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Abstract: We propose using maximum a-posteriori (MAP) estimation to improve the image
signal-to-noise ratio (SNR) in polarization diversity (PD) optical coherence tomography. PD-
detection removes polarization artifacts, which are common when imaging highly birefringent
tissue or when using a flexible fiber catheter. However, dividing the probe power to two polar-
ization detection channels inevitably reduces the SNR. Applying MAP estimation to PD-OCT
allows for the removal of polarization artifacts while maintaining and improving image SNR.
The effectiveness of the MAP-PD method is evaluated by comparing it with MAP-non-PD, in-
tensity averaged PD, and intensity averaged non-PD methods. Evaluation was conducted in vivo
with human eyes. The MAP-PD method is found to be optimal, demonstrating high SNR and
artifact suppression, especially for highly birefringent tissue, such as the peripapillary sclera.
The MAP-PD based attenuation coefficient image also shows better differentiation of attenua-
tion levels than non-MAP attenuation images.
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1. Introduction

Standard OCT has been widely used for the imaging and diagnosis of the posterior eye for over
20 years [1, 2], due to its high resolution, speed, and sensitivity. There have been general im-
provements in both resolution, acquisition speed, and sensitivity over the past two decades, due
to the development of spectral domain OCT, swept source lasers, fiber optic designs, and other
hardware and software improvements. In addition, there have been many functional extensions
to OCT [3], such as Doppler OCT [4–7], optical coherence angiography [7–10], polarization
sensitive OCT [11–18], and spectroscopic OCT [19–22].

Although the contrast properties of these functional OCTs are well investigated, the prop-
erty of the most basic contrast, i.e., OCT intensity, had not been extensively investigated. In a
recent publication, we have highlighted a commonly encountered problem due to low SNR in
standard OCT B-scans [23]. For example, in posterior eye imaging, the vitreous body appears
with a weak random signal, where one expects a much lower signal because its purpose is to be
transparent.

A conventional method to improve image quality involves repeatedly acquiring multiple B-
scans at the same location, and then averaging the signal intensity [24, 25]. Although this inten-
sity averaging is effective for reducing speckle contrast and/or improving image SNR, it does
not reduce bias [23], which we denote as “noise-offset”. To compensate for this noise-offset, his-
togram equalization [26] or a simple intensity threshold may be applied, but this would sacrifice
the quantitative nature of the signal.

Another commonly encountered problem is the appearance of polarization artifacts in stan-
dard OCT images, especially if the OCT system is equipped with a flexible fiber probe [27] or
if it images highly birefringent tissue, such as the peripapillary sclera [24, 28]. Polarization di-
versity (PD) detection can remove polarization artifacts by summing the OCT signal intensities
of the vertical and horizontal polarization detection channels [28, 29]. However, dividing the
signal power into two detection channels inevitably reduces the sensitivity. This is because the
noise power is doubled when using two detectors instead of one. Therefore, PD-detection still
results in a reduction of image SNR, compared with standard OCT.

Hence, we have identified two problems in OCT imaging which we wish to solve, i.e, noise-
offset and the corruption of images by polarization artifacts.

To solve these two problems, we present an image composition method based on PD-
detection to suppress polarization artifacts along with a maximum a-posteriori (MAP) intensity
estimation to reduce noise-offset while preserving the quantitative nature of the signal intensity.

MAP estimation has been applied to OCT intensity [23] and phase estimation [30], and to
birefringence estimation in polarization sensitive OCT [31–33]. Among these, MAP OCT inten-
sity estimation allows for estimation of signal intensity by utilizing the signal and noise statistics.
If used on the image composition of repeatedly obtained B-scans, it provides an image with less
noise-offset than images obtained from conventional intensity averaging methods [23]. In ad-
dition, because the estimated intensity has less noise-induced offset, it is suitable for further
statistical analysis. The additional information provided by the precision and reliability of the
MAP intensity and attenuation coefficient estimates also enhances the quantitative accuracy of
further analysis of OCT signals. For example, we can rationally reject untrustable signals.

Here, we combine PD-OCT with MAP estimation. This combination will provide a more
quantitative estimation of the total light energy. This method is compared with combinations of
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non-PD-OCT and intensity averaging, PD-OCT and intensity averaging, and non-PD-OCT and
MAP estimation. Non-PD-OCT is emulated by the coherent composition of two PD-detection
channels. These comparisons show the superiority of the MAP estimation methods.

In addition, we demonstrate depth-localized attenuation coefficient imaging [34] based on the
OCT intensity estimated by MAP estimation. We show that the attenuation coefficient estima-
tion from MAP intensity images results in a broader dynamic range and better differentiation of
estimated attenuation levels compared with attenuation images derived from averaged intensity
images.

2. Theory of high-contrast and polarization-artifact-free OCT composition

2.1. MAP estimation of OCT amplitude and intensity

In this section, we describe the theory of MAP estimation of OCT intensity. This theory was
previously described in [23], but repeated for completeness. More details are also provided
here on the implementation of the algorithm. We first describe a MAP estimation of the OCT
amplitude, and then show that the square of the MAP estimate of the amplitude is equivalent to
the MAP estimate of the OCT intensity.

