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Abstract

Background aims—Mesenchymal stromal cells (MSCs) are being investigated for use in cell 

therapy. The extensive in vitro expansion necessary to obtain sufficient cells for clinical use 

increases the risk that genetically abnormal cells will arise and be propagated during cell culture. 

Genetic abnormalities may lead to transformation and poor performance in clinical use, and are a 

critical safety concern for cell therapies using MSCs.

Methods—We used spectral karyotyping (SKY) to investigate the genetic stability of human 

MSCs from ten donors during passaging.

Results—Our data indicate that chromosomal abnormalities exist in MSCs at early passages and 

can be clonally propagated. The karyotypic abnormalities observed during our study diminished 

during passage.

Conclusions—Karyotyping of MSCs reveals characteristics which may be valuable in deciding 

the suitability of cells for further use. Karyotypic analysis is useful for monitoring the genetic 

stability of MSCs during expansion.
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Introduction

Human mesenchymal stromal or stem cells (hMSCs) are derived from several tissues 

including bone marrow. They are plastic-adherent in tissue culture, can differentiate into 

osteoblasts, chondrocytes, and adipocytes, and express cell surface markers CD73, CD90, 

CD105, but not CD11b, CD14, CD19, CD34, CD45, and CD79α [1]. MSCs are being 

investigated in clinical trials for a variety of indications.
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MSCs are often significantly expanded to obtain sufficient cells for therapy, which increases 

the probability that genetic changes may arise. Genetic stability and potential transformation 

leading to tumor growth are safety concerns for stem cell therapies [2]. Chromosomal 

alterations are associated with increased tumorigenicity and the inability to reach desired 

differentiation states [3, 4]. Additionally, there is donor to donor variability in the genetic 

stability of cells used for therapy [5]. To explore effects of extended passage and donor 

source on genetic stability, we performed karyotypic analysis of hMSCs as part of a larger 

analysis of attributes of these cells that might predict safety and performance in clinical use 

[6–12].

High rates of aneuploidy, escape from replicative senescence, and transformation in rodent 

MSCs prompted concern for use of hMSCs [13, 14]. However, studies for hMSCs report low 

levels of chromosomal aberrations among donor samples [15, 16] and during culture 

expansion [5, 17, 18]. Low levels of non-clonal chromosomal aberrations in MSCs used in 

clinical trials have been observed, but there are no reports of malignant transformation [19]. 

The evidence of malignant transformation during in vitro expansion is mixed [5, 20], as 

initial reports for hMSCs were a result of contaminated cell lines [21, 22]. However, a recent 

paper reported that verified hMSCs exhibited spontaneous tumorigenic transformation 

associated with genomic alterations during culture [23], thus MSCs tumorigenic potential 

remains unresolved. Additionally, the significance of chromosomal alterations or the effect 

of genetic instability on therapeutic performance is poorly understood.

Multiple methods are available to assess chromosomal stability of cells including Giemsa 

(G) banding, fluorescence in situ hybridization (FISH), spectral karyotyping (SKY), and 

comparative genomic hybridization (CGH). SKY is a rapid FISH based method in which 

chromosome-specific fluorescent labels are used to visualize all chromosomes in a single 

hybridization [24, 25]. Using SKY, we identified genomic aberrations in bone marrow-

derived hMSCs from multiple donors, at multiple passages, to analyze the chromosomal 

stability of each cell line during culture. We found that chromosomal aberrations both exist 

and arise in culture expanded MSCs, and could be clonally propagated. However, in all 

cases, the aberrations diminished with extended culture, suggesting that they did not provide 

a replicative advantage, providing further evidence of the general genetic stability of 

hMSCs.

