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Abstract

Bioenergetics homeostasis is important for cells to sustain normal
functions and defend against injury. The genetic controls of
bioenergetics homeostasis, especially lipid metabolism, remain
poorly understood in chronic obstructive pulmonary disease
(COPD), the third leading cause of death in the world. Additionally,
the biological function of most of the susceptibility genes identified
from genome-wide association studies (GWASs) in COPD remains
unclear. Here, we aimed to address (1) how fatty acid oxidation
(FAO), specifically b-oxidation, a key lipid metabolism pathway that
provides energy to cells, contributes to cigarette smoke (CS)-induced
COPD; and (2) whether—and if so, how—FAM13A (family with
sequence similarity 13 member A), a well-replicated COPD GWAS
gene, modulates the FAO pathway. We demonstrated that CS
induced expression of carnitine palmitoyltransferase 1A (CPT1A), a
key mitochondrial enzyme for the FAO pathway, thereby enhancing
FAO. Pharmacological inhibition of FAO by etomoxir blunted CS-
induced reactive oxygen species accumulation and cell death in lung
epithelial cells. FAM13Apromoted FAO, possibly by interactingwith
and activating sirutin 1, and increasing expression of CPT1A.
Furthermore, CS-induced cell death was reduced in lungs from
Fam13a2/2 mice. Our results suggest that FAM13A, the COPD

GWAS gene, shapes the cellular metabolic response to CS exposure
by promoting the FAO pathway, which may contribute to COPD
development.
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Clinical Relevance

Genome-wide association studies (GWAS) have been very
successful in discovering genetic loci statistically associated
with complex traits. However, understanding the biological
function and molecular mechanisms of candidate genes within
GWAS loci is an ongoing challenge. In this work, we connected
a novel chronic obstructive pulmonary disease GWAS gene,
FAM13A, with an important lipid metabolism pathway, fatty
acid b-oxidation, at molecular levels in cellular and murine
models. This novel genetic link between emphysema and lipid
metabolism may open a new avenue for the treatment of
chronic obstructive pulmonary disease, given the wide
spectrum of pharmacological inhibitors of the fatty acid
b-oxidation pathway.

Maintenance of cellular energy homeostasis
is important under many physiological and
pathological conditions that may well
extend beyond metabolic diseases. This

balance of cellular energy has not yet been
well studied in lung diseases, including
chronic obstructive pulmonary disease
(COPD), the third leading cause of death in

the United States (1). COPD is a complex
disease that is strongly influenced by
both cigarette smoking and genetic
predisposition. The known pathogenesis of
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COPD is highly complex and includes an
imbalance between proteinase and
antiproteinase (2), oxidative stress (3),
inflammation (4), epithelial cell death
(5, 6), and mitochondrial dysfunction (7).
Recently, disrupted lipid metabolism was
detected in patients with COPD (8–11) as
well as in a cigarette smoke (CS)-induced
emphysema murine model (12), suggesting
a dysregulation of lipid metabolism during
COPD development.

Fatty acids (FAs), as one of the main
types of lipids, provide energy for many
organisms through oxidation. The three
types of FA oxidative degradation processes
that occur in cells, namely, a-, b-, and
v-oxidation, take place in specialized
subcellular structures, the mitochondria
and peroxisomes (13, 14). Most FAs are
catabolized by FA b-oxidation (FAO)
inside mitochondria where even-numbered
saturated FAs are oxidized, thus providing
acetyl-coenzyme A (acetyl-CoA) as a
substrate for the citric acid cycle. This
process consists of two steps: first, long-
chain acetyl-CoA is transported from the
cytosol into mitochondria by carnitine
palmitoyltransferase (mainly CPT1);
second, fatty acetyl-CoA is catalyzed by
trifunctional enzymes inside the
mitochondria. Through FAO, adenosine
triphosphates (ATPs) are produced,
accompanied by reactive oxygen species
(ROS) (15).