2.1.1. MAP estimation of OCT amplitude

To reduce noise-offset and quantitative nature of the PD-OCT method, we utilize MAP estima-
tion of the OCT signal intensity [23]. The MAP estimation method uses the statistics of the
OCT signal and noise. It is assumed that both the real and imaginary parts of an OCT signal are
affected by independent and identically distributed (i.i.d.) additive white Gaussian noise. Hence,
the OCT signal amplitude is modeled by a Rice distribution. The probability density function
of the observed OCT signal amplitude, a, given the “true” signal amplitude, α, is given by [35]

p
(
a | α, σ2

)
=

a

σ2
exp

⎡⎢⎢⎢⎢⎢⎢⎣
−
(
a2 + α2

)

2σ2

⎤⎥⎥⎥⎥⎥⎥⎦ I0

(aα

σ2

)
, (1)

where σ2 is the variance of the real or imaginary parts of the additive white Gaussian noise,
which are equal in value by assumption, and I0 is the 0-th order modified Bessel function of the
first kind. In practice, the depth-dependent noise variance σ2 is estimated from the noise data,
which is obtained by taking A-scans while obstructing the probe beam. The noise variance, σ2,
is defined as the average of the variances of the real and imaginary parts. Note that in some of
the existing literature, the symbol of σ2 denotes a noise energy which is the sum of the variances
of the real and imaginary parts. In contrast, we follow the notation introduced by Goodman [35].

By treating the underlying true amplitude α as a variable, and the observed values a and σ2

as parameters, the likelihood of the true signal amplitude under specific observations of signal
amplitude a and noise variance σ2 can be expressed as:

f
(
α; a, σ2

)
≡ p

(
a | α, σ2

)
. (2)

The combined likelihood function for a set of independent and identically distributed (i.i.d)
measured amplitudes a = {a1 , · · · , an , · · · , aN }, which were obtained from repeated B-scans at
the same location, is given by

l
(
α; a, σ2

)
=

N∏

n=1

f
(
α; an , σ

2
)
. (3)

Therefore, MAP estimation of the true signal amplitude from this set of measurements is given
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as the value of α which maximizes the posterior distribution, l
(
α; a, σ2

)
π(α),

α̂ ≡ arg maxα
[
l
(
α; a, σ2

)
π(α)

]
= arg maxα

⎡⎢⎢⎢⎢⎢⎣
N∏

n=1

f
(
α; an , σ

2
)
π(α)

⎤⎥⎥⎥⎥⎥⎦ , (4)

where π(α) is the prior distribution of the true amplitude. In our case, the prior distribution is
assumed to be uniform (non-informative).

2.1.2. MAP estimation of OCT intensity

By defining the true value of the OCT intensity as υ = α2, the MAP estimation of the intensity
is expressed as

υ̂ = arg maxυ
[
lυ
(
υ; i, σ2

)
π(υ)

]
(5)

where lυ
(
υ; i, σ2

)
is the likelihood function of the intensity and π(υ) is the prior dis-

tribution of the true intensity. The set of measured intensity is square of amplitudes i =
{i0 , · · · , in , · · · , iN } = {a2

1 , · · · , a2
n , · · · , a2

N
}.

If we assume a uniform prior π(υ), it can be shown that

υ̂ = α̂2. (6)

A proof of this is given in Appendix A. For convenience of implementation, we first compute the
MAP estimate of the amplitude, and then square it to obtain the MAP estimate of the intensity.

2.1.3. Reliability of MAP estimation

From the likelihood ratio statistics of the combined likelihood [Eq. (4)], one may also obtain
the 68% credible interval of the amplitude estimation [36]. The likelihood ratio statistic T (α)
is given by

T (α) = 2 log

[
l (α̂;σ2)

l (α;σ2)

]
. (7)

Theory states that this test statistic has a χ2
1-distribution (i.e., a χ2-distribution with one degree

of freedom) [36], hence the 68% credible interval is given as the region of α where T (α) ≤ 0.99.
Half of this interval is an approximate estimate for the standard deviation of the amplitude esti-
mation σα , and the amplitude estimation error is defined as σ2

α . The reciprocal of the estimation
error 1/σ2

α is taken as the precision of the amplitude estimates. Note that this precision measure
only accounts for the estimation variance, not the estimation bias.

A similar method of credible interval calculation was used in our earlier publication [23], but
it was defined by a different threshold T (α) ≤ 3.84, which provides the 95% credible interval.
We have changed the 95% credible interval to the 68% credible interval because it is a good
approximation to the two standard deviation interval of the MAP amplitude estimate [37, 38].

The precision of the MAP intensity estimation is then computed by error propagation, in
which σ2

α is propagated from the amplitude to the intensity. In particular, the uncertainty of the
MAP intensity estimate (συ) is defined as συ ≡ 2α̂σα . The precision of the MAP intensity
estimate is then defined as 1/σ2

υ .
Higher intensity regions are expected to have higher fluctuations, and hence lower precision.

However, this precision is mainly dominated by the intensity itself, and is not a good measure of
the estimate reliability. Therefore, it is informative to also define an estimate reliability measure
as a squared-intensity-to-error ratio υ̂2/σ2

υ . In decibel scale, it is expressed as 20 log10 (υ̂/συ ). It
is also noteworthy that the intensity reliability is proportional to the squared-amplitude-to-error
ratio according to: υ̂2/σ2

υ = α̂
4/
(
4α̂2σ2

α

)
= α̂2/

(
4σ2

α

)
.
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2.1.4. Numerical implementation of the probability density function

Note that because the zeroth order Bessel function of the first kind, I0(z), is of order
O
(
exp(z2)

)
, it is numerically divergent and cannot be used in a numerical implementation.

