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Abstract

Background—The diagnosis of asthma in children is challenging and relies on a combination of 

clinical factors and biomarkers including methacholine challenge, lung function, bronchodilator 

responsiveness, and presence of airway inflammation. No single test is diagnostic. We sought to 

identify a pattern of inflammatory biomarkers that was unique to asthma using a targeted 

metabolomics approach combined with data science methods.

Methods—We conducted a nested case-control study of 100 children living in a peri-urban 

community in Lima, Peru. We defined cases as children with current asthma, and controls as 

children with no prior history of asthma and normal lung function. We further categorized 

enrollment following a factorial design to enroll equal numbers of children as either overweight or 

not. We obtained a fasting venous blood sample to characterize a comprehensive panel of targeted 

markers using a metabolomics approach based on high performance liquid chromatography-mass 

spectrometry.

Results—A statistical comparison of targeted metabolites between children with asthma (n = 50) 

and healthy controls (n = 49) revealed distinct patterns in relative concentrations of several 

metabolites: children with asthma had approximately 40–50% lower relative concentrations of 

ascorbic acid, 2-isopropylmalic acid, shikimate-3-phosphate, and 6-phospho-D-gluconate when 

compared to children without asthma, and 70% lower relative concentrations of reduced 

glutathione (all p < 0.001 after Bonferroni correction). Moreover, a combination of 2-

isopropylmalic acid and betaine strongly discriminated between children with asthma (2-

isopropylmalic acid ≤ 13 077 normalized counts/second) and controls (2-isopropylmalic acid > 13 

077 normalized counts/second and betaine ≤ 16 47 121 normalized counts/second).

*Corresponding author. Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, 1800 Orleans, Ave 
Suite 9121, Baltimore, MD, USA. wcheckl1@jhmi.edu (W. Checkley). 

Conflict of interest
The authors have no conflicts of interest to disclose.

HHS Public Access
Author manuscript
Respir Med. Author manuscript; available in PMC 2017 July 19.

Published in final edited form as:
Respir Med. 2016 December ; 121: 59–66. doi:10.1016/j.rmed.2016.10.011.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions—By using a metabolomics approach applied to serum, we were able to 

discriminate between children with and without asthma by revealing different metabolic patterns. 

These results suggest that serum metabolomics may represent a diagnostic tool for asthma and 

may be helpful for distinguishing asthma phenotypes.

1. Introduction

Asthma is the most common chronic disease in children. However, diagnosing asthma is 

challenging, as no single test is diagnostic. While methacholine challenge testing is 

considered the gold standard due to its high sensitivity, it has poor specificity, resulting in 

many false positives [1]. Bronchodilator reversibility is not uniform in children, and airway 

inflammation determined by fractional exhaled nitric oxide is unreliable and affected by the 

presence and degree of allergy and inflammation [2,3]. As such, most studies are based on a 

clinical definition based on symptom reporting and physician diagnosis. This complicates 

standardization of an asthma diagnosis and allows for subjectivity, especially among non-

experts [4].

The search for airway or systemic biomarkers to help standardize the diagnosis of asthma 

has similarly met many challenges. Eosinophil count in induced sputum has been used to 

evaluate the presence of airway inflammation, but collection of an adequate sample and 

performing the test in a clinical setting can be difficult [5]. High serum immunoglobulin E is 

related to the presence and severity of asthma, but its use as a diagnostic tool is limited due 

to its lack of association with non-atopic asthma [6]. Serum periostin, a protein involved in 

the process of subepithelial fibrosis in asthma patients, was also proposed as a systemic 

biomarker of airways inflammation, but a recent external validation study showed an overall 

low diagnostic value [7]. The expression of galectins and their role in airway inflammation 

has also been studied, but recommendations on their use as biomarkers are still inconclusive 

[8].

Novel technologies have allowed for expansion of metabolomics, which includes a more 

comprehensive assessment of the metabolic pathways and the wide range of endogenous 

metabolites related to disease pathogenesis. Furthermore, the combination of metabolomics 

and data science may reveal insights into potential groups of biomarkers that might help 

identify individuals with asthma. We sought to utilize targeted metabolomics approaches to 

identify a pattern of serum biomarkers unique to children with asthma, leveraging a large 

case-control study performed in Lima, Peru. Additionally, given increased recognition of the 

association between obesity and asthma [9,10], we further categorized enrollment following 

a factorial design to enroll equal numbers of children as either overweight or not, based on 

both body mass index and body composition.

