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Induced pluripotent stem cells (iPSCs) are becoming an important source of pre-clinical models for research focusing on
neurodegeneration. They offer the possibility for better understanding of common and divergent pathogenic mechanisms of brain
diseases. Moreover, iPSCs provide a unique opportunity to develop personalized therapeutic strategies, as well as explore early
pathogenic mechanisms, since they rely on the use of patients’ own cells that are otherwise accessible only post-mortem, when
neuronal death-related cellular pathways and processes are advanced and adaptive. Neurodegenerative diseases are in majority of
unknown cause, but mutations in specific genes can lead to familial forms of these diseases. For example, mutations in the
superoxide dismutase 1 gene lead to the motor neuron disease amyotrophic lateral sclerosis (ALS), while mutations in the SNCA
gene encoding for alpha-synuclein protein lead to familial Parkinson’s disease (PD). The generations of libraries of familial human
ALS iPSC lines have been described, and the iPSCs rapidly became useful models for studying cell autonomous and non-cell
autonomous mechanisms of the disease. Here we report the generation of a comprehensive library of iPSC lines of familial PD and
an associated synucleinopathy, multiple system atrophy (MSA). In addition, we provide examples of relevant neural cell types these
iPSC can be differentiated into, and which could be used to further explore early disease mechanisms. These human cellular models
will be a valuable resource for identifying common and divergent mechanisms leading to neurodegeneration in PD and MSA.
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INTRODUCTION

The group of synucleinopathies consists mainly of three neuro-
degenerative diseases: dementia with Lewy bodies, Parkinson’s
disease (PD) and multiple system atrophy (MSA), the last
being divided into Parkinsonian type MSA with degeneration
of nigro-striatal dopamine neurons, and cerebellar type MSA
with ataxic symptoms. The diseases share the same hallmark:
intracellular aggregates composed in majority of a protein called
alpha-synuclein (aSYN). The SNCA gene encodes for aSYN. When
SNCA is mutated or multiplied, it leads to an early onset familial
PD."? Interestingly, while aSYN aggregates are found in neurons
in dementia with Lewy bodies and PD, they are located in
oligodendrocytes in MSA2

Naturally, SNCA is expressed in neurons. A recent study from our
laboratory showed that SNCA is also expressed at early stage of
oligodendrocyte development.* The role of aSYN in oligoden-
drocytes largely remains to be clarified. It is thought that under
pathological condition, aSYN protein can aggregate in neurons
and over time form Lewy bodies.> Moreover, it was shown in
experimental models that aSYN aggregates are toxic to neurons,®”’
and that a neuroblastoma cell line over-expressing human
recombinant SNCA releases factors including aSYN, leading to glial

reactivity,8 suggesting aSYN aggregates may cause neuronal
injury. However, recent work evidenced that neuronal dysfunction
and protein aggregation may be two independent events.® Thus,
although the progression of Lewy pathology throughout the brain
may be due to a prion-like mechanism of cell-to-cell transfer
of aSYN,'® it remains unclear what the initial molecular cascades
leading to neuronal dysfunction are, and how they differ
depending on the genetic background of the patients.

The reprogramming of human somatic cells using “stemness’
transcription factors into induced pluripotent stem cells (iPSC)"
has revolutionized our way to approach scientific problems
related to human diseases. Importantly, this discovery offers
unlimited access to patient cells, which can subsequently be
differentiated into relevant cell types to study early pathogenic
mechanisms of neurodegeneration.'”™” Such iPSC-based research
strategies could lead to the discovery of new therapeutic targets,
biomarkers, and the development of humanized high-throughput
models for drug discovery and environmental chemical
safety assessment.'>”"” Thus far, several studies utilizing iPSC-
based models reported neuronal dysfunction reminiscent to
mutations in PD-linked genes LRRK2 (leucine-rich repeat
kinase 2), PINK (PTEN-induced putative kinase 1), and PARK2
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Cell Tissue sy C_eII Molecul_ar Diagnosis Reprogramming Veitar Refararice
type type Line analysis factors

iPS Fibroblast F UEF-1A Healthy subject OSKM Lentivirus 15, 26-28
iPS Fibroblast F UEF-2A Healthy subject OSKM Sendai virus This study
iPS Fibroblast F UEF-2B Healthy subject OSKM Sendai virus This study
iPS Fibroblast F UEF-2C Healthy subject OSKM Sendai virus This study
iPS Fibroblast M UEF-3A Healthy subject OSKM Lentivirus This study
iPS Fibroblast M UEF-3B Healthy subject OSKM Sendai virus This study
iPS Fibroblast M UEF-4A  LRRK2 (p.G2019S) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast M UEF-4B  LRRK2 (p.G2019S) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast M UEF-5B LRRK2 (p.G2019S) PD OSKM Sendai virus This study
iPS Fibroblast M UEF-5E LRRK2 (p.G2019S) PD OSKM Sendai virus This study
iPS Fibroblast M UEF-5F LRRK2 (p.G2019S) PD OSKM Sendai virus This study
iPS Fibroblast M UEF-5G LRRK2 (p.G2019S) PD OSKM Lentivirus This study
iPS Fibroblast F CSC-1A SNCA Duplication PD OSKM Retrovirus This study
iPS Fibroblast F CSC-1B SNCA Duplication PD OSK Retrovirus This study
iPS Fibroblast F CSC-1C SNCA Duplication PD OSK Retrovirus This study
iPS Fibroblast F CSC-1D SNCA Duplication PD 0SK Retrovirus This study
iPS Fibroblast F CSC-2A SNCA Duplication PD OSK Retrovirus This study
iPS Fibroblast F CSC-2B SNCA Duplication PD OSKM Retrovirus This study
iPS Fibroblast F Csc-2C SNCA Duplication PD OSKM Retrovirus This study
iPS Fibroblast F CSC-3A SNCA Triplication PD 0OSK Retrovirus 4