To overcome this problem, we use the exponentially-scaled modified Bessel function of the first
kind. Therefore, in our numerical implementation, the probability density function, Eq. (1), is
given by

p
(
an | α, σ2

)
=

an

σ2 exp
{ −(a2

n+α
2)

2σ2

}
I0

(
anα
σ2

)

=
an

σ2 exp
{
−(an−α)2−2anα

2σ2

}
I0

(
anα
σ2

)

=
an

σ2 exp
{
−(an−α)2

2σ2

} [
I0

(
anα
σ2

)
exp

(
− anα

σ2

)]
,

(8)

where the final square-bracket component comes from the exponentially scaled modified Bessel
function of the first kind. We numerically compute the first exponential part and the part in
square brackets independently, then multiply them.

The same algorithms of lookup table generation and peak searching were used in this
manuscript compared with our previously published method [23]. However, the algorithm was
newly implemented in Python 2.7.11, while it was implemented in Matlab 2014b in [23].

The computation time for a 500-amplitude-level by 200-noise-level lookup table is 14.1 s for
lookup table generation and 27.3 s for the MAP estimation using a Windows 10 PC, with an
Intel Core i7-5930K processor and 32GB of RAM.

2.2. OCT image compositions

We assume that multiple, N , B-scans are obtained at the same location of the sample by a
PD-detector, resulting in 2N frames. That is, N B-scans × 2 PD-detection channels. In this
section, we describe four image composition methods used to create a single composite image
from the 2N frames. The main purpose of this section is to present a polarization-artifact-free,
high-contrast OCT image composition method by using PD-detection and MAP intensity esti-
mation (MAP PD-OCT or MPD). This composition method is described in Section 2.2.2. In
addition, the standard composition methods also presented are: first, a polarization-artifact-free
OCT based on intensity averaging (standard PD-OCT or SPD, Section 2.2.1); second, intensity-
averaging combined with coherently combined PD-detected signals (standard non-PD image or
SnPD, section 2.2.3); third, MAP estimation combined with coherently combined PD-detected
signals (MAP non-PD image or MnPD, Section 2.2.3).

2.2.1. Standard PD-OCT

The PD-detection method uses two complex OCT signals from two orthogonal detection-
polarizations Eh (z) and Ev (z), where the subscripts h and v denote horizontal and vertical
polarization, respectively. A standard PD-OCT (SPD) image is obtained by averaging N frames
for each PD-detection channel and summing the averaged frames as:

ISPD = |Eh (z) |2 + |Ev (z) |2 , (9)

where the over-line indicates averaging over the N frames, and the subscript SPD is for standard
PD. Because the optical energies of the two detection polarizations are summed in this image,
ISPD is free from polarization-artifacts. On the other hand, intensity averaging along the frames
results in significant signal bias in low-signal-intensity regions, which is denoted by noise-offset
in this manuscript.
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2.2.2. High-contrast PD-OCT by MAP intensity estimation (MAP PD-OCT)

MAP intensity estimation can remove the noise-offset found in standard PD-OCT, while re-
taining the polarization-artifact-free state of PD-OCT. High-contrast polarization-artifact-free
PD-OCT can be obtained by:

IMPD(z) = ̂|Eh (z) |2 + ̂|Ev (z) |2 , (10)

where the hat represents the MAP intensity estimate over frames [Eq. (5)], and the subscript
MPD is for MAP-PD.

The estimation error of IMPD is the summation of the estimation errors of ̂|Eh (z) |2 and
̂|Ev (z) |2, so the precision of IMPD is defined as its reciprocal, 1/σ2

MPD =
(
σ2
υ,h
+ σ2

υ,v

)−1
,

where σ2
υ,h

and σ2
υ,v are the intensity estimation errors of the horizontal and vertical detec-

tion polarizations (see the last paragraph of Section 2.1.3). The reliability is then defined as
I2
MPD/σ

2
MPD.

2.2.3. Standard and MAP non-PD-OCT

Non-PD OCT can be emulated using OCT signals obtained by PD-detection. A single frame of
a pseudo-non-PD-OCT image is obtained by coherent composition [17] of OCT signals from
the two orthogonal polarization channels according to:

Ecc(z) =
1
2

[
Eh (z)e−iθ + Ev (z)

]
, (11)

where θ is a depth-independent relative phase offset, defined as θ ≡ arg
[∑

z Eh (z)E∗
v (z)

]
,

where z is the pixel depth. As is evident in this equation, the coherent composition is a complex
average with adaptive phase correction. Because coherent composition is effectively complex
averaging, it suppresses noise and improves the SNR.

The N frames from the non-PD-OCT can be combined either by intensity averaging (stan-
dard contrast) or MAP intensity estimation. The standard, non-PD-OCT contrast is obtained by
averaging the non-PD-OCT frames in their intensity as:

ISnPD = |Ecc(z) |2 , (12)

where the subscript SnPD is for standard non-PD. This image suffers from noise-offset and
polarization artifacts, but would have a higher SNR than would standard PD-OCT.

High-contrast non-PD-OCT is obtained by combining the non-PD-OCT frames using MAP
intensity estimation:

IMnPD =
̂|Ecc(z) |2 , (13)

where the subscript MnPD is for MAP non-PD. This image has a low noise-offset because of the
MAP intensity estimation. Although it is affected by polarization artifacts, the noise-suppression
effect of complex averaging provides a higher SNR in comparison to MAP PD-OCT.

The properties of the four composition methods are summarized in Table 1.

3. Attenuation coefficient imaging

3.1. Attenuation coefficient calculation

Attenuation coefficient images are generated for each of the four types of composite images
by applying a method previously presented by Vermeer et al. [34]. Here, the depth-dependent
attenuation coefficient μ is computed as

μ (zi ) =
1

2Δ
I (zi )

∑M
j=i+1 I

(
z j
) , (14)
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Table 1. A summary of OCT composition methods.