2. Materials and methods

2.1. Focused review of literature

We searched for articles in PubMed (www.pubmed.com) published in any language with the 

search terms “metabolomics OR metabolomic profiling”, “asthma”, “children” and 

“diagnosis”, with no date restrictions.
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2.2. Study setting

Our study was conducted in Pampas de San Juan de Miraflores, a peri-urban community 

located 25 km south of the city center in Lima, Peru. For this analysis, serum samples were 

obtained from 100 individuals aged 9–19 years. We excluded children with a history of 

major surgery, or hospitalization for cardiac reasons in the past 3 months; a diagnosis of 

tuberculosis or currently receiving treatment for tuberculosis; a chronic respiratory condition 

other than asthma, or pregnancy at enrollment. The study was approved by the institutional 

review boards at the Johns Hopkins School of Medicine in Baltimore, USA and at A.B. 

PRISMA in Lima, Peru.

2.3. Study design

We conducted a cross-sectional analysis nested in a larger case-control study aimed at 

investigating the interaction between genetics and environmental exposures in children with 

asthma in Peru. We used a factorial design to enroll equal numbers of children categorized 

as asthma overweight (AO), asthma normal weight (AN), control overweight (CO), or 

control normal weight (CN). We defined overweight and obesity using BMI- for age-cutoffs 

outlined in Cole et al. [11] for the International Obesity Task Force and the age-and sex-

specific curves for body fat published by McCarthy et al. for the Child Growth Foundation 

[12]. We used stratified random sampling of children in the parent study based on each of 

the above defined subgroups. We defined children with asthma as those with self- or 

parental-report of wheezing in the past 12 months, and who either had used asthma 

medications in the past 12 months or who have a physician diagnosis of asthma.

2.4. Clinical tests

Questionnaires were used to assess demographics, medication use and asthma status. 

Asthma control was assessed using the self-reported Asthma Control Test, a short 

questionnaire consisting of five questions about symptoms, medication use, control, and 

interruption of normal activities [13]. We also measured height and weight using a 

standardized approach, and calculated body mass index (BMI) in kg/m2. We measured body 

composition through bioimpedance using the TANITA TBF-300 body composition analyzer 

(TANITA Corporation, Inc., Arlington Heights, IL). We measured exhaled nitric oxide 

before spirometric testing using a portable analyzer (NIOXMINO, Aerocrine, Solna, 

Sweden) according to joint European Respiratory Society and the American Thoracic 

Society (ERS/ATS) recommendations [14]. We conducted spirometry in accordance with 

joint ERS/ATS guidelines using a flow-based portable spirometer (Jaeger/ERT, Hoechberg, 

Germany) to measure forced vital capacity (FVC) and forced expiratory volume at 1 s 

(FEV1) [15]. We obtained at least three acceptable and reproducible test and used a standard 

reference to obtain predicted values [16]. We tested all participants for reversibility with 

salbutamol (90 mcg/puff). Reversibility was defined as an increase of FEV1 by 12% or an 

increase of predicted FEV1 by 10%, consistent with National Asthma Education and 

Prevention Program (NAEPP-3) guidelines [17].

We collected a fasting blood sample for 100 participants at enrollment using standard 

phlebotomy techniques into nonheparinized 10-mL Vacutainer glass tubes (Becton-

Dickinson, Franklin Lakes, NJ). Samples were allowed to coagulate and were centrifuged at 
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3500 RPM for 15–30 min within 1 h of sample collection. After separation, all samples were 

stored at −80 °C until ready to be analyzed. Atopy was defined as the presence of IgE 

antibodies to any of three allergen panels (animal epidermal and proteins mix, house dust 

mix, and a mold and yeast mix).