Under physiological conditions,
glucose is generally the main energy source
in lung epithelial cells. Acute CS exposure
was shown to induce a switch from glucose
to lipid as the main energy source and
increase FAO in distal lung epithelial cells,
likely by increasing CPT1A activity (16),
thereby generating ATP. However,
whether—and if so, how—FAO contributes
to CS-induced emphysema remains
unexplored.

From genome-wide association studies
(GWASs), several genetic loci have been
unequivocally associated with COPD
susceptibility in multiple cohorts. Among
these loci, the FAM13A (family with
sequence similarity 13 member A) locus at
4q24 (17, 18) repeatedly showed a strong
association with COPD (19), but the
molecular mechanisms and the biological
function of FAM13A in lungs are
largely unknown (20). Previously, we
demonstrated increased expression of
FAM13A in human COPD lungs compared
with ex-smoker controls, and that

Fam13a2/2 mice are resistant to CS-
induced emphysema, which might be
linked to increased levels of b-catenin and
cell proliferation in the lungs of Fam13a2/2

mice (21). Furthermore, the FAM13A locus
has also been consistently linked with
metabolic diseases (22, 23), suggesting
plausible roles of FAM13A in regulating
energy homeostasis and metabolism.

In this work, we set out to understand
the bioenergetics changes that occur in lung
epithelial cells under CS exposure and to
explore the roles of FAO in CS-induced lung
injury, which is modified by the COPD
GWAS gene FAM13A. By examining the
results of CS exposure inmurine and cellular
models, we demonstrated that FAO
mediates CS-induced ROS production and
cell death, while FAM13A promotes FAO,
possibly by increasing the expression of
CPT1A, the key rate-limiting enzyme
in FAO.

Materials and Methods

A full description of the experimental
procedures used in this work is available in
the online supplement.

Cell lines, Plasmids, Mice, and In Vivo
CS Exposure
All cells were purchased from ATCC
(American Type Culture Collection,
Manassas, VA). Human bronchial epithelial
(16HBE) cells were cultured in Eagle’s
minimal essential medium. Human
embryonic kidney (HEK) 293 cells were
cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10%
fetal bovine serum, penicillin (50 U/ml),
and streptomycin (50 mg/ml). Mycoplasma
was tested routinely using the Mycoalert
Detection Kit (LT07-218; Lonza, Hopkinton,
MA) in cells used in this study. 16HBE cells
stably infected with control nontargeting
short hairpin RNA (shRNA) or human
FAM13A shRNA were established previously
(21). Full-length human FAM13A
(NP_001252507.1) was cloned as described
previously (21).

Fam13a2/2 mice generated in a
C57BL/6J background and littermate wild-
type mice were exposed to CS as described
previously (21). At the end of the exposure
period, the mice were killed by CO2

narcosis and cervical dislocation, and the
lungs were removed. Lung sections from
mice exposed to CS or air for 1 month were

assessed for cell death by terminal
deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) staining. Primary
lung alveolar epithelial cells isolated from
mice that were exposed to air or CS for 5
months were assessed for mitochondrial
respiration via Seahorse measurements
(Seahorse Bioscience, North Billerica, MA).
All mice were housed in the animal facility
of Harvard Medical School under a 12-h
light/12-h dark cycle.

Measurements of Mitochondrial
Respiration
We used an Extracellular Flux Analyzer
(Seahorse Bioscience) to measure the
oxygen consumption rate (OCR), an
indicator of mitochondrial respiration, in
either 16HBE cells or primary murine distal
lung epithelial cells in a 24-well plate.
Briefly, cells were seeded directly into XF24
plates and mitochondrial respiration was
measured in XF assay medium modified
DMEM (Seahorse Bioscience)
supplemented with D-glucose (25 mM) and
pyruvate (1 mM). 16HBE cells were seeded
at a density of 3 3 104 cells/well and OCR
was measured using the MitoStress
program. During the assay, oligomycin
(2 mM), carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone
(2 mM), and actinomycin/rotenone
(1 mM of each) were sequentially added
into each well to measure ATP production,
maximum respiration, and proton leak
(complex I driven), respectively. Primary
distal lung epithelial cells were seeded into
plates that were precoated with CellTak
(Corning, Bedford, MA) at a density of
1 3 105 cells/well, followed by OCR
measurements using the same program
employed for the 16HBE cells. During
the assay, oligomycin (4 mM), carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone
(4 mM), and actinomycin/rotenone
(2 mM of each) were added into each well
sequentially.

