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Genome-wide perturbations by miRNAs map onto functional
cellular pathways, identifying regulators of chromatin
modifiers
Tyler J Moss1, Zijun Luo1, Elena G Seviour1, Vasudha Sehgal1, Yiling Lu1, Steven M Hill2, Rajesha Rupaimoole3, Ju-Seog Lee1,
Cristian Rodriguez-Aguayo4,5, Gabriel Lopez-Berestein4,5, Anil K Sood3,5, Robert Azencott6, Joe W Gray7, Sach Mukherjee2,8,
Gordon B Mills1 and Prahlad T Ram1

BACKGROUND: Regulation of gene expression by microRNAs (miRNAs) is critical for determining cellular fate and function.
Dysregulation of miRNA expression contributes to the development and progression of multiple diseases. miRNA can target
multiple mRNAs, making deconvolution of the effects of miRNA challenging and the complexity of regulation of cellular pathways
by miRNAs at the functional protein level remains to be elucidated. Therefore, we sought to determine the effects of expression of
miRNAs in breast and ovarian cancer cells on cellular pathways by measuring systems-wide miRNA perturbations to protein and
phosphoproteins.
METHODS:We measure protein level changes by reverse-phase protein array (RPPA) in MDA-MB-231, SKOV3.ip1 and HEYA8 cancer
cell lines transfected by a library of 879 human miRNA mimics.
RESULTS: The effects of multiple miRNAs–protein networks converged in five broad functional clusters of miRNA, suggesting a
broad overlap of miRNA action on cellular pathways. Detailed analysis of miRNA clusters revealed novel miRNA/cell cycle protein
networks, which we functionally validated. De novo phosphoprotein network estimation using Gaussian graphical modeling, using
no priors, revealed known and novel protein interplay, which we also observed in patient ovarian tumor proteomic data. We
identified several miRNAs that have pluripotent activities across multiple cellular pathways. In particular we studied miR-365a
whose expression is associated with poor survival across several cancer types and demonstrated that anti-miR-365 significantly
reduced tumor formation in animal models.
CONCLUSIONS: Mapping of miRNA-induced protein and phosphoprotein changes onto pathways revealed new miRNA-cellular
pathway connectivity, paving the way for targeting of dysregulated pathways with potential miRNA-based therapeutics.
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INTRODUCTION
Noncoding RNAs, such as microRNAs (miRNAs), mediate
epigenetic control of gene expression, generating diverse,
complex phenotypes. miRNAs are small (~22 nt) RNAs that bind
to and regulate translation or degradation of cognate mRNA. The
binding of a given miRNA to its target mRNA occurs via the
protein machinery in the RNA-induced silencing complex
and alignment of a seven- to eight-nucleotide sequence (seed
sequence) to the complementary sequence in the target mRNA.
Owing to the brevity of the seed sequence and regularity
of imperfect alignment, a single miRNA can regulate many
(sometimes 4100) mRNAs. Given their promiscuity, miRNAs are
important regulators of gene expression in multiple cellular
pathways, and dysregulation of miRNA expression can have
severe consequences on cell behavior, leading to the develop-
ment of diseases, such as cancer. Several miRNAs have been
shown to have important roles in tumorigenesis either when
overexpressed (e.g., miR-21)1 or via loss of inhibition of tumor
progression when downregulated (e.g., miR-34a, let-7).2,3

Major research efforts over the past decade have focused on
the function of miRNAs and their target mRNAs. The investigators
in these studies predominantly relied on changes in mRNA and
target prediction to determine the role of given miRNAs in cells.
However, miRNA-mediated silencing of gene expression via
inhibition of protein translation can occur without a measureable
decrease in mRNA expression. Furthermore, mRNA measurements
are insensitive to the indirect impact of miRNAs on protein
stability and/or activity. Indeed, overall mRNA expression levels
may be weak predictors of protein levels and activity.4,5 Therefore,
considering changes in protein levels is important when validating
miRNA targets particularly when characterizing the downstream
functional consequences of miRNAs. In the present study, we
determined the effects of genome-wide perturbations by miRNAs
on protein levels in cancer pathways by introducing 879 miRNA
mimics into cancer cell lines and measuring changes in 127
proteins and phosphoproteins in these cells. We characterized
miRNAs according to their roles in regulating protein and
phosphoprotein networks and cellular pathways. Using advanced
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clustering and machine-learning techniques, we isolated impor-
tant clusters of miRNAs and corresponding sets of regulated
proteins. We used probabilistic graphical modeling, using no prior
connectivity information, to construct de novo networks that
recapitulated well characterized protein–protein interactions as
well as identifying interplay between proteins across different
pathways. We identified important regulatory miRNAs by
classifying the miRNAs based on their effects on cellular functions
as well as identifying more broadly acting miRNAs that appear to
alter multiple pathways. Further analysis of one such miRNA,
mir-365a, identified its role in regulating epigenetic modification
of chromatin and its dysregulation in multiple cancers.
We demonstrated that targeting miR-365a with anti-miR-365
resulted in significant reduction of tumors in a xenograft model.