Composition method Polarization artifact Noise-offset Equation

Standard PD-OCT (SPD) No artifact High offset Eq. (9)
MAP PD-OCT (MPD) No artifact Low offset Eq. (10)
Standard non-PD-OCT (SnPD) With artifact Moderate offset Eq. (12)
MAP non-PD-OCT (MnPD) With artifact Very low offset Eq. (13)

where zi is the depth of i-th depth pixel, I (zi ) is the intensity of the composite OCT image, Δ
is the inter-pixel distance, and M is the number of pixels per A-line.

3.2. Signal-roll-off correction

For attenuation coefficient estimation, the OCT intensity is corrected to account for the depth-
dependent sensitivity roll-off. The depth-dependent SNR (SNR(zi )) was measured using a mir-
ror sample and a neutral density (ND) filter at approximately each 275-μm depth interval from
0 to 3 mm in air (or each 200-μm depth interval in tissue). The depth-dependent signal decay
curve C(zi ) is then computed from the SNR and the depth-dependent noise energy (σ2(zi )) as:

C (zi ) = SNR(zi )σ
2(zi ). (15)

This signal decay curve is transformed to logarithmic scale, then fit by a quadratic function,
and is used as a correction factor. Two correction factors are obtained independently for the
two PD-detection channels, referred to as Ch (zi ) and Cv (zi ) for the horizontal and vertical
channels, respectively. Another correction factor, CnPD (zi ), is obtained from the coherent com-
posite (non-PD) OCT signal.

The PD-OCT signals are corrected by using Ch (zi ) and Cv (zi ) in:

I′PD (zi ) ≡
˜|Eh (zi ) |2

Ch (zi )
+

˜|Ev (zi ) |2
Cv (zi )

, (16)

where ˜|Eh (zi ) |2 and ˜|Ev (zi ) |2 represents intensity averaging or MAP estimation of |Eh (zi ) |2
and |Ev (zi ) |2 respectively. That is, |Eh (zi ) |2 and |Ev (zi ) |2 or ̂|Eh (zi ) |2 and ̂|Ev (zi ) |2 are sub-
stituted into Eq. (16). From Eq. (16), we may then obtain I′

PD
(zi ), which are the corrected

standard or MAP PD-OCT intensities, and are substituted into I (zi ) of Eq. (14). Note that this
signal-roll-off correction was performed only for attenuation coefficient imaging, but not for
standard OCT imaging.

It should be noted that an estimator with noise floor subtraction is applied in Ref [34]. How-
ever, the subtraction is not applied to the intensity averaging estimator here. To make consistent
with intensity imaging comparison, attenuation calculations based on average-only and MAP
estimates are used.

3.3. Precision and reliability of the attenuation coefficient estimation

As we obtain the error from the MAP intensity estimate, the error in intensity can be used to
calculate the attenuation coefficient precision. This calculation is performed by the method of
error propagation.

The estimation error of the attenuation coefficient is computed by using the error propaga-
tion method based on Eq. (14), which relates the MAP intensity estimation error, σ2

υ , to the
attenuation coefficient error, σ2

μ , by

σ2
μ (zi ) =

(
∂μ (zi )
∂I (zi )

)2

σ2
υ (zi ) +

M∑

j=i+1

(
∂μ (zi )
∂I (z j )

)2

σ2
υ (z j ), (17)
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where σ2
υ (zi ) is the estimation error of the OCT intensity defined in Section 2.1.3. According

to Eq. (14), the partial derivatives in this equation are evaluated as ∂μ(zi )/∂I (zi ) = μ(zi )/I (zi )
and ∂μ(zi )/∂I (zk ) = −μ(zi )/

(∑M
k=i+1 I (zk )

)
for i � j. Therefore, the estimation error of the

attenuation coefficient at depth zi can be expressed by

σ2
μ (zi ) =

μ (zi )2

I2(zi )
σ2
υ (zi ) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ (zi )2

[∑M
k=i+1 I (zk )

]2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

M∑

j=i+1

σ2
υ (z j ). (18)

The first term in the equation can be interpreted as the error contribution from the pixel of
interest, and the second term is the error contribution due to all of the pixels below it. Using this
relation, one may calculate the attenuation coefficient precision, 1/σ2

μ(z ) .
Because the precision is mainly dominated by the attenuation coefficient, it is also informative

to calculate the squared-attenuation-to-error ratio μ2(zi )/σ2
μ (zi ). This may also be expressed

according to decibel scale as 20 log10

(
μ(zi )/σμ (zi )

)
. This ratio can help determine the regions

in which the attenuation image is not conveying any meaningful information, so it is a measure
of the reliability of the attenuation estimation.

4. Methods

4.1. Jones-matrix OCT system

We used a 1.06-μm multifunctional Jones-matrix OCT for the experimental study. This sys-
tem uses a wavelength swept laser light source (AXSUN 1060, Axsun Technology Inc., MA,
USA) with a center wavelength of 1,060 nm, a scanning bandwidth of 123 nm, full-width-at-
half-maximum bandwidth of 111 nm, and a scanning rate of 100 kHz. Two incident (probe)
polarization states are multiplexed by a polarization-dependent delayer, in which one polariza-
tion travels a longer optical path than the other. As a result, the OCT signal of the delayed input
polarization appears farther from the zero-delay position than does the input polarization which
was not delayed. The interference signal detection is performed by a PD-detection module. In
this way, the orthogonal output polarizations are measured by two independent dual-balanced
photodetectors, and we obtain four OCT images which correspond to each entry of the Jones
matrix.

