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Understanding Interstitial Lung Disease: It’s in the Mucus

MUC5B is the principal secreted airway mucin, present in
airway mucus at a concentration z10-fold higher than the other
secreted airway mucin, MUC5AC (1, 2). The report in 2011 that
a polymorphism upstream of the MUC5B gene is a risk factor
for idiopathic pulmonary fibrosis (IPF) was surprising and
illuminating for several reasons (3). First, a rare disease was
found to be associated with a common allele (present in 20% of
Caucasians), suggesting that genetic susceptibility might be a major
contributor to disease pathogenesis even in sporadic IPF. Second, a
disease that centers morphologically on the alveolar region of
the lung appeared to be associated with an allele of a gene
expressed in the conducting airways. Third, the mutation was
found to cause a gain of function resulting in increased MUC5B
expression. Since Muc5b is the mucin that is primarily responsible
for particle clearance in the airways of mice (4), a loss of function
could have been expected to result in interstitial lung disease simply
by reducing clearance of inhaled particles. This possibility was
particularly appealing because there is a dose dependency of
mucociliary clearance on Muc5b expression, with a 50% reduction
in expression resulting in a 50% reduction in clearance, and a
progressive loss of expression with aging in mice (5). A loss-of-
function mutation would have placed IPF on a continuum with
pneumoconioses, in which the inhalation of large amounts of
inorganic particles overwhelms normal clearance mechanisms,
with both disorders resulting from an imbalance between
particle exposure and clearance. However, the polymorphism
associated with IPF results in 10- to 20-fold overexpression
of MUC5B (3).

Further discoveries from a variety of sources have
extended the implications of MUC5B’s association with IPF.
Multiple additional IPF susceptibility genes have been identified,
and the most common are those involved in telomerase
maintenance, together accounting for z30% of the risk for IPF
(6, 7). Their involvement suggests that a key pathway in IPF
pathogenesis is lung epithelial progenitor cell depletion. Recent
work using virus injury models indicates that alveolar regions can
be repopulated by the migration of epithelial progenitors from
distal conducting airways (8–10). The abundance of goblet, basal,
and ciliated cells (normally characteristic of conducting airway
epithelium) in remodeled lung parenchyma in IPF (11, 12) is
consistent with this notion, bringing us back to the airway
protein MUC5B.

MUC5B/Muc5b is normally expressed in submucosal
glands and surface epithelial secretory cells down to, but not
including, the level of terminal bronchioles (1, 13, 14). Even with
strong stimulation of mucin gene expression by inflammatory
mediators, neither Muc5b nor Muc5ac is normally expressed in
terminal bronchioles. Secreted mucins are among the largest
molecules encoded in mammalian genomes, and their expression
induces and requires an endoplasmic reticulum (ER) stress
response (15). In IPF, MUC5B is expressed in terminal bronchioles
(12), and it is possible (though not proven) that the overexpression
of MUC5B in distal airway cells leads to increased cell turnover.
Mutations in other genes associated with IPF (e.g., SFTPC, SFTPA2,
and ABCA3) also cause ER stress (6, 7), and increased ER stress
and apoptosis have been found in IPF that was not genotyped (16).
Thus, a common mechanism of IPF pathogenesis between telomere
maintenance and MUC5B mutations might be airway epithelial
progenitor depletion leading to a repair process involving
mesenchymal cell proliferation and fibrosis, and in turn to aberrant
differentiation of the remaining epithelial cells in the abnormal
microenvironment (Figure 1).