MATERIALS AND METHODS
miRNA screens
A miRNA library screen was performed using the reverse phase protein
array (RPPA) platform.6,7 Screening by RPPA enabled us to directly measure
changes in protein levels as well as post-translational protein modifica-
tions. By RPPA, we screened 1,000 samples per chip probing for proteins
limited to the number of available high-quality antibodies. The primary
screen was performed in MDA-MB-231 cells using 879 miRNAs measuring
changes in 127 proteins (see Supplementary Table 2 for antibody list).
A subset of the miRNA library (154 miRNAs) was used in a second screen
using three cell lines (see Supplementary Tables 2 and 3 for lists of
antibodies and miRNAs, respectively) measuring 127 proteins, 103 of which
were common to the first screen. A cell proliferation screen of miRNA
library was also performed in MDA-MB-231 cells using the Cell Titer
Blue Cell Viability Assay Reagent (Promega, Madison, WI, USA). See
Supplementary Methods for screen and data normalization details.

Microarray
Gene expression measurements of miR-365a-treated SKOV3.ip1 and
MDA-MB-231 cells were performed using HumanHT-12 v4 Expression
BeadChips (Illumina, San Diego, CA, USA). Data were quantile normalized
using the lumi Bioconductor package8 and are available in the Gene
Expression Omnibus: GSE64020.

Mouse xenograft tumor model
Twenty mice were given intraperitoneal injections of SKOV3 cells
(106 cells/mouse). After 7 days the mice were treated with intraperitoneal
injections of miRNA encapsulated in liposomes (5 μg/mouse in 200 μl of
PBS) twice a week until mice became moribund in either group. Half of the
mice were treated with a control miRNA hairpin inhibitor and the other
half were treated with the miR-365a hairpin inhibitor. The mice were killed
30 days after the initial injection and the mouse body weight, tumor
weight, tumor nodule count, location of metastases and presence of
ascites was measured. All animals were cared for according to guidelines
set forth by the American Association for Accreditation of Laboratory
Animal Care and the US Public Health Service policy on Human Care
and Use of Laboratory Animals. See Supplementary Information for more
details.
For other detailed methods see the Supplementary Methods.

RESULTS
Functional classification of miRNAs
To determine the impact of miRNAs on cancer pathways,
we perturbed the basal-like breast cancer cell line MDA-MB-231
(KRAS G13D, BRAF G464V, TP53 R280K and CDKN2A frameshift
mutations) with 879 exogenous miRNA mimics and changes in
protein levels were measured by RPPA. Well-characterized
miRNAs, such as members of the let-7, miR-200 and miR-17-92
families, cocluster using unsupervised hierarchical clustering
(Supplementary Figure 2) showing that miRNAs from the same
families have a similar, protein-level effect in our screen. We
clustered the miRNAs into functional groups by their similarity in

inducing changes in levels of protein found in cancer pathways
(Supplementary Figure 1) using the ConsensusClusterPlus package
in the statistical computing environment R.9 The miRNAs were
clustered by k-means with numbers of clusters ranging from 2
to 15, repeated 100 times, leaving out 10% of the miRNAs in each
repetition. We grouped the miRNAs by the frequency with which
they clustered together. We chose five as the optimal number of
functional clusters (Supplementary Figure 3) and each miRNA was
classified into one of them (Figure 1a). We then identified proteins
defining each of the clusters, based on the ability of the proteins
to differentiate the miRNAs in each consensus cluster from the
miRNAs in all other consensus clusters using random forest
classification. The most important discriminatory proteins for each
miRNA cluster are shown in the box-whisker plots in Figure 1b.
The 79 miRNAs in functional cluster 1 (Figure 1a,b) are