The axial resolution and axial pixel separation in tissue are 6.2 μm and 4.0 μm, respectively.
The system sensitivity was measured to be 91 dB. 490 A-lines are taken per B-scan and the
image is truncated into 480 depth-pixels per line.

More details of the hardware and software of this system are described in Refs. [17] and [18],
respectively.

4.2. PD and non-PD image formation from Jones-matrix OCT

The PD image composition methods described in Section 2.2 are based on PD-detection, which
provides two OCT signals with two orthogonal output (detection) polarizations. On the other
hand, the JM-OCT system provides four OCT signals, because it also multiplexes the two in-
put polarization states. To apply the image composition methods, we need to create two OCT
signals, that emulate the PD-detection signals from the four OCT signals.

To emulate non-Jones matrix PD-detection, we combine the two multiplexed incident polar-
ization signals. The mutual phase difference between two incident polarizations is first estimated
by:

θh ,v ≡ arg

⎛⎜⎜⎜⎜⎜⎝
∑

z

E (2)
h ,v

(z)E (1)
h ,v

∗
(z)

⎞⎟⎟⎟⎟⎟⎠ , (19)

where the summation is over all pixels in an A-line. This equation represents two independent
equations for θh and θv as identified by the subscript. For θh , the subscripts “h, v” should be
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read as h, while for θv it should be read as v. We use the same convention in the subsequent
equations. E (1)

h ,v
and E (2)

h ,v
represent OCT signals obtained from the first and the second inci-

dent polarizations, as indicated by the superscripts (1) and (2), respectively. The reconstructed
polarization diversity signals are then given by:

Eh ,v (z) ≡ E (1)
h ,v

(z) + E (2)
h ,v

(z)e−iθh ,v . (20)

In Section 2.2.3, we describe that the pseudo-non-PD-OCT is obtained as a complex com-
position of two PD-OCT signals [Eq. (11)]. However, in this particular study, the pseudo-non-
PD-OCT is obtained by directly applying the complex composition of the four OCT signals of
JM-OCT, as described in Section 3.6 of Ref. [17], rather than Eq. (11). The reason is that these
two methods are theoretically equivalent, and the latter is computationally less intensive.

4.3. Measurement and validation protocol

To evaluate and compare the performances of the composition methods, the (right) optic nerve
head (ONH) and (right) macula of a 29-year-old male subject were imaged. This subject was
without any marked disorders except non-pathological myopia (-7.45D spherical equivalent).
Four repeated B-scans, with lateral widths of 6.0 mm, were taken at a single position, and the
four types of compositions were created. We have previously shown that a four-fold scan is a
good compromise between image quality and acquisition speed for systems of this sensitivity
range and acquisition rate [23].

The compositions were generated by a custom-made program written in Python 2.7.11 with
numerical computation packages Numpy 1.9.2-1 and Scipy 0.15.1-2. The signal intensity ratio
(SIR) between the retinal pigment epithelium and the vitreous were computed as a metric for
the performance evaluation of the composition methods.

The data acquisition protocol adhered to the tenets of the Declaration of Helsinki, and was
approved by the institutional review board of the University of Tsukuba.

5. Results and discussions

5.1. Intensity imaging

Figure 1 shows the intensity images from the macula and ONH. The images are composed using
intensity averaging in Fig. 1(a)-1(d) (first row, standard non-PD- and PD-OCT in Table 1) and
MAP estimation in Figs. 1(e)-1(h) (second row, MAP non-PD- and PD-OCT in Table 1). The
four images on the left [Figs. 1(a), 1(b), 1(e), and 1(f)] are non-PD-OCT, and the four images
on the right [Figs. 1(c), 1(d), 1(g), and 1(h)] are PD-OCT. Zero dB is set as the 99.9th percentile
intensity for each image.

By comparing the images made by intensity averaging (first row) and the MAP images (sec-
ond row), it can be seen that the intensity averaged images show a higher noise-offset in the low
intensity regions, and have lower contrast compared with the corresponding MAP images.

The SIR is measured to be 6.7 dB higher in the MAP PD-OCT image [Fig. 1(h)] than in the
corresponding averaged image [Fig. 1(d)]. This indicates that MAP estimation over repeated
frames is more effective in improving image contrast than intensity averaging over the same
number of repeated frames. This is also evident qualitatively, as the MAP-estimated images in
the second row appear with better contrast than the averaged images in the first row. Hence, we
conclude that MAP estimation provides better contrast than intensity averaging.

By comparing non-PD (left four) and PD (right four) images, it is evident that PD-detection
and image composition suppresses polarization artifacts significantly. For example, non-PD im-
ages show polarization artifacts in the peripapillary sclera of the ONH, denoted by red arrows
in Figs. 1(b) and 1(f), while they are strongly suppressed in the PD images [Figs. 1(d) and 1(h)].
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Fig. 1. Intensity images of the macula and ONH. The four images on the left-hand side, (a),
(b), (e), and (f), use non-PD OCT. The four on the right (c), (d), (g), and (h), are PD-OCT
images. The images in the first row are composed by intensity averaging four repeated
B-scans. Images in the second row are composed by MAP estimation from the same four
repeated B-scans. Zero dB corresponds to the 99.9th percentile intensity in each image.
The SIRs between the retinal pigment epithelium and vitreous, calculated from the macula
images, are 31.1 dB for the MAP non-PD-OCT (e), 24.5 dB for averaging non-PD-OCT
(a), 28.4 dB for MAP PD-OCT (g), and 21.7 dB for averaged PD-OCT (c).