Materials and Methods

Cell Culture

Bone marrow-derived hMSCs from ten donors were purchased from All Cells (Alameda, 

CA) or Lonza (Walkersville, MD) as passage 1 vials and designated with identifiers 

indicating donor. Both AllCells and Lonza use standard protocols for isolation of MSCs 

from bone marrow and culture cells in Mesencult (Stem Cell Technologies), or MSCGM 

(Lonza), respectively. MSCs were expanded in culture medium composed of α-minimum 

essential medium (Life Technologies), 1% L-glutamine (Life Technologies), 1% penicillin 

and streptomycin (Life Technologies), and 16.5% fetal bovine serum (JM Bioscience) to 

passages 3, 5, and 7 (P3, P5, and P7), as previously described [7]. Passage number equals 

times cells were trypsinized until cryopreservation. Expansion lots PCBM1641, PCBM1632, 
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167696, 110877, 8F3560, PCBM1662, and 127756 were tested for expression of cell surface 

markers by flow cytometry [7], and growth kinetics using an IncuCyte Live Cell Imager [8]. 

Additionally, CFUs, quantitative adipogenic differentiation, proteomic profiling, 

transcriptome analysis, T-cell immunomodulation, and changes in chromatin modifications 

have been described for these lots [6–12].

Metaphase Spreads

Cryopreserved cells were cultured to 70–80% confluence, then 10 μl/ml of 10% 

Demecolcine (Sigma Aldrich) was added. After 4–5 hours, cells were trypsinized, 

centrifuged, resuspended in a few drops of media, and a hypotonic solution (0.2 % 

Potassium Chloride, 0.2% Sodium Citrate, and 0.01% Fetal Bovine Serum) was added 

dropwise. Cells were incubated at 37°C for 20 minutes, centrifuged, and resuspended in 

hypotonic solution. Fixative (3:1 solution of Methanol:Acetic Acid) was added dropwise. 

Cells were incubated 15 minutes at RT, centrifuged and resuspended in fixative twice. 

Resuspended cells were dropped onto clean slides over a 60°C water bath and air dried. 

Slides were microscopically examined for metaphase spreading and stored 5 to 15 days at 

room temperature before Spectral Karyotyping.

Karyotyping

Chromosome hybridization for spectral karyotyping was performed using the human 

SkyPaint and CAD detection kits (Applied Spectral Imaging) according to the company 

protocol. Metaphase chromosomes were analyzed on a Nikon Eclipse E800 microscope 

equipped with the HISKY system and software (Applied Spectral Imaging). We observed 

variable random loss of chromosomes, likely due to the technical preparation of slides. 

Unless multiple karyotypes exhibited the same chromosomal loss, these data were excluded 

from the analysis. Karyotyping followed the International System for Chromosome 

Nomenclature 2009 [26].

Giemsa stained mitotic chromosome preparation (G-banding) was performed by the WiCell 

cytogenetics laboratory. Twenty metaphase spreads were analyzed for each sample.

Statistical Analysis

The percent abnormal karyotypes were calculated for all samples and technical replicates 

averaged. This resulted in heteroscedastic data requiring nonparametric analysis. Friedman’s 

test, a repeated measures ANOVA on ranks, was performed. To test sampling bias within 

donors, contingency tables were constructed from counts of normal and abnormal spreads 

and two-tailed p-values calculated using Fisher’s exact test for 2×2 tables or the Freeman-

Halton test for larger tables. Data was analyzed using SAS system for Windows, Version 9.3 

(Copyright 2012, SAS Institute Inc., Cary, NC).

Results

Primary characterization of MSCs

We used SKY to analyze chromosomal stability of MSCs derived from different donors 

expanded through 7 passages. The International System for Human Cytology Nomenclature 
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2009 report [26] recommends scoring a minimum of 20 mitotic spreads, and defines a clonal 

population as two of the same abnormal karyotype. To increase the robustness of our data, 

we attempted to collect a minimum of forty mitotic figures per sample; however, this was 

not always feasible due to diminishing proliferative potential of some MSC lines. MSCs 

were derived from young or middle-aged donors (Fig. 1A).

The primary karyotype of PBMC1632 displayed a Robertsonian Translocation of 

chromosomes t(13;14)(Fig. 1B). We also identified two MSC lines with karyotypically 

abnormal subpopulations at passage 3 (P3); 127756 displayed a translocation with karyotype 

46,XY,t(12;13), present in 10% of cells examined and 8F3560 displayed two translocations 

with karyotypes 46,XX,t(1;7) and 46,XX,t(4;17) at approximately 4% and 2% of the total 

population, respectively.