Measurements of b-oxidation
FAO was measured in 16HBE cells stably
infected with FAM13A shRNA or
overexpressing FLAG-tagged human
FAM13A using previously described
methods (21). 16HBE cells were seeded in
24-well plates and incubated for 24 h with
labeling medium (400 ml 1 g/L DMEM
supplemented with 2% FA-free BSA
[Gemini Bio Products, West Sacramento,
CA], 0.25 mM carnitine [Sigma-Aldrich,
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Natick, MA], and 2 mCi 3H-palmitic acid
[American Radiolabeled Chemicals,
St. Louis, MO]). After incubation, the
supernatant sample was mixed with 10%
trichloroacetic acid (Sigma-Aldrich) for
15 min and centrifuged at full speed for
10 min. The supernatant was then mixed with
5% trichloroacetic acid and BSA, incubated
at room temperature for 15 min, and
extracted using chloroform:methanol (2:1)
and 2 M potassium chloride:hydrochloride.
Then, the supernatant was mixed with 5 ml
of EcoLume Liquid Scintillation Cocktail
(MP Biomedicals, Santa Ana, CA). The
count per minute was measured for 5 min
for each sample. The count-per-minute
readings from cell-free medium incubated
with 3H-labeled medium were used as
background to correct all samples. Final
results were obtained after normalization
using the protein concentration.

Statistical Method
We tested the data for normality before
performing unpaired Student’s t tests. Any
data that were not normally distributed
were analyzed using a nonparametric test.
However, most of the in vitro data with a
limited sample size showed a normal
distribution. We then performed unpaired t
tests with equal variance to compare the
impacts of genotype and treatment under
each given condition. Details regarding the
statistical analysis are provided in the
online supplement.

Results

CS Promotes FAO
To determine the impact of CS exposure on
cellular mitochondrial respiration and
cellular energy homeostasis, we exposed
16HBE cells, an immortalized HBE cell line,
to 3% CS extracts (CSEs) for 12 h before
measuring the OCR using the Seahorse
method. Basal and maximummitochondrial
respiration increased by 50% and 100%,
respectively, after CS treatment in 16HBE
cells, accompanied by 60% increased ATP
production after CS treatment (Figures
1A–1E). Furthermore, such CS-induced
elevations in mitochondrial respiration
were attenuated by etomoxir (Eto, 50 mM)
(Figure 1), which inhibits CPT1A, the rate-
limiting enzyme for FAO (Figure E1A in
the online supplement). In addition,
genetically silencing CPT1A by small
interfering RNA (siRNA) attenuated the

induction of maximum mitochondrial
respiration by CS in 16HBE cells (Figure
E1B). These results suggested that CS may
enhance FAO and promote mitochondrial
respiration in HBE cells. This was further
confirmed by a 32% increase of FAO by
direct measurements (24) in 16HBE cells
exposed to CS (Figure 1F). Furthermore,
expression of CPT1A (25) increased by
4-fold in 16HBE cells exposed to 3% CS for
12 h (Figure 1G), consistent with a previous
report (16). In sum, CS exposure promoted
FAO and increased mitochondrial
respiration in HBE cells.