2.5. Targeted metabolomics analysis

We used a modified analytical platform published by Yuan et al. [18]. Briefly, serum 

samples were stored at −80 °C until analysis. Samples were thawed on ice and centrifuged at 

16 000×g for 10 min at 4 °C prior to extraction. 200 µL of serum supernatant was transferred 

into a pre-labeled 1.5 mL microcentrifuge tube and 800 µL of precooled methanol (−80 °C) 

was added. Samples were vortexed gently for 1 min and placed into a −80 °C freezer. After 

incubation overnight, samples were centrifuged at 16 000µg for 10 min at 4 °C. 500 µL of 

the supernatant were transferred into another microcentrifuge tube, placed into a speed 

vacuum concentrator (Centrivap system, Labconco, Kansas City, MO) and vacuum was 

applied until samples were dry (approximately 2 h). Pellets were reconstituted in a solution 

containing 30% methanol and 70% water, vortexed briefly (1 min) and centrifuged at 16 

000µg for 10 min at 4 °C. Supernatants were transferred into HPLC vials with 100 µL 

inserts and placed into a cooled (4 °C) HPLC autosampler (Ultimate 3000 WPS, Dionex 

Corp., Sunnyvale, CA). One sample was lost during this process. A detailed description of 

the chromatographic conditions, the mass spectrometer settings, and data processing 

parameters is included in the Appendix. Data were acquired using AB SCIEX Analyst 

software (version 1.6.2). Relative concentrations were normalized, i.e., the average response 

and standard deviation for each metabolite were calculated, and all values for that metabolite 

were then subtracted by the average and divided by the standard deviation. Initially, two 

study groups were assigned to the analytical runs in accordance with the study subjects 

asthma (n = 50) versus control (n = 49) group assignment and with the study subjects normal 

weight (n = 50) versus overweight (n = 49). This was followed by the assignment of the 

subgroups of AN (n = 25), AO (n = 25), CN (n = 25) and CO (n = 24).

2.6. Targeted lipid mediator analysis

We used a modified liquid chromatography (HPLC)-tandem mass spectrometry assay based 

on the analytical platform published by Masoodi et al. [19] to assess the pattern of 30 lipid 

mediators in serum, including several key prostaglandins, resolvins, hydroxylated 

eicosapentaenoic acids (HEPEs), hydroxyeicosatetraenoic acids (HETEs), and 

hydroxyoctadecadienoic acid (HODEs). We did not evaluate leukotriene concentrations 

because serum is not an ideal medium for analysis. A detailed description of the sample 

processing parameters is included in the Appendix.

2.7. Biostatistical methods

The primary objective of this analysis was to compare relative concentrations of an array of 

308 selected metabolites by asthma status, and to identify interactions between these 

metabolites that may help uncover an asthma overweight phenotype. A secondary objective 

was to compare concentrations of 30 lipid mediators by asthma status. We performed t-tests 

to compare relative concentrations of metabolites between asthma and controls, and analysis 

of variance to compare relative concentrations of metabolites among the four study 
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subgroups. We applied a Bonferroni correction to determine significance in the setting of 

multiple comparisons. For the targeted metabolomics analysis, a p < 0.00016 was considered 

statistically significant whereas for the targeted lipid mediator analysis, a p < 0.0017 was 

considered statistically significant. We then used statistical learning techniques [20] to 

determine combinations of metabolites that may help to visually and statistically 

discriminate between asthma and controls, and among the four study groups. First, we 

conducted a supervised principal component analysis - discriminant analysis (PCA-DA) 

using all metabolites among the four study groups. Second, we estimated the relative 

variable importance of single metabolites to discriminate between asthma and controls using 

a conditional random forest [21] that consisted of 3000 classification trees and five randomly 

sampled metabolites as candidates at each node. Third, we used a conditional classification 

tree analysis to identify combinations of metabolites that distinguished any of the four study 

subgroups [21]. We analyzed data using MarkerView software (version 1.2.1.1) and R 

(www.r-project.org).

3. Results

3.1. Findings of focused review

Of the twelve articles identified in our focused review, seven performed metabolomics 

analysis in exhaled breath condensate [22–28], two in urine [29,30], one in bronchoalveolar 

lavage fluid [31], one in plasma [32], and one in serum [33]. Five used nuclear magnetic 

resonance spectroscopy [22,24,28,29,33], three used liquid chromatography-mass 

spectrometry [27,30,32], three used gas chromatography-mass spectrometry [23,25,26], and 

one used both gas and liquid chromatography [31]. One study was performed in mice [31]. 