iPS Fibroblast F CSC-3B SNCA Triplication PD OSK Retrovirus 4

iPS Fibroblast F CSC-3G SNCA Triplication PD OSK Retrovirus 4

iPS Fibroblast F CSC-3S SNCA Triplication PD 0SK Retrovirus 4

iPS Fibroblast F CSC-4A MSA-C 0OSK Retrovirus 4

iPS Fibroblast F CSC-4B MSA-C 0OSK Retrovirus 4

iPS Fibroblast F CSC-6A MSA-P OSKM Retrovirus 4

iPS Fibroblast F CSC-7A PARKIN (p.C273Y) PD 0OSK Retrovirus This study
iPS Fibroblast F CSC-7B PARKIN (p.C273Y) PD 0SK Retrovirus This study
iPS Fibroblast F CSC-8A Healthy subject OSKM Retrovirus This study
iPS Fibroblast F CsC-88 Healthy subject OSKM Retrovirus This study
iPS Fibroblast F CScC-8C Healthy subject OSKM Retrovirus This study
iPS Fibroblast F CSC-8F Healthy subject OSKM Retrovirus This study
iPS Fibroblast F CSC-8S Healthy subject OSKM Retrovirus This study
iPS Fibroblast M CSC-9A Healthy subject OSKM Retrovirus 4

iPS Fibroblast M CSC-98 Healthy subject OSKM Retrovirus 4

iPS Fibroblast F CSC-10A GBA (p.L444P) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-10B GBA (p.L444P) PD 0OSKM Sendai virus This study
iPS Fibroblast F Csc-10C GBA (p.L444P) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-11A PINK (p.Q456X) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-11B PINK (p.Q456X) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-11C PINK (p.Q456X) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-13A  LRRK2 (p.G2019S) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-13C  LRRK2 (p.G2019S) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-14A  GBA (splicing mutation IVS10+1GT) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-14B GBA (splicing mutation IVS10+1GT) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-14C  GBA (splicing mutation IVS10+1GT) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-16B PINK (p.Q456X) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-16C PINK (p.Q456X) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-16D PINK (p.Q456X) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-18A LRRK2 (p.R1441C) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-18B LRRK2 (p.R1441C) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-18C LRRK2 (p.R1441C) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-19A LRRK2 (p.G2019S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-19B LRRK2 (p.G2019S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-19C LRRK2 (p.G2019S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-20A  PARKIN (del Ex3) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-20B PARKIN (del Ex3) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast M CSC-20C PARKIN (del Ex3) + GBA (p.N370S) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-21B PARKIN (p.R275W) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-21C PARKIN (p.R275W) PD OSKM Sendai virus This study
iPS Fibroblast F CSC-22A LRRK2 (p.G2019S) PD OSKM Sendai virus This study

Figure 1.

Summary of human induced pluripotent stem cells generated. A total of 61 induced pluripotent stem cells (iPSC) lines are described

in this study. These were reprogrammed by retroviral, lentiviral, or Sendai virus transduction of ‘Yamanaka’ factors. All iPSC lines were
generated from human dermal fibroblasts. Somatic cells were sampled from individuals diagnosed with Parkinson’s disease or multiple system
atrophy, and healthy controls. The iPSC lines UEF-1A, CSC-3A, B, G and S, -4A and B, -6A and -9A, and B were previously characterized in refs 4,

15, 26-28.

(encodes PARKIN),"®2" or in the acid beta-glucocerebrosidase
gene (GBAT), which encodes a lysosomal enzyme that is deficient
in Gaucher's disease, and which renders a risk of developing
PD.2%?* Therefore, iPSCs appear to be robust models for under-
standing early pathogenic events occurring in familial forms of PD.
Importantly, iPSCs may provide an ideal platform for studying
diseases where no genetic cause has thus far been identified, such
as MSA and idiopathic PD."*™"”
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The generations of libraries of familial human ALS iPSC lines
have been described;?*?> to date, none have been described for
PD. Here, we report the generation of iPSCs carrying various
mutations in PD-associated genes, as well as iPSCs generated from
patients diagnosed with MSA and healthy controls (Figure 1). The
lines have been generated and characterized in two laboratories
located in the Nordic countries Finland and Sweden, allowing
regrouping research efforts under the umbrella of several

© 2016 Parkinson's Disease Foundation/Macmillan Publishers Limited



interconnected research centers, which focus their research on
neurodegeneration. We present an exhaustive list of iPSC lines,
and describe the tests we employed to validate their pluripotency
and final selection. Moreover, we provide examples of relevant
neural cell types, e.g., midbrain neural floor-plate progenitors,
dopamine neurons, astrocytes, and oligodendrocytes that the iPSC
lines can be differentiated into. Altogether, these human cellular
models provide a unique resource to study PD and MSA.

