Skip to main content
. Author manuscript; available in PMC: 2017 Jul 19.
Published in final edited form as: Behav Res Methods. 2015 Mar;47(1):13–26. doi: 10.3758/s13428-014-0450-6

Table 1.

Variables and methods for the UML object

Variables Comments
uml.x Signal intensity
uml.xnext Next signal intensity, based on previous trials
uml.p Current estimate of the posterior parameter distribution
uml.phi Estimates of the psychometric- function parameters
uml.r Subject’s binary responses in terms of correctness
uml.par Data structure containing parameter space configuration
uml.n Current trial number
uml.phi0 Parameters of the psychometric function for a virtual observer (used for simulation only)
uml.userdata01 Reserved for user-defined data
uml.userdata02 Reserved for user-defined data
uml.userdata03 Reserved for user-defined data
uml.userdata04 Reserved for user-defined data
Methods Comments
Initialization:
 uml = UML(par) Construct a UML object
 uml.setNdown(ndown) Set the n-down, 1-up sweet-point selection rule
 uml.setX0(x0) Set the initial presentation level
Iteration:
 uml.update(r) Update the stimulus strength x, depending on response correctness r
Simulation:
 uml.setPhi0(phi0) Set the parameter uml.phi0
 r = uml.simulateResponse(x) Generate a response, and indicate correctness (r) from the virtual observer
Other:
 conf = uml.getConf(percent) Return the confidence limits of the parameters
 uml.plotP() Plot the posterior parameter distribution