Karyotypic changes during culture

Six MSC lines were analyzed by SKY at P3, P5, and P7. Karyotypes were categorized as: 

normal, translocation (exchange of material between chromosomes), aneuploid (gain or loss 

of an entire or multiple chromosomes), or deletion/addition (gain or loss of material from a 

single chromosome)(Fig. 1C). Aneuploidy was the most frequent abnormality observed, and 

was random, with different karyotypes observed in each instance. Percent abnormal 

karyotypes were calculated for each donor (Fig. 1D). MSCs from 8F3560, PCBM1662, and 

110877 showed a decrease in abnormal karyotypes from P3 to P7. MSCs from 167696 and 

PCBM1641 showed an increase in abnormal karyotypes at P5 then a decrease at P7. Cells 

from PCBM1632 showed no change in the percentage of abnormal karyotypes at any 

passage. A greater range in the number of abnormal karyotypes was observed among all 

samples in P3 as compared to P5 and P7. This difference in variance (range of 16% within 

P3 as compared to 5–6% for P5 and P7) suggests an underlying biological difference at P3. 

Due to the large difference in variance we ran Friedman’s test to check for consistent 

changes across the three passages. No statistically significant difference (p = 0.154) between 

passages was found. The mean percent abnormal karyotypes at each passage showed a trend 

toward decreasing abnormal karyotypes from P3 (mean = 8.0) through P5 (mean = 7.8), to 

P7 (mean = 3.4)(Fig. 1D). Although this small data set did not reach statistical significance, 

we believe they show a trend towards a decreasing number of abnormal karyotypes with 

passage.

Extended karyotypic analysis of 8F3560

Cell line 8F3560 had two clonal subpopulations of abnormal karyotypes at P3, in contrast to 

other donor samples, which had random primarily aneuploid karyotypes. We further 

examined the karyotypic profile of 8F3560 by preparing and analyzing 144, 134, and 124 

metaphase spreads for P3, P5, and P7, respectively. As our study was part of a larger 

analysis of MSCs using various methods [6–12], we were able to test the robustness of SKY 

by comparing technical replicates. Expansion involved multiple pools of cells aliquoted into 

individual cryovials and raised a concern that different pools might exhibit different 

karyotypes. We performed six repeat experiments to augment the original data. These 

showed a similar trend to that shown in Figure 1, including a large variance in the 

percentages of karyotypic abnormalities for P3 and less among those for P5 or P7 (Fig. 2A).
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The P3 data in Figure 2A suggested a possible relationship between cell populations with 

higher numbers of abnormal karyotypes and the yield of overall metaphase spreads. These 

data were plotted for all P3 lines and no linear correlation was seen (Fig. 2B).

To test the hypothesis that there are differences among 8F3560 technical replicates, we 

constructed contingency tables for each passage to compare normal and abnormal metaphase 

spreads. We failed to find evidence of sample bias in these data, as the p-values were non-

significant, rejecting the hypothesis that differences existed among samples (p>0.05; Fig. 

2A). This conclusion is strengthened by the observation that the same clonal populations of 

abnormal karyotype cells were identified in multiple pools, suggesting that they were 

present in the original sample.

We also obtained G-banding data for cell line 8F3560. Only P3 and P5 cells could be 

propagated by the karyotyping vendor. At P3, a single non-clonal abnormality, 47,XX,+5, 

was observed. No abnormal karyotypes were observed at P5.

Based on cumulative 8F3560 data, the total number of abnormal karyotypes decreased with 

passage and clonal subpopulations observed in early passages disappeared during culture. 

All clonal subpopulations identified in the larger analysis decrease in number from P3 to P5; 

none were present at P7 (Fig. 2C). Tetraploid karyotypes (92,XXXX) were observed in all 

passages, but they could not be identified as clonal as these can arise independently. Fewer 

random abnormal karyotypes were observed at P7 than at either P3 or P5. In summary, while 

MSCs from this donor exhibited more abnormal karyotypes, the trend towards decreasing 

both clonal and random abnormal karyotypes with increasing passage was consistent with 

other cell lines analyzed in this study.