characterized by shared upregulation of Notch3 and activation
of the phosphoinositide 3-kinase (PI3K)/AKT pathway as well as
activation of c-Jun. Functional cluster 2 contains 153 miRNAs that
are enriched in targeting regulators of the cell cycle and
proliferation. The 115 miRNAs in cluster 4 are strongly associated
with downregulation of Tau protein levels. The 150 miRNAs in
functional cluster 5 are associated with decreased PTEN levels and
concurrent upregulation of the Akt/p70S6K/S6 pathway. The
remaining 382 miRNAs have relatively minor effects on the
proteins assessed and are grouped in cluster 3 (Figure 1b).
Large screens inherently produce false-positive and -negative

results. To validate the findings from our primary screen, we
performed a secondary screen using a subset of the miRNAs from
all of the clusters (Supplementary Table 1). We performed the
secondary screen with MDA-MB-231 cells as well as the ovarian
cancer cell lines HeyA8 and SKOV3.ip1. We rescreened 154
miRNAs in each of the three cell lines. We tested the consistency
of regulation of protein levels in the first screen and in the
MDA-MB-231 cells in the second screen using Markov transition
matrix analysis, wherein the fraction of upregulated and
downregulated proteins for each miRNA in both screens was
determined (Supplementary Figure 4a). Analysis of the sum of the
transitions across all proteins for all of the common miRNAs in
both screens demonstrated a 78% overlap of true-positive
changes in the MDA-MB-231 cell line in the two screens
(Supplementary Figure 4b). We observed that several proteins
and miRNAs exhibited robust changes in the two MDA-MB-231
screens as well as across all three cell lines (Supplementary
Figure 5). The changes in cell cycle proteins were the most
consistent in the two screens; hence, the miRNAs in functional
cluster 2 exhibited the most consistency in the two screens and
across the three cell lines (Supplementary Figure 4c). However,
cluster 4 miRNAs that were characterized by changes in Tau
protein levels, demonstrated poor correlation in the MDA-MB-231
cells in the first and second screens, suggesting that this subset
of cluster 4 miRNAs selected for the second screen may not
represent those that are bona fide regulators of Tau expression.

Support vector machine and predictors of cellular proliferation
In addition to the changes in protein and phosphoprotein levels in
response to perturbation by miRNAs, we measured changes in
MDA-MB-231 cell number 48 h after transfection with the miRNAs.
Using average correlation analysis (see Supplementary Methods)
between protein levels and changes in cell number, we identified
activators and repressors of proliferation (Supplementary
Figure 6). We examined miRNA induced changes in cell number
relative to nontargeting miRNA controls and binned the miRNA
into high proliferation (cell-number change 45% of control
values) and low proliferation (lowest 10%) groups. The data
demonstrated that 14% of the miRNAs did not change the cell
numbers. We analyzed the data using a machine-learning
algorithm (support vector machine) to predict changes in cell
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Figure 1. Consensus clustering of miRNAs according to their functional roles in regulating cancer pathways. (a) Heatmap of miRNA consensus
clusters and the number of miRNAs in each cluster. (b) Box-whisker plots of discriminatory proteins in the first screen regulated by miRNA
clusters. Cluster 1 miRNAs (dark green) upregulated PI3K/AKT, Notch and c-Jun signals. Cluster 2 miRNAs (light blue) regulated the levels cell
cycle proteins. Cluster 4 miRNAs (pink) downregulated Tau levels. Cluster 5 miRNAs (dark blue) upregulated the mTOR pathway. (c) Heatmap
of the fold change in levels of protein activators and repressors. Each row represents a miRNA-transfected observation, and each column
represents a protein. The miRNAs are grouped according to their effect on cell proliferation. Table inset, confusion matrix of a SVM model
predictors of cell number changes.
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number as a function of changes in protein and phosphoprotein
levels using the 210 miRNAs in the low-proliferation (n= 88) and
high-proliferation (n= 122) groups. Assessment of the support-
vector machine confusion matrix analysis, predicting changes in
cell number using leave-one-out cross-validation demonstrated
490% accuracy (Figure 1c). When we grouped the miRNA-
perturbed samples according to the highest and lowest quantiles
of proliferation, it revealed an apparent pattern in which the levels
of the predicted activators of proliferation were downregulated
and the proliferation repressors were upregulated (Figure 1c).
Cluster 2 miRNAs make up a preponderance of the miRNAs
belonging to the low proliferation group and exhibit a pattern of
protein levels consistent with downregulating proliferation.