RESULTS

IPSC lines generated in the Stem Cell Laboratory of Molecular Brain
Research Group, at the University of Eastern Finland, in Finland
We present the characterization of iPSC lines generated by two
reprogramming methods using either lentivirus or Sendai virus.
We used the following nomenclature in description of University
of Eastern Finland (UEF) lines: number = patient and letter = clone;
e.g., UEF-2A — line generated at the UEF lab, patient 2, clone A.
The skin biopsies were collected from individuals with confirmed
diagnosis and mutation, and the fibroblast populations were
transduced with viruses carrying genes encoding mouse Oct4,
KlIf4, SOX2, and cMyc (for UEF-1A line) or human OCT3/4, KLF4,
SOX-2, and ¢-MYC (for UEF-3A and UEF-5G lines). The lines UEF-1A
(i.e, UEFhfiPS1.4 in our previous reports'>2%7?%) UEF-3A and
UEF-5G were generated with a polycistronic lentivirus carrying all
the reprogramming factors in the same viral vector (STEMCCA)
while the lines UEF-2A, B and C, -3B, -4A and B, and -5B, E, F and G,
were transduced with four separate Sendai viruses, encoding the
same pluripotency genes (Figure 1). Following the transduction
with the four factors, we observed early morphological changes
indicative of reprogramming (Figure 2a). An average of 3-6
embryonic stem cell (ESC)-like colonies were manually picked and
expanded clonally. These clonal lines were cultured until about
passage 10 prior to testing their pluripotency to ensure full
maturation of hiPSCs.?>3° At that time point, we detected by using
quantitative real-time PCR pluripotency-promoting endogenous
gene expression, including OCT3/4, SOX2, NANOG, KLF4, cMYC, and
LIN28 in all our iPSC lines (Supplementary Figure S1), and
confirmed the absence of the virally delivered transgenes
(Figure 2b and Supplementary Figure S1). All iPSC lines expressed
several human ESC-associated antigens NANOG, SSEA4, TRA1-81,
and OCT4 (Figure 2c), and the alkaline phosphatase staining was
positive (Figure 2c). Chromosomal analysis from all iPS cell lines
showed the normal karyotypes 46,XX or 46,XY (Figures 2d and 3)
except of UEF-2A line where translocation in chromosome 2 and 9
was detected (Figure 3). In addition, the iPSC lines showed high
telomerase activity when compared with their parent fibroblasts
(Figure 2e).
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All lines formed embryoid bodies when plated in suspension
dishes (Figure 2f). Immunocytochemical analyses of embryoid
bodies were performed after 10-14 days of culture and showed
that each line had spontaneously differentiated into cell types
representative of the three embryonic germ layers, including
alpha-fetoprotein (AFP)-positive cells (endoderm), beta lll-tubulin
(B-II-TUB)-positive cells (ectoderm), and smooth muscle antibody
(SMA)-positive cells (mesoderm; Figure 2g).

We adapted previously published protocols to generate
iPSC-derived mesencephalic dopaminergic neurons. The differ-
entiation of iPSCs was started on human feeder layer. On day 14,
small pieces of colonies were plated in an adherent culture. On
day 20, the neuroepithelium differentiated into cells resembling
neural cells. The neuroprogenitors were positive for LMX1A and
FOXA2, confirming they acquired a midbrain floor-plate identity
(Figure 2h). After 2 weeks of maturation, ~40% of all cells were
strongly immunoreactive for tyrosine hydroxylase (Figure 2i), and
resembled tyrosine hydroxylase-positive neurons found in cultures
derived from 5-week-old human embryonic ventral mesencephalic
tissue (Figure 2h). Differentiation of astroglial progenitors and
astrocytes from the iPSCs lines was adopted from a previously
published protocol.*® Using this method we were able to generate a
homogenous population of astrocytes within 4 months (Figure 2h).

31,32

IPSC lines generated in the Cell and Stem Cell Laboratory for CNS
Disease Modeling, at the University of Lund, in Sweden
We present the characterization of iPSC lines generated using two
distinct methods of reprogramming. All iPSC lines were generated
from skin fibroblasts of individuals with confirmed diagnosis,
obtained from open access resources. We adapted a protocol
similar to that recently described,** allowing us to reprogram up
to 12 patient fibroblast samples at once, minimizing associated
costs. The nomenclature used is similar to that implemented by
UEF: number=patient and letter=clone; e.g, CSC-2A —line
generated at the Cell and Stem Cell (CSC) lab, patient 2, clone
A. The lines CSC-1, -2, -3, -4, -6, -7, 8-, and -9 were generated by
retroviral transduction of 3 (OCT3/4, SOX2, KLF4) or 4 (the 3 plus
¢-MYCQ) factors; while the lines CSC-10, -11, -13, -14, -16, -18, -19,
-20, -21, and -22 were generated by Sendai virus transduction of
the four factors (Figure 1). Putative iPSC colonies were picked only
if presenting a well-defined pluripotent stem cell-like morphology
(Figure 4a). Unless fibroblasts displayed low reprogramming
efficiency, an average of 24 colonies was picked per patient
reprogrammed fibroblasts. These were subsequently expanded
onto irradiated mouse embryonic fibroblasts (using a 24-well plate
format) for up to 4 passages, prior to being cryopreserved.