-60 40 -20 0 20
Averaged intensity [dB]

(a)

-100

-80

-60

-40

-20

0

20

M
AP

 in
te

ns
ity

 [d
B]

Non-PD

500

1000

1500

2000

2500

3000

-60 40 -20 0 20
Averaged intensity [dB]

(b)

-100

-80

-60

-40

-20

0

20 PD
C

ou
nt

s

Fig. 2. Contour plots of 2D histograms of MAP and average intensities of corresponding
pixels in non-PD (a) and PD (b) images of the ONH. The red line is the line of equal
intensities for MAP and averaging.
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Fig. 3. Histograms of the intensity images from the macula and ONH, corresponding to the
images in Fig. 1. The same labels are assigned to the corresponding sub-figures in Fig. 1.
Zero dB corresponds to the 99.9th percentile intensity in each image. The histograms on the
left-hand side, (a), (b), (e), and (f), correspond to non-PD images. The histograms on the
right-hand side, (c), (d), (g), and (h), correspond to PD images. The first row corresponds
to intensity-averaged images. The second row corresponds to MAP images.

Fig. 4. Binary map representing the location of pixels where intensities less than -50 dB
in Fig. 1(h). Black means the corresponding pixel has intensity larger than or equal to -50
dB and white means less than -50 dB. There are many pixels in the MPD ONH image with
intensities less than -50 dB. They are located in both the vitreous and deep regions.
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On the other hand, the non-PD-OCT images show slightly better contrast than the corresponding
PD-OCT images.

The non-PD MAP macula image [Fig. 1(e)] has a SIR around 2.7 dB higher than the PD-OCT
MAP image [Fig. 1(g)]. The greater SIR of the non-PD image is due to the complex averaging
of four Jones elements, rather than just two Jones elements as in PD-OCT.

For PD-OCT, the probe beam power is split into two polarization detection channels, while in
standard (non-PD) OCT, it is not. Dividing the power evenly into two detection channels results
in a 3-dB sensitivity loss, because the noise power is doubled when using two detectors instead
of one.

Hence, PD-OCT suffers from a SNR penalty compared with non-PD-OCT, although it can
effectively suppress polarization artifacts.

Figure 2 shows contour plots of 2D histograms of MAP and average intensities of correspond-
ing pixels in non-PD [Fig. 2(a)] and PD [Fig. 2(b)] images of the ONH. The red line is the line
of equal intensities for MAP estimation and intensity averaging. MAP estimation intensity is
broadly spread at low averaged intensity. It indicates that the MAP composition method can
estimate far lower intensities than the intensity averaging. The cluster of pixels at the MAP in-
tensity of -85.8 dB in Fig. 2(a) and of -87.5 dB in Fig. 2(b) correspond to the lowest possible
MAP estimable value in their respective estimation schemes, and correspond to the single peaks
in histograms [Figs. 3(f) and 3(h)].

Figure 3 shows the image histograms, in which each histogram corresponds to the images
at the same location in Fig. 1. The histograms show that applying MAP [Figs. 3(e)-3(h)] re-
sults in a lower noise-offset than intensity averaging [Figs. 3(a)-3(d)]. The histograms in Fig.
3 also confirm the observations in Fig. 1. That is, significantly lower signal intensity is found
with MAP estimation (second row), compared with averaging (first row). As shown in Fig. 4,
when back-projecting the low intensity pixels (pixels with intensities less than -50 dB) to their
spatial locations, we find that the low intensity pixels in the MAP intensity images are broadly
distributed in the vitreous and deep regions. According to the histograms of the averaged im-
ages (Fig. 3, first row), the low intensities appear to be shifted up. This suggests that a large
estimation noise-offset exists in the low intensity regions in the averaged images. Among the
averaged images (first row), the upward shift was slightly higher in PD-OCT (right two) than
in non-PD-OCT (left two). This is because the number of intensity-averaged frames used to
form a PD-OCT image is twice the number for non-PD-OCT. Namely, each of the two frames
of the non-PD-OCT image is formed by the complex averaging (coherent composition) of two
frames, rather than intensity averaging. Complex averaging does not result in a signal shift in
low intensity regions.

The single peaks seen in the histograms of the MAP intensity images at the low intensity
values are situated at the lowest possible estimable value in that particular numerical estimation
scheme. For our purposes, those corresponding pixels can be considered to have zero intensity.
The same issue has also been discussed in our previous publication [23].

When examining the maps of intensity estimation precision [Figs. 5(a)-5(d)], it can be seen
that high intensity regions, such as the retinal pigment epithelium (RPE) have low precision
(with large error), while the low intensity regions, such as the vitreous, have a high precision
(and small errors). This is logical, because the higher intensity regions are expected to have
higher intensity fluctuations. On the other hand, the reliability of estimation, as measured by the
squared-intensity-to-error ratio, [Figs. 5(e)-5(h)] shows that the estimation reliability is usually
higher in the higher intensity regions.