Cluster 2 miRNAs regulate proliferation by altering cell cycle
proteins
Several pathways regulate cell cycle proteins, which result in
alterations in cellular proliferation. The distribution of proliferation
values grouped by functional miRNA clusters demonstrated that
consensus cluster 2 miRNAs markedly downregulated cellular
proliferation over that induced by control miRNAs and the miRNAs
in all other functional clusters (Figure 2a). Individually and as a
whole, the cluster 2 miRNAs downregulated the levels of positive
regulators and upregulated the levels negative regulators of cell
cycle progression (Figure 2b). Several of the miRNAs are predicted
to target the cell cycle proteins directly (Figure 2c). Many of the
miRNAs that regulate the cell cycle protein levels and that are
predicted to target the mRNA of these proteins share identical
seed sequence (e.g. miR-124 and miR-506 have identical seed
sequence and both downregulate p21). To determine whether
cluster 2 miRNAs can induce cell cycle arrest, we selected 14
miRNAs—seven in cluster 2 and seven in other clusters—and
measured cell cycle distributions of MDA-MB-231 cells transfected
with these miRNAs. The cluster 2 miRNAs induced an increase in
the number of cell in G1-phase over that induced by the other
miRNAs (Figure 2d). Cluster 2 miRNAs resulting in functional cell
cycle arrest at G1 phase was consistent with the regulation of cell
cycle proteins by this cluster of miRNAs that we observed in our
proteomic screening.

De novo phosphoprotein networks recapitulate known signaling
pathway interactions
miRNA can modulate signaling networks by directly or indirectly
regulating the abundance of protein components of networks or
by regulating the activators or repressors of signaling activity.
Furthermore, because proteins and phosphoproteins are compo-
nents of signaling pathways, such miRNA-mediated changes in
protein levels and protein activity may be propagated via the
signaling networks, resulting in downstream positive or negative
changes in other proteins in the networks. This led us to
hypothesize that miRNA perturbation of phosphoprotein networks
may provide valuable information for de novo identification of
signaling networks. To test this hypothesis, we used computa-
tional network inference to identify signaling networks using the
data from the three cell lines in our second screen. The relatively
large number of miRNAs (154 per cell line) allowed for inference of
networks specific to each cell line. We modeled cell line-specific
phosphoprotein networks using a Gaussian graphical model,10

estimated using the ‘graphical lasso’ algorithm (Figure 3a,b; edge
widths represent edge scores or partial correlations).11 This
approach quantifies interplay between pairs of phosphoproteins
while taking into account the effects of other measured
phosphoproteins (partial correlations). Without the use of any
prior information or explicit modeling of the perturbations, this de
novo network analysis revealed network connectivity that was in
remarkable agreement with consensus phosphoprotein pathways
and networks as described in the biochemical literature

(http://stke.sciencemag.org/cm/), capturing known signaling inter-
actions such as those between EGFR and ErbB2, Raf-MEK-MAPK,
AKT and PRAS40, AMPK and ACC, and c-Src and STAT3. This
analysis also identified associations that have not been well
characterized,12,13 such as those between MAPK1/2, MEK and
GSK3β.
To validate whether such a functional interaction, or link,