We commonly thaw 3 putative iPSC clones for each patient lines
generated, grow all clonal cell lines in 6-well plates for up to 10

Figure 2. Tests of pluripotency applied to the induced pluripotent stem cells (iPSC) lines generated in the Stem Cell Laboratory of Molecular

Brain Research Group, at the University of Eastern Finland (UEF), in Finland. (a) Representative bright field images of human fibroblasts prior to
transduction and after the transduction. The putative iPSC colony shows a hES cell-like morphology. (b) The expression levels of Sendai virus
in iPSC lines UEF-2B and C (at passage 17; 15), UEF-3B (at passage 15), UEF-4A and B (at passage 17; 15), and UEF-5B, E and F (at passage 18; 15;
16). The levels are compared to non-transduced fibroblast and to hES cells. (c) Representative fluorescence images of iPSC lines stained for the
pluripotent markers OCT4, NANOG, TRA1-80 and SSEAA4. IPSC colonies stain positive for alkaline phosphatase activity. Images are shown for
iPSC line UEF-5F. Scale bars represent 100 pm. (d) Karyogram of iPSC line UEF-2B shows pairs of chromosomes stained using Giemsa (G-
banding). (f) IPSC lines form embryoid bodies (EBs) grown in low-adherent plates for 2 weeks (representative image shown for iPSC line
UEF-4A, 5B,F). (g) Differentiated EBs generate cells of the three germ layers, immunopositive for alpha-fetoprotein (AFP) (endoderm), smooth
muscle antibody (SMA) (mesoderm), and beta lll-tubulin (B-lll-TUB) (ectoderm); nuclei are counterstained with 4,6-diamidino-2-2phenylindole
(DAPI; shown for iPS lines UEF-3B and UEF-4A). (e) Detection of telomerase activity using TRAPeze telomerase detection kit. (h) Representative
images of iPSC lines differentiated towards neural, neuronal, and glial fates. IPSC lines differentiated for 20 days are positive for LMX1A and
FOXA2 (midbrain neural progenitors, UEF-1A); when progenitors are kept for two additional weeks in maturation medium, they differentiate
into tyrosine hydroxylase (TH)-expressing neurons (shown for iPSC line UEF-4B) that co-label with FOXA2 (shown for iPSC line UEF-2C).
Undifferentiated neural progenitors cultured for 4 additional months generate glial fibrillary acidic protein (GFAP)-expressing astrocytes
(shown for iPSC line UEF-5B). TH-positive and GFAP-positive cells in a human-derived ventral mesencephalic (hVM) culture served as a
reference. Nuclei are counterstained with DAPI. Scale bars represent 100, 50 and 20 pm. (i) Differentiated iPS cells towards tyrosine
hydroxylase positive (TH+) cells at day 35. Data are expressed as mean % of TH+ cells compared to DAPI + SD.
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(some times more) passages (with one simultaneous passage per
week), and perform within the latest passages, in addition to
finger print analysis, a battery of tests allowing us to determine
the efficiency of reprogramming from putative to well-estab-
lished/mature iPSC lines. The tests comprise: (1) expression of
nuclear and cell surface markers reminiscent to pluripotent stem
cell stage (OCT4, NANOG, TRA1-80 and SSEA4), (2) alkaline
phosphatase activity, (3) telomerase activity, (4) embryoid body
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formation, (5) loss of viral agents or downregulation of viral
transgenes, and (6) differentiation towards the three germ layers.
The lines can further be tested for their ability to generate
midbrain neural cells types: LMX1A/FOXA2 co-expressing neural
floor-plate progenitors, FOXA2/tyrosine hydroxylase-expressing
neurons, glial fibrillary acidic protein-expressing astrocytes, or
O4-positive oligodendrocytes, which can be used for studies of
development and disease phenotypes. All these tests are
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a b
Cell line  Vector Passage Genetic analysis CSC-1A GSC-7B
2B O O A

UEF-1A Lentivirus P10 46,XX[20] = i N
UEF-2A  Sendai virus P15 46,XX,1(2;9)(q33;934)[6] PSR S TN U O L L
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UEF-3B Sendai virus P10 46,XY[20]
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CSC-8C Retrovirus P7 46,XX,inv(6)(p21921)[15] SSRE s e |
CSC-8F Retrovirus P8 46,XX,inv(6)(p25921)[14]