FAO Mediates CS-Induced ROS
Production and Cell Death
Given that mitochondrial respiration
increased in bronchial epithelial cells after
smoke exposure, we next assessed the
impact of elevated FAO on CS-induced
cell death and accumulation of ROS
(5, 6, 26), which contribute to emphysema
development. Surprisingly, cells cotreated
with Eto (50 mM) and CS showed improved
cell viability (from 55% to 79%) compared
with cells treated with CS alone
(Figure 2A). Similarly, genetic inhibition of
FAO by CPT1A siRNA also significantly
improved cell viability from 56% to 76%
(Figure 2B), suggesting that a lower FAO
rate is beneficial in preventing CS-induced
cell death. Additionally, inhibition of FAO
by Eto reduced CSE-induced mitochondrial
and intracellular ROS production (Figures
2C and 2D). These results suggested that
FAO mediates CS-induced cell death and
mitochondrial-derived ROS accumulation.
Consistently, the percentage of TUNEL-
positive cells (indicative of cell death) was
reduced from 4% to 0.2% in human lung
slices (27) cotreated with Eto (100 mM) and
6% CSE for 24 h compared with CSE
treatment alone (Figures 2E and 2F).

To address the contribution of FAO to
CS-induced cell death in vivo, we injected
Eto intraperitoneally into C57BL/6 mice
that were exposed to CS for 1 month, and
then assessed cell death by TUNEL
staining. The choice of 1 month of CS
exposure was based on a previous report
that CS-induced cell death was significantly
increased after 1 month of CS exposure
(28). In our assays, the number of TUNEL-
positive cells increased 20-fold after 1
month of CS exposure. However, cell death
was greatly attenuated in lungs from CS-
exposed mice cotreated with Eto (25 mg/kg,
every other day) compared with mice

exposed to CS alone (Figures 2G and 2H).
Therefore, FAO mediates CS-induced cell
death in vitro and in vivo.

FAM13A Promotes Mitochondrial
Respiration by Enhancing FAO in HBE
Cells
We then tested whether mitochondrial
respiration is regulated by FAM13A. First,
as indicated by the OCR, the maximum
mitochondrial respiration was reduced by
half and basal respiration showed a trend
toward reduced OCR after FAM13A
silencing in 16HBE cells (Figures 3A, 3B,
and E2). Second, primary distal lung
epithelial cells (mainly alveolar type II cells
[.70%; Figure E3]) isolated from
Fam13a2/2 mice also showed impaired
maximum respiration compared with those
from Fam13a1/1 mice (Figures 3C, 3D,
and E4), suggesting that FAM13A
promotes mitochondrial respiration in
primary lung epithelial cells. Furthermore,
supplementing cells with sufficient
palmitate acid as fuel to promote FAO
increased the OCR in primary lung
epithelial cells from Fam13a1/1 mice, but
not in those from Fam13a2/2 mice (Figure
E5A). Similar results were also obtained in
human 16HBE cells depleted of FAM13A
(Figure E5B). These results suggested that
FAM13A increases mitochondrial
respiration by promoting FAO.
Additionally, direct measurements on FAO
demonstrated a 50% reduction after
depletion of FAM13A and a 48% increase
with overexpression of FAM13A in 16HBE
cells (Figure 3E).

To determine the possible mechanism
by which FAM13A regulates FAO, we
measured the expression of different
enzymes related to FAO in murine lungs
from Fam13a1/1 and Fam13a2/2 mice
that had been exposed to chronic CS
for 6 months, at which point only the
Fam13a1/1 mice showed airspace
enlargement (21). Among four genes we
measured (Acadl [ACADL acyl-CoA
dehydrogenase, long chain], Cpt1a, Mcat
[Malonyl CoA:ACP acyltransferase], and
Cd36 [cluster of differentiation 36]),
CPT1A mRNA levels showed a significant
reduction (by two-thirds) in Fam13a2/2

lungs compared with treatment-matched
Fam13a1/1 mice (Figure E6A). Reduced
expression of CPT1A was also detected in
16HBE cells silenced for FAM13A (Figure
E6B). These results indicated that FAM13A
may increase expression of CPT1A, the key
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rate-limiting enzyme in FAO. Furthermore,
FAO increased 2-fold after overexpression
of FAM13A but was reduced by 75%
in 16HBE cells after CPT1A silencing
regardless of overexpression of FAM13A,
suggesting that FAM13A promotes FAO
through CPT1A (Figure 3F). Consistently,
overexpression of FAM13A increased
mitochondria respiration, which was
attenuated by CPT1A silencing in 16HBE

cells (Figure E7), indicating that FAM13A
promotes oxygen consumption, likely
through CPT1A.