exists between MEK, MAPK1/2 and GSK3β, we experimentally
manipulated MEK activity and measured GSK3β phosphorylation
and observed that MEK inhibition decreased GSK3β phosphoryla-
tion in the cells (Figure 3f). We observed the functional
associations between MEK, MAPK1/2, and GSK3β in the two cell
lines with low to no basal AKT activity (HeyA8 and MDA-MB-231)
but not in SKOV3.ip1, which has PTEN loss and PIK3CA mutation
and thus high AKT phosphorylation levels (Figure 3c,d) where the
interplay may be masked due to the high basal activity of AKT on
GSK3b. We also examined the significance of the functional
relationship between MAPK1/2 and GSK3β phosphorylation in
primary human tumor samples. Pearson correlation analysis of
data obtained from The Cancer Genome Atlas revealed a
significant positive correlation between phosphorylated MAPK1/2
and phosphorylated GSK3β (r= 0.409 across all tumors and
r= 0.596 for ovarian tumors) and between phosphorylated MEK
and phosphorylated GSK3β (r= 0.271 across all tumors and
r= 0.651 for ovarian tumors), suggesting that interplay between
MEK signaling and GSK3β phosphorylation can be manifested in
clinical tumor samples (Figure 3g).
Whereas some of the stronger functional links are common to

all cell lines, many phosphoprotein associations are unique to only
one or two cell lines. Thus, many de novo functional phospho-
protein associations may be mutation specific and context
specific. Analysis of our perturbation data identified eight
functional links common to MDA-MB-231, HeyA8 and SKOV3.ip1
cell lines and these links have some of the highest partial
correlation values (Figure 3e). The two KRAS/BRAF mutant cell
lines (MDA-MB-231 and HeyA8) had nine common links that were
not present in the cell line wild-type for KRAS and BRAF
(SKOV3.ip1). In addition, the two ovarian cancer lines had only
one shared link, whereas the breast cancer cell line did not have
this link (Figure 3e). This suggests that the interplay in signaling
networks may be more sensitive to the underlying mutational
background than to the tissue of origin, this requires further
investigation.

miRNA regulators of phosphoprotein networks
As described above, we observed that perturbations of phospho-
protein networks by miRNAs can reveal functional connectivity of
the underlying networks. We then investigated the miRNAs that
functionally regulate proteins in the networks to identify the
miRNAs that are the most efficient in perturbing signaling
processes. We first identified miRNAs that upregulated the
phosphorylation of proteins in the networks using the fold
change from the second screen. Figure 4a shows a network of the
phosphoproteins measured in the three cell lines and the miRNAs
that functionally regulated at least two phosphoproteins in the
network (edges are colored by miRNA cluster). Cluster 2 miRNAs
(light blue) overwhelmingly upregulated p27 phosphorylation and
cluster 5 miRNAs upregulated S6 phosphorylation consistent
with that which was observed for other members of their
respective clusters in screen 1. MiR-885-3p, miR208b and
miR-181c* regulated the highest number of components within
the phosphoprotein network.
Figure 4b shows the integrated phosphoprotein network and

the miRNAs that negatively regulated individual phosphoproteins
in the network. Cluster 2 miRNA downregulate retinoblastoma 1
(RB) phosphorylation and surprisingly regulate many RTKs in the
phospho network. MiR-124, miR-101*, miR-193b and miR-486-3p
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Figure 4. MiRNA regulators of phosphoprotein networks. Negative (a) and positive (b) miRNA regulators of phosphoprotein are shown. The
miRNA-phospho protein edges were determined according to the secondary screen wherein an miRNA markedly downregulates or
upregulates a phosphoprotein in at least two of the three cell lines. Only those miRNAs that regulated more than one phosphoprotein in the
network are displayed in a and b. Edges are colored by miRNA cluster and the miRNA label font is sized relative to the number of
phosphoproteins it regulates. (c) Network of positive and negative miRNA regulators of phosphorylation in Raf-MEK-ERK signaling. Edges are
determined as in a and b. The nodes are grouped and the edges bundled by common regulation of the ERK signaling module.
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Figure 5. Key miRNA regulators of cancer pathways. Networks of miRNAs that regulate450% of the proteins in given functional pathways are
shown. The miRNAs are colored by consensus cluster, and the miRNA nodes were scaled according to the fraction of proteins regulated in the
pathway.
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Figure 6. MiR-365a-3p regulates chromatin modifiers and is associated with poor outcome of cancer patients. (a) Gene ontology-based
analysis of mRNA targets of miR-365a-3p. These are predicted mRNA targets with evidence of binding by the argonaute from AGO-CLIP-seq
data from multiple cell lines. (b) Network of predicted and validated targets of miR-365a-3p. (c) Heat map of the fold change in expression of
genes in b after transfection of SKOV3.ip1 and MDA-MB-231 cell lines with miR-365a-3p. (d) Increased histone H3 acetylation of lysine 9 in cell
lines after miR-365a-3p transfection. (e) Kaplan–Meier plots of the overall survival of The Cancer Genome Atlas (TCGA) patients with several
different cancers grouped according to miR-365a-3p expression. (f) Box–whisker plot of the results of the growth of xenograft human tumor
cells (SKOV3.ip1) grafted into mice and treated with anti-miR-365a-3p incorporated into dioleoylphosphatidylcholine (DOPC) nanoliposomes.
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were the most important miRNAs in negatively regulating the
network in terms of connectivity. For signaling modules, such as
Raf/MEK/ERK, where there was not a clear pattern of regulation by
any single cluster of miRNAs we were able to identify miRNAs
that regulate single or multiple components of the subnetwork
(Figure 4c). The identification of this functional miR-phoshoprotein
interaction network is important for the characterization of
miRNA-regulated protein networks.