CSC-8S Retrovirus P7 46,XX[9] ¥ 3

CSC-9A Retrovirus P13 46,XY[25] UEF-3A UEF-5G
CSC-9B Retrovirus P20 45-47 XY,+mar[cp5]/46,XY[20] t

CSC-10A  Sendai virus P8 46,XX[24] 3 ‘)?‘“‘K I Wi v
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CSC-13C  Sendai virus P7 46,XY[15]

CSC-14A  Sendai virus P10 46,XY,1(2;12;18)(923;915;921)[16]

CSC-14B  Sendai virus P10 46,XY,t(2;12;18)(923;915;921)[15]
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CSC-22A  Sendai virus P17 46,XY[15]

NOTE: parent fibroblasts of lines 14A, B and C are 46,XY,t(2;12;18)(923;915;921)[3]/46,XY[10]

Figure 3. Cytogenic analysis of the induced pluripotent stem cells (iPSC) lines. (a) List of the iPSCs lines and corresponding karyotypes based
on G-banding analysis. Note: parent fibroblasts used to generate the lines CSC-14A, CSC-14B and CSC-14C, are a mosaic of abnormal (46,XY,t
(2,12;18)(923;915;921) and normal (46,XY) cells. (b) Karyograms of iPSC lines reprogramed using retrovirus (CSC-1A and CSC-7B), Sendai virus
(CSC-11A, CSC-10B, CSC-16B, UEF-3B and UEF-4A), and lentivirus (UEF-3A and UEF-5G) transduction. Representative image of metaphase
(shown for CSC-16B) used for generating karyograms. (c) Higher numbers of iPSC lines with abnormal karyotyping are generated when parent
fibroblasts are reprogrammed using retroviral transduction. Unpaired t-test revealed significance between the two groups compared
(*P < 0.05); lentivirus group was not included in the analysis because n=3 only. Note: analysis performed for Cell and Stem Cell (CSC)
laboratory iPSC lines only; iPSC lines CSC-14A, -14B and -14C carrying the same chromosomal abnormality in all clones tested were excluded
from the distribution analysis, as they reflected a constitutional chromosomal change present in the parent fibroblasts.
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performed in vitro. In addition, the lines are tested for their
karyotype stability, and the tests are performed including a human
ESC line (HUES3 and/or HuUES13) as positive control. In some
assays, e.g., determination of telomerase activity, both embryonic
stem cells and parent fibroblasts can be used as positive or
negative controls, as we previously reported,” as well as heat-
inactivated samples.

Sendai virus transduction is advantageous in many ways, as it
leads to high efficiency reprogramming when compared with
retroviral delivery method of reprogramming, and it is non-
integrative.®® Interestingly, two clonal cell lines (CSC-11C at
passage 13 and CSC-13A at passage 8) showed resistance to
Sendai virus elimination over passages (Figure 4b and Figure 5).
Consequently, these failed reprogrammed clones only partially
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passed most of the tests (Figure 5). Importantly, all other lines,
including those reprogrammed using retroviral transduction,
showed immunoreactivity for the pluripotency markers OCT4,
NANOG, TRA1-80, and SSEA4. Almost all lines had completely
downregulated viral transgene expression, with the exception of
line CSC-7B, which had a strong expression of viral OCT4
(Figure 4c, Supplementary Figure S2, and Figure 5); moreover,
the lines displayed a robust alkaline phosphatase activity
(Figure 4c), which we observed weaker for CSC-11C and
CSC-13A. Although we did not perform rigorous side-by-side
comparisons of the reprogramming methods, we observed that
reprogramming by means of Sendai virus transduction compared
to retrovirus transduction led to less karyotyping abnormalities
(Figure 4d and Figure 3), as recently described.3® Neverthe-
less, the clonal cell lines could generate embryoid bodies when
cultured on non-adherent surfaces, in Wicell medium supple-
mented with basic fibroblast growth factor (Figure 4e), and
subsequently differentiate into all three embryonic germ layers
when exposed to fetal bovine serum, as detected by the presence
of AFP-positive, SMA-positive, and B-lll-TUB-positive cells, after
2 weeks in vitro (Figure 4f). Finally, we confirmed high telomerase
activity for the iPSCs (Figure 4g), as well as higher expression of
SNCA gene for the clones CSC-3A, -3B, -3G, and -3S (SNCA
triplication), regardless whether they were generated using three
or four factors and if they carried karyotype abnormalities
(Figure 4h and Figure 3). Interestingly, the iPSC lines repro-
grammed by retroviral transduction displayed higher basal level of
expression of SNCA gene compared with hESC control and iPSC
lines generated by Sendai virus transduction; this observation
required the exclusion from the analysis of the lines harboring
duplication and triplication of SNCA gene (Figure 4j), and may
underlie a possible leakiness in expression of the integrated
transgenes (Supplementary Figure S2).