Karyotype analysis of older donors

Cells from 127756 (43 y/o) were karyotyped at P3 and P5; after which they senesced. More 

abnormal karyotypes were seen compared to cells from six younger donors (Fig. 1C). We 

hypothesized that older donors may have more cells harboring abnormal karyotypes, or that 

cells from older donors might be less genetically stable. To test this, cells were obtained 

from three additional “older” donors age 39, 40, and 41, as compared to our original 

“younger” donors aged 22 to 31. Karyotype analysis was only performed at P3 and P5 due 

to senescence (Fig. 3A). Abnormal karyotypes seen in MSCs from older donors were 

primarily translocations, whereas cells from younger donors were predominantly aneuploid. 

Similar to the trends observed with younger donors, greater variance was observed among 

the P3 data compared to P5, although the difference was not as pronounced (Fig. 3B). In 

addition, the number of abnormal karyotypes dropped from P3 to P5 in three of the four 

lines examined. Comparison of karyotypic abnormalities from cells of all donors (Fig. 3C) 

did not support the hypothesis that older donors have a higher number of abnormal 

karyotypes.

Discussion and Conclusions

We used SKY to monitor chromosomal stability of hMSCs from ten donors during in vitro 
expansion. Karyotypes observed at P3 revealed characteristics which might be useful in 
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deciding the suitability of cells for further use. Cells from two of ten donors exhibited clonal 

subpopulations of abnormal karyotypes from 2% to 10% of the total population at P3. The 

International Society for Cellular Therapy has suggested the presence of two identical 

abnormal metaphases out of 20 should be an exclusion limit for clinical use of MSCs [27].

MSCs at P3 displayed more variability in the quantity of abnormal karyotypes found than 

was observed for P5 or P7. We speculate this reflects the adjustment of MSCs to culture 

conditions as compared to the bone marrow. Others have shown that genetic and epigenetic 

changes occur as cells adapt to cell culture [28–30].

We examined the karyotypic profile of MSCs during extended passage. Data from P3, P5, 

and P7 suggest a trend towards loss of abnormal karyotypes with increasing passage. Clonal 

populations of abnormal karyotypes observed at P3 disappeared in later passages and 

random abnormal karyotypes were also less prevalent. Previous studies also report loss of 

aneuploidy [19, 31, 32] or abnormalities detected by CGH [33] with increased passage 

number. Disappearance of karyotypically abnormal cells could be due to apoptosis, cell 

cycle arrest or replicative senescence caused by deleterious genetic mutation. Analysis of 

MSCs using FISH or CGH indicates a high level of aneuploidy is present in senesced cells at 

late passage [5, 19, 34]. However, their lack of replicative ability suggests that they do not 

present a risk of tumorigenesis. Our results for ten MSCs donors indicated there is 

variability among donors in both the quantity and type of karyotypic abnormalities found, 

suggesting donor to donor variability in genetic stability. A recent paper reports nonrandom 

aneuploidy in 5 of 20 MSC cultures, and reoccurring abnormalities present in multiple 

samples from the same donor [19], further supporting that chromosomal stability may be 

donor-dependent. Studies of spontaneous background frequencies of DNA damage in 

peripheral lymphocytes find differences between gender, age groups, and smokers vs. non-

smokers [35, 36]. The impact of donor variability on MSC genetic stability and function is 

unknown. We note that cells from donor 8F3560, which exhibited clonal populations of 

abnormal karyotypes, also show weak differentiation potential in a quantitative assay for 

adipogenesis [7].

Our data suggest that MSCs from donors of age 39 to 43 years did not uniformly have more 

karyotypic abnormalities than cells from donors aged 22 to 31 years, although more 

translocations were observed in the older age group. These data support that donor 

variability may be greater than any trend toward decreased genetic stability in MSCs with 

increasing donor age. MSCs are being studied for autologous use in regenerative medicine, 

so the genetic stability of cells from older donors is an important consideration.