Functional regulation of cellular pathways
We sought to identify the top miRNA regulators of each of the
cancer pathways represented by the proteins measured by RPPA.
We separated the RPPA proteins and phosphoproteins into
functional pathways (Supplementary Figure 1) as described
previously,4 allowing for proteins to be included in more than
one pathway. We identified the miRNAs regulating each protein
using the discretized data from the first screen. Also, we
determined the fraction of regulated pathway components for
each miRNA and generated networks for all of the miRNAs
regulating at least half of the nodes in each pathway (Figure 5).
We weighted both node size and edge length according to the
fraction of the pathway proteins regulated by each miRNA.
Analysis of the pathways regulated by miRNAs in the functional

clusters demonstrated that 63% of the miRNAs regulating the
cell cycle proteins belonged to cluster 2. Cluster 2 miRNAs also
made up the largest percentage of miRNAs regulating the MAPK
(48%), TSC2/mTOR (50%), DNA repair (44%) and PI3K/AKT (40%)
pathways. Also, proteins in the metabolism pathway were
regulated by 54 miRNAs, 24 (44%) of which belonged to cluster 3.
The RPPA antibody set included antibodies that detect cleaved

caspases and protein regulators of apoptosis which can be used to
estimate activation of apoptosis. We identified potential miRNA
regulators of apoptosis including miR-449b which has been
reported to induce apoptosis in gastric cancer.14

We also determined the individual miRNAs that have the
greatest functional impact on across many pathways. We found
that miR-365 functionally regulated the most proteins in steroid
hormone, EMT, cell cycle, PI3K/AKT and MAPK pathways.
Furthermore, miR-124 coordinately regulated TSC2/mTOR and cell
cycle proteins. MiR-665 was one of the top regulatory miRNAs in
multiple pathways in our screen, regulating the levels of proteins
in the metabolism, MAPK, RTK, TSC2/mTOR, cell adhesion,
PI3K/AKT, cell cycle and DNA repair pathways. In addition,
miR-555 was highly linked with the DNA repair, steroid hormone,
RTK, MAPK, and apoptosis pathways. Despite having marked
effects on the majority of proteins of cellular pathways in our
functional screen, miR-555 and miR-665 are relatively under-
studied, with limited reports describing them in the literature.

MiR-365a regulates chromatin modifiers
Multiple pathways in our screen were affected by expression
miR-365a (Figure 5). MiR-365a expression is upregulated in breast
tumors and is a potential circulating marker for estrogen receptor-
positive breast tumors.15 Previous studies demonstrated that
miR-365a targets BCL2 and cyclin D,16,17 NKX2-1,18,19 and
HDAC4.20 In the present study, we found that miR-365a functional
regulated steroid hormone, EMT, cell cycle, PI3K/AKT, and MAPK
pathways. Given the observed pleiotropic effect of miR-365a, we
performed gene ontology-based analysis of targets of miR-365a
that are bound by argonaute in argonaute cross-linked immuno-
precipitation and next-generation sequencing (AGO-CLIP-seq) cell
line experiments21 and found a strong association with chromatin
modification pathways (Figure 6a,b). Experimental analysis of
changes in mRNA expression demonstrated that overexpression
of miR-365a in MDA-MB-231 and SKOV3.ip1 cells resulted in
downregulation of expression of mRNAs for many chromatin