It is noteworthy that the glycolysis rate,
as measured by the Seahorse extracellular
acidification rate, showed no difference in
16HBE cells overexpressing FAM13A. The
extracellular acidification rates obtained in
primary distal lung epithelial cells isolated
from Fam13a2/2 cells are also comparable

to those determined in cells from
Fam13a1/1 mice (Figure E8), suggesting
minimal regulation of FAM13A during
glycolysis in airway epithelial cells.

FAM13A Interacts with Sirtuin 1 and
Promotes FAO through CPT1A
Previously, we demonstrated that FAM13A
promotes the degradation of b-catenin, the
key molecular mediator in the canonical
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Figure 1. Cigarette smoke (CS) activates fatty acid b-oxidation (FAO) in human bronchial epithelial cells. (A) Oxygen consumption rate (OCR) measured by
Seahorse assay in human bronchial epithelial (16HBE) cells exposed to CS with/without the b-oxidation inhibitor etomoxir (Eto). (B) Maximum
mitochondrial respiration, (C) basal respiration, (D) proton leak, and (E) ATP production measurements in A. Means 6 SD are from triplicate wells. (F)
Measurements of FAO in16HBE cells treated with CS. Means 6 SD from triplicate wells representative of two independent repeats. (G) Measurements of
CPT1A mRNA levels in 16HBE cells treated with CS. *P , 0.05 and **P , 0.01 by unpaired Student’s t test. Means 6 SD from triplicate wells in three
independent repeats. FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone.
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Figure 2. FAO mediates CS-induced cell death and accumulation of mitochondrial-derived reactive oxygen species (ROS). (A) Cell viability measurements
in 16HBE cells treated with CS and Eto. (B) Cell viability measurements in 16HBE cells transfected with CPT1A small interfering RNA (siRNA) and treated
with CS. (C) Mitochondria-derived ROS indicated by MitoSOX staining in 16HBE cells by flow-cytometry analysis. (D) Intracellular ROS measurements in
16HBE cells by dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. Eto: 50 mM. CS treatment in A–E: 3% CS extract (CSE) for 12 h. Terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining images (E) and quantifications (F) indicative of cell death in human lung slices
exposed to CSE (6% for 24 h) in vitro. Representative TUNEL-positive cells (green color) are indicated by white arrows and magnified in the smaller window
in E. Eto: 100 mM, 24 h. Hematoxylin and eosin (H&E) and TUNEL (G) staining images and quantifications of TUNEL-positive cells (H) in murine lung
sections from wild-type C57BL/6 mice exposed to CS for 1 month. Eto: 25 mg/kg, every other day intraperitoneal injection. The number of mice is
indicated by the number inside each column in H. (A, B, and D) Means 6 SD from at least three biological repeats. (F) Means 6 SEM from eight random
views in each lung section. (H) Means6 SEM from four mice in each group and four random views in each mouse. Scale bars: 500 mm in upper panels of
G and 100 mm in lower panels of G. *P, 0.05, **P, 0.01.
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Wnt pathway, by interacting with the
protein phosphatase 2A (PP2A)/glycogen
synthase kinase 3b (GSK-3b) complex
(21). It was also reported that the canonical
Wnt pathway promotes FAO in hepatic
cells (29). Therefore, we assessed
whether activation of the b-catenin/Wnt
pathway regulates FAO in HBE cell lines.
Surprisingly, FAO showed no changes in

16HBE cells treated with lithium chloride
(5 mM), an activator of the canonical Wnt
pathway associated with accumulation of
b-catenin (Figure E9A). Furthermore, FAO
remained at lower levels in 16HBE cells
transfected with CPT1A siRNA despite
lithium chloride treatment (Figure E9B).
This suggested that the canonical Wnt
pathway may not regulate FAO in

bronchial epithelial cells, and that FAM13A
may promote FAO independently of the
b-catenin/Wnt pathway in bronchial
epithelial cells.