Karyotyping is a practical way to assess genome stability and can be useful as part of an 

initial characterization of an MSC population. We found SKY to be a feasible method for 

karyotype analysis. It identifies small (1–2 Mb) or complex chromosomal rearrangements 

better than standard karyotyping [37, 38]. It readily identifies aberrant chromosomes even if 

their structural abnormalities or small size render them hard to recognize by G-banding [39]. 

SKY readily identifies translocations and complex chromosomal rearrangements between 

chromosomes [24, 25, 38]. However, it cannot evaluate certain structural abnormalities, such 

as inversions, deletions, and duplications within the same chromosome. Complex structural 
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rearrangements which connect multiple non-homologous chromosomes, as are seen in tumor 

cells, can also give misleading interpretations with SKY [40]. Also, all karyotypic methods, 

which are dependent on mitosis, under represent genetic abnormality in a population that 

includes non-dividing cells. We and others [41] have addressed the problem of obtaining 

sufficient mitotic spreads as a result of the relatively low proliferative index of MSCs by 

protocol optimization, suggesting the method has general applicability for MSCs. Our repeat 

analysis of MSCs from donor 8F3560 indicates that SKY is robust and shows no signs of 

significant sample bias. However, the choice of the karyotyping method should be based on 

the type of information needed, and SKY in some circumstances should be used in 

combination with other methods, such as G-banding.

The majority of current literature suggests MSCs have stable karyotypes [15, 42, 43]; several 

publications showing transformation of MSC lines have been retracted [21, 22]. However, a 

recent report of genetic abnormalities and tumorigenesis in hMSCs, verified by STR 

analysis, indicates that this issue is not yet settled [23]. Furthermore, questions remain about 

the contribution of individual donors to MSC genetic stability, what role the manufacturing 

process has on cytogenetic abnormalities, and the effect these abnormalities may have on the 

ability of these cells to perform their intended function while remaining safe [27]. Our 

analysis indicates that SKY provides a robust method to characterization MSC lines as part 

of an assessment of their suitability for further use. Our data also support the general 

contention that MSCs expanded in culture have a relatively stable karyotype. However, 

karyotypic abnormalities were found and can persist clonally, suggesting that monitoring 

genetic stability for this cell type should be part of the characterization of lines intended for 

clinical use.
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Figure 1. 
SKY analysis for MSCs from donors aged 22 to 31 years. (A) All MSCs used in this study 

are listed by donor identifier, age, and reported gender. Asterisk indicates vendor 

information not in agreement with karyotype. Data for donors aged 39 to 43 years shown in 

Figure 3. (B) Spectral karyotype of PCBM1632 shows a Robertsonian translocation (arrow) 

in all cells, for subsequent analysis this karyotype is classified as normal for this cell line. 

(C) Raw data for each donor displaying the number for total, normal, or abnormal 

karyotypes. Percentages for normal/abnormal karyotypes were calculated. (D) Scatter plot 

showing percent abnormal karyotypes for MSCs from each of six donors at P3, P5, and P7. 

The dashed black line indicates the mean.
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Figure 2. 
Extended analysis on MSCs from donor 8F3560. (A) Results for individual replicates done 

on cells from donor 8F3560. P-values > 0.05 indicate a lack of significant differences 

between technical replicates. (B) Plot of the total number of metaphase spreads vs. percent 

abnormal karyoypes for all donors at P3. No correlation is observed. 8F3560 is indicated by 

red diamonds. (E) Table identifying all abnormal karyotypes from all replicates for each 

passage of cell line 8F3560. Clonal populations are highlighted.
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Figure 3. 
SKY analysis for MSCs from donors aged 39 to 43 years. (A) Data for total, normal, or 

abnormal karyotypes. (B) Percent abnormal karyotypes were graphed for each donor at P3 

and P5. The dashed black line indicates the mean. (C) Combined data from cells from all 

donors and all passages. Old donors (red) and young donors (green) are displayed on the 

same plot for comparison.
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