The aim of most studies was to find possible pathways associated with asthma pathogenesis, 

identify different phenotypes according to severity, and identify possible predictors of 

asthma control. Only two articles sought to discover biomarkers for asthma diagnosis. Most 

studies do not evaluate the effect of inhaled corticosteroid therapy on their results. We found 

no reports of the analysis of serum metabolomics on children, to identify possible 

biomarkers for asthma diagnosis.

3.2. Participant characteristics

We collected 100 samples, but 1 sample was lost during processing (50 children with asthma 

and 49 healthy controls). We did not observe differences in age (p = 0.20) or sex (p = 0.13) 

between study groups (Table 1). As expected, children with asthma had a higher prevalence 

of atopy (p = 0.007), exhaled nitric oxide (p < 0.001), serum IgE (p < 0.001), and a lower 

FEV1/FVC ratio (p < 0.001). Only 4 children (8%) reported using inhaled corticosteroids in 

the past 12 months. Mean ± SD for BMI was 28.4 ± 3.2 kg/m2 and 19.8 ± 2.2 kg/m2, and 

percentage of body fat was 38.1 ± 8.2% and 21.7 ± 5.8% in overweight and normal weight 

children, respectively.

3.3. Differences in the metabolome by asthma status and body composition

We first identified eighteen metabolites that were statistically different by asthma status after 

adjustment for multiple comparisons (Table 2). Their main functions can be found in the 

Appendix. We then plotted the results of the PCA-DA analysis to help uncover metabolites 
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that could discriminate by asthma status and body composition (Fig. 1). There was a distinct 

separation between children with asthma and controls along the D1 score, and metabolites 

that contributed the most to this clustering were 2-isopropylmalic acid, ascorbic acid, 

shikimate-3-phosphate, 6-phospho-D-glutanate, and glutathione (Table 2). In fact, these five 

metabolites were also identified as the most important in classifying asthma status in random 

forest analysis (Fig. 2). Specifically, serum concentrations of 2-isopropylmalic acid, ascorbic 

acid, 6-phospho-D-gluconate and shikimate-3-phosphate were more than 40% lower in 

children with asthma compared to controls (Fig. 3). In contrast, the concentration of reduced 

glutathione was 70% higher among those with asthma compared to controls (Fig. 3). There 

was also good separation between overweight and normal weight children along the D2 

score (Fig. 1), and the major contributor was niacin (Fig. 3).

In analysis of variance, niacin was the only significantly changed metabolite that was 

statistically different among study groups (Fig. 3; p = 0.00011); however, we could not 

identify a single metabolite that could clearly distinguish between overweight children with 

asthma and children in the other study groups (Appendix). Most of the observed differences 

between children with asthma and controls were still present in subgroup analyses, although 

they were less significant because of the lower group sizes (Appendix). In conditional tree 

analysis, we found that a combination of 2-isopropylmalic acid and betaine strongly 

discriminated between asthma and controls (Fig. 4). Moreover, the combination may be 

useful to discriminate between normal weight children with asthma and overweight children 

with asthma.

3.4. Differences in lipid mediators by asthma status and body composition

We did not identify important differences in lipid mediators by either asthma status or 

among study groups after Bonferroni correction. Nevertheless, several trends were apparent. 

For example, 12-HETE (mean 1702 and 864 pg/mL, respectively; p = 0.03) and 12-HEPE 

(87 and 22 pg/mL, respectively; p = 0.05) were higher in children with asthma than in 

controls, 12-HETE was higher in overweight children with asthma than in overweight 

controls (mean 2038 and 598 pg/mL; p = 0.007), and 20-HETE was higher in overweight 

children with asthma than in normal weight children with asthma (mean 296 pg/mL and 200 

pg/mL; p = 0.009).

4. Discussion

To our knowledge, this is the first study of metabolomic profiling performed in blood 

samples of children with asthma, offering potentially non-invasive biomarkers of disease. 

Several metabolomic studies of lung disease have been performed using different fluids, 

such as exhaled breath condensate (EBC) [22,24,28], but some studies suggest that EBC 

may not give accurate results due to risk of contamination and the influence of endogenous 

and exogenous factors that complicate obtaining an adequate sample [34]. We applied 

targeted mass spectrometry-based metabolic profiling of sera in children with and without 

asthma, and in combination with data science methods we found important differences in 

concentrations of several metabolites that clearly discriminated asthma status.
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Specifically, we found important differences in metabolites related to oxidative stress. 