We adapted our previous published protocols™’ to generate
iPSC-derived neural progenies. Thus, we could generate midbrain
neural floor-plate LMX1A/FOXA2-co-expressing progenitors, which
after subsequent differentiation gave rise to FOXA2/tyrosine
hydroxylase-expressing neurons and glial fibrillary acidic protein-
expressing astrocytes (Figure 4k). IPSCs could also be differen-
tiated into O4-positive oligodendrocytes (Figure 4k).
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DISCUSSION

It was only less than a decade ago that successful reprogramming
of somatic cells into ESC-like cells was reported. Two initial studies
described that treating permeabilized human 293T cells with
carcinoma nuclear cell extract, and overexpression of four
pluripotent genes in dividing mouse fibroblasts, could reprogram
somatic cells back to an ESC-like pluripotent stage.3®3° The first
method was adapted from previous report of the same group,
showing that human 293T cells expressed T-cell functions when
reprogrammed using primary human T-cell extract.*> The second
method, employing overexpression of rodent pluripotent genes
Sox2, Oct4, Kif4, and c-Myc, allowed large-scale generation of the
so-called iPSCs, and is now routinely used for the reprogramming
of patient somatic cells for ‘modeling diseases in the dish’.

Various techniques exist to generate iPSC; they are commonly
subdivided into genome-integrating and genome non-integrating
approaches. These technologies rely on the use of different
vectors® and they have been extensively studied and improved
during the last years.*'*? Moreover, much effort to identify
chemical compounds that could substitute the reprogramming
factors and the use of vectors is ongoing.*® Interestingly, when
we compared the expression of SNCA in iPSC lines generated
using two different approaches, we found higher level of
SNCA expression in iPSC lines generated using a genome-
integrating approach, when compared with iPSC lines gene-
rated by Sendai virus transduction; this analysis excluded the
lines carrying multiplications of the gene of interest. Thus, it will
be important in subsequent studies to verify that variability
is not added by the reprogramming method employed to
generate the iPSCs, to that already existing amongst the different
clonal cell lines generated from a single patient biopsy sample.
This may prevent the identification of subtle phenotypes if too
few lines are analyzed, but could be circumvented by the use
of isogenic lines, which appears to be the most appropriate
control since gene mutation correction allows reversing disease
phenotypes.***?

We also demonstrated differentiation of our iPSC library lines
not only into midbrain dopaminergic neurons but also to relatively
pure astrocyte and enriched oligodendrocyte cultures. Consider-
ing that non-neuronal cells, not limited to oligodendrocytes in
MSA, contribute to the PD pathology, our iPSC library will allow for

