reticular pigmented network (D) is shown 
with an overlay of the pigmented network branches. Each black 
line segment terminates on each end in either a branch point or an 
endpoint. Statistical analysis of these branches yielded MIBs B8, B11, 
B15, R3, R7 and R8 

(A)

(B)

(C)

(D)

FIGURE 2 The length of the horizontal bar, for each image feature 
extracted, is negative the base 10 logarithm of the P-value, where the 
P-value is the standard statistical significance metric, calculated using 
univariate, two-tailed, unpaired t-tests (for continuous variables) and 
Fisher’s exact test (for categorical variables). For single colour channel 
metrics, three adjoined bars, colour-coated red, green and blue show 
the importance when evaluated in the respective colour channels of 
the image. The melanoma imaging biomarkers (MIBs) with statistical 
significance for melanoma discrimination (P<.05, vertical black line) 
are labelled on the vertical axis describing the colour channel they 
were used in: B1-B14 from the blue channel, G1 from the green 
channel and R1-R13 from the red channel. MC1-MC4 denote MIBs 
that used multiple colour channel information. The text to the 
right of the bars indicates MIBs that contain information based on 
the dermoscopic ABCD criteria. The most significant MIB was the 
number of colours identified in the lesion while the diameter of the 
lesion had intermediate significance and the asymmetry of the lesion 
silhouette (Asymmetry 1, illustrated in Figure S10) had borderline 
significance. The lesion border features (see Figure S4) pertain to the 
edge demarcation. 
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5  | CONCLUSIONS

This method independently determined that the number of colours 
present in a lesion is important for melanoma evaluation and is thus 
aligned with conventional dermoscopic evaluation criteria.[6] We also 
determined that MIBs have spectral dependence in RGB channels and 
that clear visual differences exist in defined colour channels (Figure 
S7). Another important feature of this approach is computational 
transparency, as the derivation of each quantitative biomarker and 
full description of our statistical analysis are disclosed in supplemental 
information to this letter. Overall, these results raise a question about 
whether spectrally dependent MIBs might be further enhanced by ex-
tended spectral imaging and analysis.

At high sensitivity, the Q-score achieved significantly higher specific-
ity than today’s estimated standard of 10% in practice, albeit in our study 
with small sample size and artificially high prevalence. As this method 
does not depend on expert evaluators, it has the potential to improve 
upon diagnosis and classification of pigmented lesions widely. Overall, 
our sensitivity/specificity is similar to an electrical impedance spectros-
copy device recently described.[7] For expert evaluators, our method has 
identified some new lesion characteristics, for example border demar-
cation features, that might improve visual evaluations. Widespread ap-
plication, if validated in larger clinical trials, could decrease unnecessary 
biopsies and increase life-saving early detection events.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the support-
ing information tab for this article.
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