Studies suggest that an imbalance in prooxidative and anti-oxidative processes in the airway 

could result in increased inflammation and tissue damage, and a lowered cellular reducing 

capacity has been linked with an increased risk of asthma and worse disease severity 

[35,36]. We found that hypoxantine, a metabolite involved in the superoxide anion 

generating system, was higher in children with asthma than in controls. We also found that 

reduced glutathione concentrations were higher in children with asthma than in controls. 

Reduced glutathione is an intracellular redox regulator capable of scavenging free radicals 

either directly, non-enzymatically or enzymatically by glutathione peroxidase, and has been 

associated with regulation of airway reactivity and inflammation [37,38]. Previous studies 

have found increased levels in the lungs and blood of subjects with asthma as part of an 

adaptive response to oxidative stress [39]. We also found higher levels of hexose-phosphate 

and lower levels of 6-phospho-D-gluconate, both intermediates in the pentose phosphate 

pathway and in the production of NADPH, which play a major role in the reducing capacity 

in all cells of the body and are involved in continuously replenishing the reduced glutathione 

pools [40]. Ascorbic acid concentrations were also lower in children with asthma when 

compared to controls. As one of the main components of the extracellular fluid lining of the 

alveolus, ascorbic acid plays a protective role against oxidative stress by directly scavenging 

oxide and hydroxide [40,41]. Low serum levels have been previously associated with 

pulmonary dysfunction and increased odds of developing asthma in children and adults [42].

Other metabolites found in lower concentrations in children with asthma were 2-

isopropylmalic acid, shikimate-3-phosphate, and 2-oxobutanoate, all of which are 

intermediates in amino acid synthesis. These molecules are usually found in fungi and 

bacteria but not in humans, and therefore the lower concentrations in children with asthma 

identified in our analysis could suggest a link between the human microbiome [29,30]. Other 

molecules that were significantly different and are usually found in bacteria and fungi were 

2-hydroxy-2-methylbutadenoic acid and trehalose-6-phosphate. Although results from 

studies on the role of microbiome on asthma pathogenesis have been inconclusive, some 

suggest there could be an inverse relationship between reduced exposure and diversity of 

intestinal microbiota in infancy and allergic sensitization [43,44].

While no single metabolite could help discriminate by asthma status and body composition, 

our analyses suggest that a combination of 2-isopropylmalic acid and betaine may be helpful 

to discriminate not only by asthma status but may also help separate overweight asthma 

from other subgroups. Betaine is a methyl donor involved in a variety of biological processes 

[45]. Furthermore, increased levels of betaine have been linked to a worse prognosis in 

cardiovascular disease and enhanced atherosclerosis specially in the presence of the 

intestinal microbiota-dependent products [46]. Although we could not find other studies that 

have investigated the role of betaine on asthma pathogenesis, these preliminary findings 

could suggest an interaction between betaine and microbiota products in other 

pathophysiologic processes.

Several studies have demonstrated a positive association between obesity and asthma in 

children [9,10]. Obesity has a negative effect on lung mechanics, absolute airflows, and lung 

volumes, even in the absence of airway inflammation [47,48]. Moreover, obesity may be 
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linked to a unique asthma phenotype, including a more severe clinical presentation and 

increased steroid resistance [49]. We found that niacin concentrations were higher in the 

overweight children with asthma compared to those with asthma and normal weight. Niacin 

is a potent stimulator of appetite and high niacin serum levels have been linked with 

increased insulin resistance [50,51]. Furthermore, current studies have found a significant 

association between niacin consumption and the increased prevalence of obesity in the 

United States [51]. Finally, there was a trend for a higher 20-HETE levels in overweight 

children with asthma compared to normal weight children with asthma, a potent 

vasoconstrictor whose upregulation is associated with oxidative stress [52].