modifiers (Figure 6c) and coordinated upregulation of histone H3
acetylation (Figure 6d).
We performed a survival analysis to determine whether

miR-365a expression is associated with cancer patient clinical
outcomes. Expression of miR-365a in several cancer types in The
Cancer Genome Atlas data was markedly associated with poor
patient survival (Figure 6e). Previous studies and our present
results demonstrated miR-365a involvement in numerous critical
functional pathways underscored the importance of this miRNA
in cancer. We thus examined the functional consequences of
miR-365a expression on the growth of tumor cells in vivo.
Treatment with miR-365a antimir (anti-miR-365a) incorporated in
dioleoylphosphatidylcholine nanoliposomes of SKOV3.ip1 tumor-
bearing mice resulted in marked reductions in tumor weight and
nodule number (Figure 6f), which is consistent with miR-365a
having a major role in tumor progression.

DISCUSSION
miRNA regulation of gene expression is important in determining
cell fate and maintaining cellular homeostasis.22 In the present
study, we grouped 879 miRNAs into five clusters based on their
similarity in regulating phosphoprotein and total protein levels.
The miRNAs in cluster 2 downregulated cell cycle protein levels,
inhibited cell proliferation, and had the most consistent functional
effects across the three cell lines. Many cluster 2 miRNAs, such as
miR-124 and miR-34, are implicated as tumor suppressors by
inhibiting cell cycle progression and proliferation.7,23 By focusing
on the functional regulation of critical proteins in important
pathways, we identified miRNAs with similar functional effects and
shared tumor-suppressive qualities.
Analyzing changes in the phosphorylation levels for signaling

proteins induced by miRNA perturbations, we were able to infer
connectivity among constituents of cellular signaling networks
(Figure 3). The inferred networks captured many well-known
molecular links as well as novel, cell line-specific and mutation-
specific network interplay. Furthermore, we identified miRNAs
responsible for modulating activity in these inferred pathways
(Figure 4).
A recent study demonstrated that miRNAs regulate mRNAs

predominantly via transcript destabilization and degradation.24

However, mRNA-level studies cannot capture the indirect effects
of miRNAs on protein levels owing to translational inhibition
as well as indirect or integrative effects on protein stability or
post-translational modification. Indeed, from our RPPA screen we
observed that each miRNA produces a marked change in the
abundance of about 20% of the total proteins measured
(Supplementary Figure 7), more than what would be expected
by direct targeting. The mechanisms and roles of miRNAs in
various diseases will become clearer and more comprehensive as
novel methods of proteomic profiling of the effects of miRNAs
emerge and become robust.25–28

We have shown that miRNAs modulate protein levels, signaling
pathways and cell cycle progression. We identified miR-365,
miR-555 and miR-665 as important regulators of multiple
cellular pathways—miR-365 being previously implicated in cancer
pathophysiology.15,17,18,29 Our analysis demonstrated that miR-365
exerts pleiotropic effects by targeting multiple gene transcripts
including regulatory genes, such as chromatin modifiers.
Interestingly, the clustering of miR-365a with other cluster 2
miRNA is likely due to its regulation of cell cycle proteins.
However, the proliferation of MDA-MB-231 and SKOV3.ip1 cells is
not decreased by miR-365a in 2D cultures (Supplementary
Figure 8), unlike the majority other cluster 2 miRNAs. MiR-365a
regulates many pathways besides the cell cycle owing to its high
level regulation of genes via regulation of chromatin modifiers.
The effect of miR-365a upregulation may be context specific as
demonstrated by the opposite association with survival in uterine
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cancer patients and differential association with survival in breast
cancer subtypes.
Our unbiased systems level analysis of miRNA-induced changes

in the levels of a select set of proteins and phosphoproteins
demonstrated that a single robust proteomic screen can both
recapitulate much of the previously demonstrated biology and
provide important insight into new miRNA-protein interactions
and regulatory features of cancer signaling pathways. The data
presented herein include those on numerous biologically
significant miRNA-induced alterations in different pathways that
can be further examined in detail for the identification of potential
clinical biomarkers of cancer or miRNAs as therapeutics. With the
recent initiation of clinical trials of miRNAs,30 understanding the
functional effects of miRNAs on biological pathways will be
important in successfully capitalizing on the promise of this novel
technology.
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