Among the cellular partners of human
FAM13A we previously identified by mass
spectrometry (21), sirtuin 1 (SIRT1) is the
most relevant for activation of FAO
through its deacetylation enzymatic activity
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(30–33). Here, we found that endogenous
SIRT1 was coimmunoprecipitated by
FLAG-tagged FAM13A in HEK 293 cells
(Figure 4A). Furthermore, silencing of

FAM13A significantly reduced SIRT1
enzymatic activity by 62% in 16HBE cells
(Figure 4B). These results suggested that
FAM13A interacts with SIRT1 and

promotes its deacetylase activity. To
determine the functional impact of their
interaction, we measured FAO in 16HBE
cells after chemical activation or genetic
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silencing of SIRT1. FAO significantly
increased after treatment with the SIRT1
activator SRT1720 (3 mM) (34), but was
reduced after silencing of SIRT1 by siRNA
in 16HBE cells in the presence or absence
of FAM13A (Figure 4C). Interestingly,
overexpression of FAM13A failed to revert
the impaired FAO due to SIRT1 silencing
by SIRT1 siRNA (Figure 4D), suggesting
that SIRT1 is downstream of FAM13A in
regulating FAO, and FAM13A promotes
FAO through SIRT1.

SIRT1 promotes FAO through
transcriptional activation of multiple genes
that are important for FAO, including
CPT1A (35). Given that expression of
CPT1A is positively regulated by FAM13A
(Figure E6), we next assessed whether
FAM13A promotes expression of CPT1A
and FAO through SIRT1 in bronchial
epithelial cells. First, the protein levels of
CPT1A were reduced after SIRT siRNA
transfection in 16HBE cells (Figure 4E).
Second, overexpression of FAM13A
increased the mRNA and protein levels of
CPT1A, which was reverted by SIRT1
siRNA (Figures 4F and 4G). This suggested
that SIRT1 functions downstream of
FAM13A to promote transcriptional
activation of CPT1A.

Loss of Fam13a Attenuates CS-
Enhanced Mitochondria Respiration
We further assessed the impacts of CS
exposure and Fam13a deficiency on the
OCR in lung epithelial cells in vivo. We
exposed age-matched Fam13a1/1 and
Fam13a2/2 mice to CS for 1 month, and
found that expression of Cpt1a increased
in Fam13a1/1 mice after 1 month of CS
exposure (Figure E10A). In the meantime,
we also set out to determine the impacts of
FAM13A and chronic CS exposure on
mitochondrial respiration in vivo. Primary
distal lung epithelial cells were isolated
and assessed for mitochondrial
respiration. Maximum respiration
increased by 50% in lung epithelial cells
from Fam13a1/1 mice after CS exposure
(Figures E10B–E10F), consistent with a
previous report (16). In contrast,
maximum mitochondrial respiration was
significantly attenuated in lung epithelial
cells from both air- and CS-exposed
Fam13a2/2 mice compared with cells
from Fam13a1/1 mice. We further
confirmed that the CS-induced increase
of OCR was impaired in lung epithelial
cells derived from Fam13a2/2 mice even

after 5 months of chronic CS exposure
(Figures 5A and E11), suggesting that
FAM13A mediates CS-induced
mitochondrial respiration in distal lung
epithelial cells.