<

Figure 4. Tests of pluripotency applied to the induced pluripotent stem cells (iPSC) lines generated at the Cell and Stem Cell (CSC) Laboratory
for CNS disease modeling, at the University of Lund, in Sweden. (a) Prior to transduction, human fibroblasts display a bipolar elongated shape.
Upon transduction, putative iPSC colonies show a human pluripotent stem cell-like morphology. Scale bars represent 100 pm. (b) Loss and
maintenance of Sendai virus in iPSC lines CSC-11A (at passage 13) and CSC-11C (at passage 13), respectively. Nuclei are counterstained with
DAPI. Scale bar represents 100 pm. (c) Representative images of iPSC lines stained for the pluripotent markers OCT4, NANOG, TRA1-80 and
SSEA4. IPSC colonies stain positive for alkaline phosphatase activity. Images are shown for iPSC line CSC-22A. Scale bars represent 100 pm.
n=2-3 independent experiments. (d) Karyogram of iPSC line CSC-7B shows pairs of chromosomes stained using Giemsa (G-banding). (e) IPSC
lines form embryoid bodies (EBs) when grown in low-adherent surfaces for 2 weeks, in WiCell Medium supplemented with FGF2
(representative image shown for iPSC line CSC-22A). Scale bar represents 100 pm. n=2-3 independent experiments. (f) Differentiated EBs
generate cells of the three germ layers, immunopositive for alpha-fetoprotein (endoderm), smooth muscle antibody (mesoderm), and beta llI-
tubulin (ectoderm); nuclei are counterstained with DAPI. Scale bar represents 100 pm. n=2-3 independent experiments. (g) Detection of
telomerase activity by the TRAP assay. (h) Upregulation of SNCA expression in clonal iPSC cell lines CSC-3A, -3B, 3G and 3S, revealed by
quantitative real-time PCR. Values are normalized to house keeping gene GAPDH and calibrated to marker expression in human embryonic
stem cell (hESC) line H13. Mean + s.e.m. shown for n=2 independent experiments. (i) Upregulation of SNCA expression in SNCA triplication
iPSC lines revealed by quantitative real-time PCR. One-way analysis of variance (ANOVA; P>0.0001, F0.49)=30.03) followed by Dunnett’s
multiple comparisons tests shows SNCA triplication lines have a significantly (***P < 0.0001) higher SNCA expression over non-SNCA
triplication lines. Mean + s.e.m. (j) Higher expression of SNCA in lines generated with retrovirus transduction over those generated with Sendai
virus transduction. One-way ANOVA (P> 0.0001, F (5,59 = 58.36) followed by Tukey’s multiple comparisons test shows lines reprogramed using
retrovirus transduction have a significant (P < 0.0001) higher basal level of SNCA expression, when compared with SNCA expression levels of
hESC line H13 and iPSC lines generated using Sendai virus transduction. Mean + s.e.m. (k) Representative images of iPSC lines differentiated
towards neural, neuronal, and glial fates. IPSC lines differentiated for 12 days become midbrain neural progenitors co-expressing LMX1A and
FOXA2 (shown for iPSC line CSC-1B); when progenitors are kept for 4 additional weeks in culture, they differentiate into FOXA2/tyrosine
hydroxylase-expressing neurons (shown for iPSC line CSC-3G; aged 30 days in vitro). Culturing of the remaining undifferentiated neural
progenitors for 5 additional weeks generates glial fibrillary acidic protein-expressing astrocytes. O4-positive oligodendrocytes can be
generated from iPSC using medium devoid of retinoic acid, as we previously published.* Nuclei are counterstained with DAPI. Scale bars
represent 100 pm. Images are representative of n=1-2 independent experiments.
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disease mechanism analyses and drug screens practically with all  cells into the rodent brain'>#°* are still other promising strate-
cell types involved in development of PD. Three-dimensional cell gies to be pursued using PD-iPSC library lines for revealing the
culture models*®™® and transplantation of iPSC-derived neural  contribution of genetic factors to this disease.
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UEF-1A + + + + + + + + NA + + + + LMX1A*, FOXA2+, TH* N S
UEF-2A + + ND + + + + NA + (p15) + + + + LMX1A*, FOXA2*, TH* A F
UEF-2B + + + + + + + NA + (p15) + + + + LMX1A*, FOXA2+, TH*, GFAP* N S
UEF-2C + + + + + + + NA + (p17) + + + + LMX1A*, FOXA2+, TH*, GFAP* N S
UEF-3A + + + + + + + + + (p21) + + + + LMX1A*, FOXA2+, TH* N S
UEF-3B + + + + + + + NA + (p15) + + + + LMX1A*, FOXA2+, TH*, GFAP* N S
UEF-4A + + + + + + + NA + (p17) + + + + LMX1A*, FOXA2*, TH*, GFAP* N S
UEF-4B + ND ND + + + + NA  +(p15) ND ND ND ND LMX1A*, FOXA2+, TH*, GFAP* N S
UEF-5B + + + + + + + NA + (p18) + + + + LMX1A*, FOXA2+, TH*, GFAP* N S
UEF-5E + ND ND + + + + NA + (p15) ND ND ND ND LMX1A*, FOXA2+, TH* N S
UEF-5F + + + + + + + + + (p16) + + + + LMX1A*, FOXA2+, TH*, GFAP+ N S
UEF-5G + ND ND + + + + + + (p23) + + + + ND N S
CSC-1A + + + + + + + + NA + + + + LMX1A*, FOXA2*, GFAP* N S
CSC-1B + + + + + + + + NA + + + + LMX1A*, FOXA2*, GFAP* A F
CSC-1C + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+ A F
CSC-1D + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP* N S
CSC-2A + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP* A F
CSC-2B + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+ A F
CSc-2C + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+ N S
CSC-3A + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP* A F
CSC-3B + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP* A F
CSC-3G + + + + + + + + NA + + + + LMX1A*, FOXA2+, TH*, GFAP+, 04+ N S
CSC-3S + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+, 04+ N S
CSC-4A + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+, 04+ A F
CSC-4B + + + + + + + + NA + + + + LMX1A*, FOXA2*, GFAP*, 04+ N S
CSC-6A + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+, 04+ N S
CSC-7A + + + + + + + + NA + + + + LMX1A*, FOXA2+, TH*, GFAP* N S
CSC-7B + + + + + + + vOCT3/4 NA + + + + LMX1A*, FOXA2+, GFAP* N F
CSC-8A + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP* A F
CSC-8B + + + + + + + + NA + + + + LMX1A*, FOXA2*, GFAP*+ A F
CSC-8C + + + + + + + + NA + + + + ND A F
CSC-8F + + + + + + + + NA ND ND ND ND ND A F
CSC-8S + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP* N S
CSC-9A + + + + + + + + NA + + + + LMX1+, FOXA2+*, TH*, GFAP*, 04+ N S
CSC-9B + + + + + + + + NA + + + + LMX1A*, FOXA2+, GFAP+ A F
CSC-10A  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+ N S
CSC-10B + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2*, GFAP* N S
Csc-10C  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+ N S
CSC-11A  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+ N S
CSC-11B + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+ N S
CSC-11C +  +/- + +/-  +/- +/- +/- NA -(P13) + + + + ND A F
CSC-13A  +  +/- + +/  +/- +/- +/- NA - (p8) + + + + LMX1A*, FOXA2* A F
CSC-13C  + + + + + + + NA + (P8) + ND + + LMX1A*, FOXA2+ N S
CSC-14A  + + + + + + + NA + (P8) + + + + LMX1A*, FOXA2+ A F
CSC-14B + + + + + + + NA  + (P13) + + + + LMX1A*, FOXA2*, GFAP* A F
CSC-14C  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+, GFAP* A F
CSC-16B  + + + + + + + NA + (P6) + + ND + LMX1A*, FOXA2+ N S
CSC-16C  + + + + + + + NA + (P6) + + ¥ + LMX1A*, FOXA2+ N S
CSC-16D  + + + + + + * NA + (P6) + + + + LMXTA*, FOXA2+ N S
CSC-18A  + + + + + + + NA + (P6) + + + ND LMX1A*, FOXA2+ N S
CSC-18B  + + + + + + + NA  +(P13) + + + + LMX1A*, FOXA2+ N S
Csc-18C  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2*, GFAP* N S
CSC-19A  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+, GFAP* N S
CSC-19B  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+, GFAP* N S
CsC-19C  + + F: + + + + NA + (P6) + ND + + LMX1A*, FOXA2+ N S
CSC-20A  + + + + + + + NA + (P5) + ND + + LMX1A*, FOXA2+ N S
CSC-20B  + + + + + + + NA + (PS) + ND + + LMX1A*, FOXA2+ N S
Csc-20C  + + + + + + + NA + (P5) + + + + LMX1A*, FOXA2+ N S
CSC-21B + * * * ¥ + + NA + (P6) + + + + LMX1A*, FOXA2+ N S
CsC-21C  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2+, GFAP* A F
CSC-22A  + + + + + + + NA + (P6) + + + + LMX1A*, FOXA2* N S