In this issue of the Journal, Helling and colleagues (pp. 91–99)
provide convincing evidence that a common polymorphism
located in the 59-flanking region of the MUC5B gene increases
the activity of a strong enhancer that increases MUC5B expression
(17). The study further demonstrates that the DNA sequence in
that region provides potential binding sites for a number of
transcription factors, including FOXA2, which is shown to interact
directly with the enhancer in chromatin-binding assays in vitro.
These new data are consistent with recent findings from Guo and
colleagues (18), who used CRISPR-Cas9 to identify this same
region in the MUC5B gene as an active enhancer element that also
binds the transcription factor SPDEF (Sam-Pointed Domain Ets-
like Factor), a gene known to regulate goblet cell differentiation.
Regulation of mucus-related genes, including MUC5AC and
MUC5B, is associated with transcriptional networks that regulate
goblet cell differentiation from airway progenitors such as basal
and club cells. Goblet cell differentiation is highly dependent
on environmental contexts, responding to allergens, toxicants,
infections, and inflammation, and may be further influenced
during tumorigenesis. For example, in the setting of allergen-
mediated goblet cell metaplasia, SPDEF works in concert with
FOXA3 to induce MUC5AC production (19, 20), whereas FOXA2
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Figure 1. Hypothetical model of a mechanism of idiopathic pulmonary fibrosis resulting from epithelial progenitor depletion leading to mesenchymal cell
repair with fibrosis. MUC5B, mucin 5B; SFTP, surfactant protein.
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is inhibitory. Because many FOX transcription family members
share DNA binding motifs and are expressed in respiratory
epithelial cells (e.g., FOXA1, FOXA3, FOXC1, FOXM1, and
FOXP2), the precise transcriptional complexes that are active in the
MUC5B enhancer in IPF are likely to be complicated, and their
interactions with cofactors may form inhibitory or stimulatory
complexes on target genes. A recent single-cell RNA analysis of
lung epithelial cells in IPF demonstrated extensive goblet cell
differentiation in which expression of MUC5B and MUC5AC
was associated with SPDEF and FOXA1 (11) (data accessible from
the Lung Gene Expression Analysis website [21]). On the other
hand, FOXA2 was found to be increased in IPF lung tissue and to
enhance MMP7 expression in an allele-specific manner,
supporting its role in the pathogenesis of IPF (22). The
demonstration that the MUC5B variant allele includes an active
enhancer raises interesting questions regarding its role and the role
of FOX transcription factors in the pathogenesis of IPF. Does
increased MUC5B expression influence airway clearance, or create
biophysical strain or inflammation that causes epithelial cell
injury and tissue remodeling? Alternatively, does the increase in
MUC5B expression itself provide an epithelial-cell–autonomous
stress that causes epithelial injury and inflammation, activating
progenitor cells that contribute to the increased numbers of goblet,
basal, and ciliated cells in the IPF lung, as hypothesized above?

What might have driven the very high prevalence of the
MUC5B-overexpressing allele in the Caucasian population,
comparable to the prevalence of the sickle hemoglobin allele in areas
of hyperendemic malaria? It is reasonable to surmise that if a
reduction in Muc5b expression results in reduced mucociliary
clearance and increased microbial infection (4, 5), then increased
expression might protect against inhaled pathogens or toxicants.
A Muc5b-overexpressing transgenic mouse has been generated but
not yet examined in this context (4); however, transgenic
overexpression of Muc5ac has been shown to protect against
influenza virus infection (23). Although it remains to be studied,
evidence of positive selection of the variant allele would suggest
that enhanced expression of MUC5B must offer substantial
protection against a respiratory pathogen early in life for it to
have spread so widely in European populations (mean allele
frequency = 0.11, compared with 0.02 in Hispanic, 0.008 in
Asian, and 0.003 in African populations; ncbi.nlm.nih.gov/projects/
SNP/snp_ref.cgi?rs=35705950).

Our understanding of IPF is evolving rapidly as a reflection of
progress in understanding lung epithelial progenitor biology, the
transcriptional networks that drive development and host
defense, and mucus pathophysiology. Together with the remarkable
progress that has been made in elucidating the molecular
epidemiology of IPF, with z70% of IPF now known to have a
genetic association (z40% in the MUC5B enhancer and z30%
in telomere maintenance), the field is in the midst of a change
in paradigm that is likely to benefit patients and caregivers. n
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