Silencing of FAM13A Increases
Resistance to CS-Induced Cell Death
Given that increased FAO mediates CS-
induced cell death, we next assessed
whether FAM13A also regulates CS-
induced cell death and ROS production.
First, silencing of FAM13A by two
individual siRNAs conferred resistance to
CSE-induced cell death (Figure 6A). In
contrast, overexpression of human
FAM13A sensitized cells to CSE-induced
cell death and reverted the resistance to
cell death conferred by FAM13A shRNA
in 16HBE cells (Figure 6B). CSE treatment
induced a 3-fold increase of intracellular
ROS, which was completely attenuated
upon FAM13A silencing (Figure 6C). We
also detected a 4-fold increase in the
number of dead cells positive for TUNEL
signals in lungs from Fam13a1/1 mice
exposed to CS for 1 month, in contrast to
a 1.64-fold increase in CS-exposed
Fam13a2/2 mice (Figures 6D–6F). These
results suggested that FAM13A
promotes CS-induced cell death in vivo
and in vitro.

In summary, FAM13A promotes SIRT1
activity, increases CPT1A levels, and activates
FAO. Upon CS exposure, CPT1A levels
increase and FAO is activated, which
mediates CS-induced ROS accumulation and
cell death. Upon Fam13a deficiency, CPT1A
levels are reduced, which attenuates CS-
induced FAO and cell death (Figure 6G).

Discussion

GWASs have demonstrated a consistent
association with COPD susceptibility at the
FAM13A locus (17). Despite increasing
epidemiologic evidence linking lipid
metabolism to CS-induced emphysema (36,
37), whether—and if so, how—FAO, one of
the major lipid metabolism pathways that
are important for energy homeostasis,
contributes to COPD pathogenesis has not
yet been explored. Furthermore, how
COPD GWAS genes determine CS-induced
metabolic adaptation, as well as the
biological consequences of such an
adaptation, also remains enigmatic.
Previously, we demonstrated that
Fam13a2/2 mice are resistant to CS-
induced emphysema (21). Herein, we
demonstrate that FAM13A promotes FAO
by upregulating CPT1A expression, and
that chemical or genetic inhibition of FAO
attenuates mitochondrial-derived ROS
accumulation and cell death induced by CS
exposure in vitro and in vivo. Hence, we
connect FAM13A, one of the most
consistent COPD genes, to CS-induced cell
death through FAO, a druggable pathway
that is important for energy balance and
lipid metabolism.

Emphysema, which is characterized by
the destruction of alveolar walls and reduced
alveolar surface areas, represents one of the
major pathological changes in human
COPD lungs. CS-induced ROS
accumulation and epithelial cell death
contribute to CS-induced emphysema, but
little is known about how this happens. The
mitochondrion, as the main source of
intracellular ROS, is not only passively
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stressed by CS in airway epithelial cells (26)
but may also actively mediate CS-induced
ROS production through elevated FAO,
a metabolic adaptation that occurs in
response to CS exposure. Thus, the
mitochondrion has been suggested as a
potential therapeutic target in COPD as
well as in other lung diseases (38).

Under physiological conditions,
glucose is the major cellular energy source
for generating ATP for various activities.
However, upon CS exposure, airway
epithelial cells utilize lipids to generate ATP
by activation of FAO (16) (Figure 1). Direct
induction of FAO by CS in airway epithelial
cells may result from increased expression
of CPT1A by CS. It is also possible that CS
disrupts the extracellular matrix in COPD
(39), and loss of extracellular-matrix
attachment may promote FAO in epithelial
cells (40). The change in glycolysis that
occurs after CS exposure is more
complicated: results from CS exposure in a
murine model suggested reduced glycolysis
in lung epithelial cells (16), whereas
patients with COPD demonstrated faster
glucose metabolism with increased
glycolysis (41). Therefore, the molecular
mechanism by which lung epithelial cells
adapt metabolically in response to CS
in vivo requires further investigation.