Figure 5. Summary of human induced pluripotent stem cells generated. Summary of the assays employed for characterizing the iPSC lines.
The iPSC lines UEF-1A, CSC-3A, B, G and S, -4A and B, -6A and -9A and B were previously characterized in refs.*'>?728 A, abnormal; F, failed; N,
normal; NA, not applicable, ND, not determined; (Pn), passage when karyotyping was performed; S, selected; +, successfully passed; +/—,
presence of marker of interest.
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IPSC-based models provide an unprecedented opportunity to
study rare diseases of the brain where genetic causes have not been
identified yet, and offer the possibility to develop new diagnostic
tools for early diagnosis, as well as for the prospective stratification
and recruitment of patients for future clinical trials. Importantly, iPSCs
provide a source of terminally differentiated cells that can be used to
develop completely humanized assays for small to high throughput
or high-content screens of neuroprotective compounds'>'” and
validation of drug candidates previously identified using non-
relevant cell models>® Taking example of existing Lab-on-chip
platforms, iPSC research could rapidly develop towards a Lab-on-iPSC
platform or Pharmaco-iPSCellomics by person-specific iPSCs, as
previously reported.'? Because of their pluripotency, iPSCs retain the
ability to differentiate into multiple cell types of the three germ
layers. Consequently, compounds identified as potential neuropro-
tective drug candidates could be tested in patient iPSC-derived
hepatocytes and cardiomyocytes for possible toxicity, providing
strong pre-clinical data and a higher degree of confidence prior to
starting clinical trial, as well as a greater level of safety for the
patients. The implementation of such ambitious projects will require
the use of high-throughput platforms and stringent standard
operative procedures not always available in academic institutions.
It is likely that these projects will have to be conducted in large
consortia, and in collaboration with industrial partners,*®**’ as their
cost would be enormous, especially if combinations of several drug
candidates are tested.

In this study, we reprogrammed human fibroblasts from healthy
subjects and patients diagnosed with PD and MSA. We applied a
battery of quality control tests, which allowed us to select 41 iPSC
lines for follow up studies, out of the 61 iPSC lines we initially
characterized. We excluded lines that displayed abnormal karyotyp-
ing (n=19), strong expression of reprogramming factor due to
transgene insertion (line CSC-7B), and persistence of Sendai virus
(lines CSC-11C and CSC-13A). In summary, we obtained 8 “good”
control iPSC lines and 33 “good” disease iPSC lines (Figure 5).

We are continuously generating new iPSC lines using somatic
cells from individuals diagnosed with synucleinopathies, including
idiopathic PD cases. We have also extended our capabilities to
other neurodegenerative diseases such as Alzheimer’s disease.
These models will allow us to identify mechanisms that are truly
disease specific to those commonly engaged in an adaptive
response to neurodegeneration. Such approach, together with
ongoing efforts in the field, should allow gaining insights into
neurodegenerative processes, and help identify proper targets for
therapeutic interventions and allow “GWA"-like iPSC studies for
the discovery of new biomarkers and patient stratification.

MATERIALS AND METHODS

Use of animals and human samples

All procedures were conducted in accordance with national and European
Union directives. The generation of human iPSC lines using viral-mediated
gene delivery was approved by the ethical committee for the use of
laboratory animals at Lund University and the ethical committee on
Research Ethics of Northern Savo Hospital district, Finland, as well as the
Swedish Work Environment Authority (Arbetsmiljo verket).

Statistical analyses

All quantitative data was analyzed using Prism 6.0 (GraphPad, La Jolla, CA,
USA). Sample groups were subjected to one-way analysis of variance and
unpaired t-test. A P-value of < 0.05 was considered significant.

Experimental procedures

Details methods are described in Supplementary Methods, and published
in refs 4,15,26 and 37.

© 2016 Parkinson's Disease Foundation/Macmillan Publishers Limited
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