Figure 6 shows contour plots of 2D histograms of MPD intensity and reliability [Fig. 6(a)],
and MPD intensity and precision [Fig. 6(b)] of the macula. In general, there is positive correla-
tion between intensity and reliability, and negative correlation between intensity and precision.
There is a large cluster of pixels with the intensity of -86.7 dB (red arrows). -86.7 dB is the
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Fig. 5. Maps of MAP intensity precision (first row) and the reliability (squared-intensity-to-
error ratio, second row). The first and second columns are for MAP non-PD-OCT estima-
tion, and the third and fourth columns are for MAP-PD-OCT. The first and third columns
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Fig. 6. Contour plots of 2D histograms of MPD intensity and reliability (a), and MPD
intensity and precision (b) of the macula.
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Fig. 7. Attenuation images of the macula and ONH. The four images on the left-hand
side, (a), (b), (e), and (f), are for non-PD OCT. The four images on the right-hand side,
(c), (d), (g), and (h), are for PD-OCT. The images in the first row are composed using the
intensity averaging of four repeated B-scans. Images in the second row are composed by
MAP estimation from the same B-scans.

predefined minimum value of the estimation, i.e., all pixels having an intensity equal or lower
than this value are regarded as having this minimum value. Because of the low SNR, these pix-
els also have a low reliability. However, as the intensity values are low, the fluctuation of the
original OCT intensity is low, so the estimated precision is high.

There are also 98 pixels that have high intensity (around 0 dB of MAP intensity), high reliabil-
ity (greater than 70 dB), and intermediate precision (50 dB) as indicated by the black arrows in
Fig. 6. By back-projecting these pixels in the original image, it was found that these are isolated
high intensity pixels located at the retinal surface and RPE.

5.2. Attenuation imaging

Attenuation coefficient imaging provides information of the light-scattering properties of the tis-
sue, rather than the back-scattered intensity information obtained from standard OCT intensity
images. We computed the attenuation coefficient images from the ONH and the macula (Fig.
7) from the composite intensity images described in Section 2.2 by the method described in
Section 3 [34].

It can be seen that, for the images of the vitreous shown, the MAP attenuation images (Fig.
7 second row) have lower estimated attenuation coefficients than the intensity averaged attenu-
ation images (Fig. 7, first row). Hence, the MAP attenuation images show higher contrast and
dynamic range than do averaged attenuation images.

Among the MAP attenuation coefficient images (Fig. 7, second row), the non-PD images
[Figs. 7(e) and 7(f)] appear with the lowest attenuation coefficient at the vitreous. However,
there are evident polarization artifacts seen as alternating dark and light bands in depth in the
peripapillary sclera region [arrow in Fig. 7(f)], while in the PD-OCT images [Figs. 7(g) and
7(h)], these artifacts are suppressed [particularly in Figs. 7 (h)]. Hence, MAP PD-OCT is the
optimal image composition method for imaging regions with high birefringence, while MAP
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Fig. 8. Contour plots of 2D histgrams of attenuations of corresponding pixels in MAP
and averaged images of the ONH. Sub-figure (a) is from comparing attenuations of corre-
sponding pixels in Fig. 7(f) and Fig. 7(b). Sub-figure (b) is from comparing attenuations
of corresponding pixels in Fig. 7(h) and Fig. 7(d). The red line represents the location of
equal attenuation.

non-PD-OCT can be a good choice for imaging regions with no or little birefringence.
There appears to be vertical line artifacts in the averaged images (first row). These line arti-

facts are less apparent in the MAP images.
Figure 8 shows contour plots of 2D histograms of attenuation coefficient values from the

MAP estimation and intensity averaging at corresponding pixels in the ONH images. The red
line indicates the pixels of equal attenuation between the MAP and averaging estimation meth-
ods. It can be seen that the MAP attenuation images have a wider dynamic range than the
attenuation images calculated from intensity averaged images.

In both Non-PD [Fig. 8(a)] and PD [Fig. 8(b)] image composition methods, there is a high
number of pixels in agreement, as shown by the large counts on the equi-attenuation line. How-
ever, there is also a large cluster of pixels that the MAP estimation method estimates lower
attenuations, indicated by the region below the equi-attenuation line. For a large number of pix-
els in the vitreous and deep region, the MAP estimator estimated values less than 100 times
lower than the intensity averaged method.

In Fig. 8(a), there is a small cluster of 274 pixels that have a MAP estimated attenuation
coefficient values greater than 104 mm−1 and intensity averaged attenuation coefficient values
greater than 1 mm−1. These pixels come from the deepest location in the attenuation images
[Figs. 7(b) and 7(f)]. The estimated attenuation coefficients at this location are larger than those
of above region. This overestimation is pointed out by Vermeer et al. [34] as violation of the
assumption of the attenuation reconstruction theory. Because MAP estimation estimates lower
intensity compared to averaging as presented in Section 5.1, this probably makes the overes-
timation of attenuation more prominent. As shown in Figs. 10(b) and 10(f), MAP estimation
precisions and reliability are low at the deepest location. Hence, the MAP estimation precision
and reliability may be able to treat this estimation error. There is a similar number of artifactual
pixels (160 pixels) as shown in Fig. 8(b), which also come from the deepest location in the PD
attenuation images, [Figs. 7(d) and 7(h)].

The histograms, Fig. 9, do not show a significant difference between the non-PD (left four)
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Fig. 9. Histograms of attenuation images of the macula and ONH, corresponding to Fig. 7.
The same labels are assigned to the corresponding sub-figures in Fig. 7. The four histograms
on the left-hand side, (a), (b), (e), and (f), are from the non-PD OCT images, and those on
the right-hand side, (c), (d), (g), and (h), are from the PD-OCT images. The histograms
in the first row are from the intensity averaged images and those in the second row are
from the MAP images. It is clear that the attenuation images based on MAP in the first
row have broader dynamic ranges and better attenuation coefficient differentiation than the
attenuation images based on averaging (second row).

and PD-OCT images (right four). However, it is evident that the averaged images (first row)
have a reduced dynamic range and poor discrimination between attenuation coefficient levels,
compared with the MAP images (second row). The MAP image histograms show a broader
dynamic range of attenuation coefficients, and more numerous and better defined peaks.