It is well accepted that chronic CS
exposure in mice reduces body weight as
well as fat mass (42), which may result from
reduced food intake due to loss of appetite
(43). Our study suggests another plausible
reason for such reduced weight and fat
mass after chronic CS exposure. In
response to CS exposure, lung epithelial
cells increased their mitochondrial
respiration by enhancing FAO, which may
exploit fat storage in adipose tissues to meet
increased FA demands in lungs under stress
conditions. Therefore, through such
metabolic adaptation, lung epithelial cells
are able to generate ATPs to meet their
cellular energy needs. However, this
metabolic adaptation works as a double-
edged sword, because sustained elevation in
FAO may also aggravate CS-induced ROS
accumulation, mitochondrial damage,
and cell death (15). This notion is
supported by observations of improved
cell viability and reduced mitochondrial
ROS accumulation in vitro and ex vivo
with Eto treatment during CS exposure
(Figure 2). In addition, such continuous
consumption of body fat may reduce
body weight and fat mass in CS-exposed
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mice. Hence, environmental CS exposure
leads to a rather systematic adaption
in metabolism that may in turn
determine CS-induced lung injury to
various degrees.

Although FAM13A is one of the most
replicated COPD GWAS genes, little is known
about its biological functions. Previously, we
showed that FAM13A interacts with PP2A
and promotes the degradation of b-catenin
in bronchial epithelial cells (21). Therefore,
increased levels of b-catenin detected in
Fam13a2/2 lungs may be associated with
increased cell proliferation and lung repair
capacity after CS-induced injury. Here, we
argue that metabolic regulation may represent
another complementary mechanism by which
FAM13A promotes CS-induced emphysema.
We found that FAM13A interacts with SIRT1,
a well-known regulator of FAO. In previous
studies, Sirt1/2 mice showed spontaneous
emphysema and SIRT1 levels were reduced in
lung epithelial cells from COPD patients (44,
45). Nuclear SIRT1 activates the transcription
factor forkhead box O3 (FOXO3) and thus
protects cells from oxidative-stress–induced
injury (44, 45). However, FAM13A mainly

interacts with SIRT1 in the cytosol and
promotes the deacetylation activity of cytosolic
SIRT1, whose function is distinct from that of
nuclear SIRT1. Cytoplasmic SIRT1 activates
peroxisome proliferator-activated receptor
gamma coactivator 1-a (PGC-1a) through
deacetylation and increased expression of
CPT1A (46, 47). FAM13A interacts with
SIRT1 and induces expression of CPT1A,
thereby enhancing FAO, which mediates CS-
induced cell death and ROS accumulation.
The promotion of FAO by FAM13A through
SIRT1 may function independently of its
regulation on the b-catenin/Wnt pathway but
complementarily determine the susceptibility
to CS-induced emphysema.

It is noteworthy that FAM13A has also
been consistently associated with lung
function in the general population (48),
suggesting that the impact of FAM13A on
lung function may not depend on smoking
exposure. Consistent with this, a recent
study suggested that both FAM13A and
hedgehog interacting protein (HHIP) loci
were significantly associated with lung-
function measurements in never-smokers
(49). This finding indicates that without

CS exposure, an increase of FAM13A
expression is sufficient to confer a risk of
airway obstruction. In our experiments, we
also found that overexpression of FAM13A
increased the cellular FAO rate in bronchial
epithelial cells independently of CS
exposure (Figure 3E), and that increased
FAO may predispose cells to an increased
risk of cell apoptosis under CS treatment
(Figure 1). However, further investigation is
required to determine whether the cellular
FAO rate may modulate lung function
under baseline in the absence of CS
exposure. If so, FAM13A may determine
normal lung function maintenance through
modulating lipid metabolism in lung
epithelial cells.

In summary, we have shown that
CS-induced metabolic adaptation, mainly
activation of FAO, may contribute to
CS-induced lung epithelial cell death and
increase ROS accumulation, and this
process is modulated by the COPD
susceptibility gene, FAM13A. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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