Our study has some potential shortcomings, including a relatively small sample size and the 

exploratory nature of the metabolomics approach for inflammatory mediators. Nonetheless, 

despite the smaller sample size, we found important differences in metabolites between 

groups even after correction for multiple testing. Second, given that this was an exploratory 

study, further validation to investigate the potential use of differentiating biomarkers for 

asthma diagnosis in a larger population is warranted. Third, although the use of mass 

spectrometry for metabolite analysis allows for identification of a wide range of compounds, 

some metabolites might not be captured because of its destructive nature, given the 

requirement for separation, ionization, fragmentation and acceleration of the components 

through a magnetic field [53]. One of the strengths of this study was that less than 10% of 

the children were using inhaled corticosteroids, decreasing the risk of a difference in 

metabolic pathways resulting from medication use.

In summary, we provide evidence that a targeted metabolomics approach applied to serum 

could be used to discriminate among children with and without asthma by revealing different 

metabolic profiles. This could lead to an improvement in asthma diagnosis and may be 

further studied to discover new pathogenic pathways and possible therapeutic targets.
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Fig. 1. 
PCA-DA analysis of metabolomics data. The data were processed as described in the 

methods section. The scores plot (A) shows a separated clustering of each of the study 

subgroups. Asthma and controls were separated along the D1-Scores axes. The loadings plot 

(B) shows the compounds responsible for the separation of asthma subgroups from control 

subgroups along the D1-loadings axes. Several of these compounds were previously 

identified during the statistical t-test group comparison and the random forest analysis (e.g. 

2-isopropylmalic acid, ascorbic acid etc.).

Checkley et al. Page 12

Respir Med. Author manuscript; available in PMC 2017 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Random forest analysis of metabolomics data. The bar plot shows the 5 most important 

metabolites responsible for separating the subjects by asthma status.
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Fig. 3. 
Boxplot of significantly changed metabolites according to subgroups (AN = Asthma Normal 

Weight; AO = Asthma Overweight; CN = Control Normal Weight; CO = Control 

Overweight).
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Fig. 4. 
Classification tree analysis of metabolomics data. (AN = Asthma Normal Weight; AO = 

Asthma Overweight; CN = Control Normal Weight; CO = Control Overweight) The analysis 

shows the combination of the 2 molecules (isopropylmalic acid and betaine) responsible for 

the differentiation of asthma from controls, and asthma overweight from the other 

subgroups.
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Table 1

Participant demographic and clinical characteristics.

Asthma Controls

Normal weight
N = 25

Overweight
N = 25

Normal weight
N = 25

Overweight
N = 25

Age, mean (SD) 13.9 (2.5) 12.4 (1.8) 14.3 (2.9) 13.6 (2.9)

Male, n (%) 16 (64.0) 16 (64.0) 13 (52.0) 12 (48.0)

BMI in kg/m2, mean (SD) 19.5 (2.2) 26.9 (3.1) 19.4 (2.5) 27.3 (3.5)

Body fat %, mean (SD) 21.5 (6.5) 35.6 (6.4) 21.9 (5.1) 40.6 (9.3)

Height in cm, mean (SD) 149.5 (12.2) 147.2 (10.0) 148.5 (11.2) 148.7 (11.3)

Atopy, n (%) (n = 93) 24 (96.0) 18 (72.0) 13 (52.0) 14 (56.0)

Serum IgE in kU/L, median (IQR) 1331 (763.2–1971) 1129 (331–2354) 176.6 (83.2–557.2) 296.6 (114.5–1159)

Pre-bronchodilator FVC, L (SD) 3.21 (1.0) 3.08 (0.7) 3.07 (0.8) 3.20 (0.8)

Pre-bronchodilator FEV1, L (SD) 2.71 (0.8) 2.59 (0.6) 2.79 (0.7) 2.85 (0.7)

Pre-bronchodilator FEV1/FVC %, mean (SD) 85.5 (8.5) 84.6 (7.3) 91.1 (3.9) 89.5 (3.1)

FEV1 reversibility, n (%) (n = 93) 3 (12.0) 5 (20.0) 0 (0.0) 0 (0.0)

FeNO ppb, median (IQR) 34 (24–70) 21 (11–46) 13 (9–18) 13 (8–18)

ACT score, mean (SD) 22.9 (3.7) 22.0 (3.4) – –

Use of β2-agonist inhalers for crisis control in the last 
12 months, n (%) (n = 48)

3 (12.0) 9 (36.0) – –

Use of ICS in the last 12 months, n (%) (n = 48) 1 (4.0) 3 (12.0) – –
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