The precision of the images [Figs. 10(a)-10(d)] suggests that the non-PD images [Figs. 10(a)
and 10(b)] have a slightly higher precision than the PD images [Figs. 10(c) and 10(d)], espe-
cially in the low intensity regions, such as the vitreous. The precision decreases with depth due
to the reduced number of pixels used for estimation, and the increasing error contribution from
the second term in Eq. (18). The reliability (squared-attenuation-coefficient-to-error ratio) [Figs.
10(e)-10(h)] maps show that the reliability is higher where the signal strength and signal SNR
are higher. By using these reliability maps, we can conclude that the attenuation coefficients in
the deep regions are not reliable.

6. Conclusion

PD-detection and image composition removed polarization artifacts that were apparent in OCT
images of the peripapillary sclera. On the other hand, non-PD-OCT images show a slightly
higher SIR than PD-OCT images, but also contained polarization artifacts. The images com-
posed by MAP estimation always show better image contrast than the corresponding intensity
averaged images. The combination of MAP composition and PD-detection is successful be-
cause it can compensate for the reduction in SNR caused by the division of probe power during
PD detection, while still suppressing polarization artifacts. In light of these results, we conclude
that the combination of MAP and PD-OCT is the best choice for birefringent samples, such
as the ONH. In contrast, the combination of MAP and non-PD-OCT is a good option for less
birefringent regions, such as the macula.
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Fig. 10. Attenuation estimation precision (first row) and reliability (squared-attenuation-
coefficient-to-error ratio). The first and second columns are for MAP non-PD-OCT, while
the third and fourth columns are for MAP PD-OCT. The first and third columns are of the
macula, and the second and fourth columns are of the ONH.

One of the important purposes of this study is to obtain accurate attenuation coefficient values,
which is a quantitative measure of the optical property of tissue. As the attenuation coefficient
is based on the backscattered light intensity, quantitative light intensity information is required.
Two problems then arise that hinder the acquisition of quantitative light intensity: noise-offset
in low OCT intensity regions and polarization artifacts.

In this paper we described an image composition method that combines polarization diversity
detection and MAP estimation, to remove noise-offset and polarization artifacts. By applying
model-based attenuation coefficient reconstruction to quantitative light intensity [34], one may
obtain fully quantitative attenuation.

The resulting quantitative intensity images, with noise-offset and polarization artifact cor-
rection, provide superior contrast for subjective observation compared with conventional OCT.
Moreover, the quantitative attenuation images computed from the quantitative light intensity
provide a more accurate estimation of the tissue optical properties. This is especially important
for quantitative or automated diagnosis.

Appendix

A. Proof of the equivalence of MAP intensity and MAP amplitude estimation

Here, we show that the MAP estimate of the intensity is equal to the square of the MAP estimate
of the amplitude.

From Bayes’ theorem, the posterior distribution, a kind of probability density function, of the
true amplitude, α, is proportional to the likelihood of α times the prior distribution,

p(α |a) ∝ l (α; a)π(α), (21)
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where a is a set of measured values of the random variable A, in this case, the observed ampli-
tude. If the prior distribution is assumed to be uniform, then the MAP estimate is equivalent to
the maximum likelihood estimate (MLE):

MAP(α) ≡ arg maxα
[
p(α |a)

]
= arg maxα [l (α; a)] ≡ MLE(α). (22)

According to the literature [39–41], the MLE of a function of a parameter is equal to the function
of the MLE of the parameter. This property is known as the functional invariance of the MLE.
Hence, MLE(υ) = MLE2(α) where υ = α2. If we assume that the both of prior distributions of
the amplitude and intensity, π(α) and π(υ), are uniformly distributed, MAP(υ) = MAP2(α).

The other issue is a conversion of data. In this paper, measured amplitudes a were used for
estimation, but it could be transformed into intensity before estimation. In general, it results
in different estimate, because the data transformation changes the shape of probability density
function (PDF) [Eq. (1)]. However, if the conversion is based on a bijective function, the likeli-
hood function [Eq. (2)] and also the combined likelihood function [Eq. (3)] do not change their
shape.

Let X be a random variable and its conditional probability density function parametrized by
θ is pX (x |θ). Also, let Y be the variable converted from X through a function g(); y = g(x). If
g() is a bijective function, the PDF of Y is then given by [35]

pY (y |θ) = pX (g−1(y) |θ)
∣∣∣∣∣
∂x
∂y

∣∣∣∣∣ . (23)

Here, |∂x/∂y | does not depend on the parameter θ of the distribution. Hence, MLE of θ using
l (θ; x) = pX (x |θ) and l (θ; y) = pY (y |θ) are the same

arg maxθ [l (θ; y)] = arg maxθ [
∣∣∣∣∣
∂x
∂y

∣∣∣∣∣ l (θ; g−1(y))] = arg maxθ [l (θ; x)]. (24)

The difference of likelihood functions is only scaling by the Jacobian
∣∣∣∣ ∂x∂y

∣∣∣∣. Because the conver-

sion from the amplitude to intensity i = a2(a ≥ 0) is a bijective function, MAP estimates based
on measured amplitudes or intensities are the same. Hence Eq. (6) holds.
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