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Abstract: Skin cancer is the most common cancer in the United States with over 3.5M annual
cases. Presently, visual inspection by a dermatologist has good sensitivity (> 90%) but poor
specificity (< 10%), especially for melanoma, which leads to a high number of unnecessary
biopsies. Here we use dynamic thermal imaging (DTI) to demonstrate a rapid, accurate and
non-invasive imaging system for detection of skin cancer. In DTI, the lesion is cooled down and
the thermal recovery is recorded using infrared imaging. The thermal recovery curves of the
suspected lesions are then utilized in the context of continuous-time detection theory in order to
define an optimal statistical decision rule such that the sensitivity of the algorithm is guaranteed
to be at a maximum for every prescribed false-alarm probability. The proposed methodology
was tested in a pilot study including 140 human subjects demonstrating a sensitivity in excess
of 99% for a prescribed specificity in excess of 99% for detection of skin cancer. To the best of
our knowledge, this is the highest reported accuracy for any non-invasive skin cancer diagnosis
method.
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1. Introduction

There is a higher incidence of skin cancer than the combined occurrence of breast, prostate, lung
and colon cancers [1]. Melanoma, which accounts for an estimated 4% of skin cancer cases, is
responsible for approximately 75% of all deaths from skin cancer. The total deaths in the United
States due to melanomas and other types of skin cancer are estimated to be more than 12,000
for 2014 [2]. Currently, the detection of melanoma relies on a subjective ABCDE (Asymmetry,
Border, Color, Diameter and Evolution) test performed visually by dermatologists, general
practitioners (GP) or primary care physicians (PCP) [3]. However, the ABCDE test provides a
qualitative guideline and it requires a trained specialist to actually distinguish malignant lesions
from benign nevi. Moreover, the ABCDE approach has a relatively high false-alarm probability
(0.35–0.44, i.e., a specificity in the range 56% to 65%) and moderate detection probability
(0.47–0.89) [3–5]. Since a false negative (i.e., a patient with malignant condition that is declared
to have benign condition) could lead to metastasis (spreading to other parts of the body) and
death, excisional biopsies are routinely performed even on lesions that are non-cancerous. It was
estimated that the number of biopsies undertaken in nine geographical areas of the US between
1986 and 2001 was close to 60 for every melanoma detected [6]. One of the critical barriers
in early skin-cancer detection is the lack of reliable non-invasive techniques [7] that can detect
the cancer at an early stage with high detection probability (i.e., the probability of correctly
detecting a malignant lesion) and low false-alarm probability (i.e., the probability of declaring
a benign lesion as malignant).

Non-invasive techniques for skin-cancer detection include multispectral (MS) imaging [8–
10], digital dermatoscopy and videodermatoscopy (sequential digital dermatoscopy) [11, 12],
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reflectance-mode confocal microscopy [13], ultrasound [14, 15], laser Doppler perfusion 
imaging [16], and optical coherence tomography (OCT) [17, 18]. Each technology presents 
some restrictions and limitations to non-invasively detect skin cancer with high detection 
probability and low false-alarm probability. For example, on one hand MelaFind, which is a 
device approved by the Food and Drug Administration (FDA), presents a high-level of 
detection probability (> 95%) [19], but high false-alarm probability (> 90%) [20]. On the other 
hand, Vivosight Multi − Beam System, another FDA-approved device, achieves a detection 
probability between 79–94% and a false-alarm probability between 4–15% for non-melanoma 
skin cancer lesions [21], but the challenge is that the suspicious lesion must be probed several 
times before such an accuracy is achieved, which makes the acquisition time prohibitively high.

Here we report a method for statistical inference, which uses the technique of dynamic
thermal imaging (DTI) and it demonstrates a rapid, accurate and non-invasive imaging system
for detection of skin cancer. DTI has already demonstrated to have high potential for the skin
cancer diagnosis [22, 23] and it is a technique in which a thermal stimulus is applied to the
suspected lesion and the thermal recovery is captured as function of time using an infrared (IR)
camera [24]. Even though several groups have reported that the thermal recovery curves (TRCs)
of a skin-cancer lesion and the surrounding healthy skin is different [25–30], these methods only
partially extracted the information present in the temporal evolution of the recovery process.
More specifically, the existing DTI techniques have neglected the temporal statistical features
inherent in the thermal recovery process. To fully extract the vital information present in the
recovery process, which will enable us to make a reliable inference on the malignancy of
lesion, two problems must be solved. First, the recovery process must be viewed as a random
function of time and its temporal statistical properties, such as its temporal correlations, must
be mathematically characterized. Second, such complete statistical understanding of the thermal
recovery process must, in turn, be utilized in a statistical-inference framework that yields the
optimal decision rule for classifying a lesion as malignant or benign. Both of these problems are
formulated and solved in the present work. The mathematical method reported here optimally
extracts all the temporal information present in the DTI time series, and subjects the extracted
vital information to optimal statistical decision theory. A pilot study is also undertaken on 140
human subjects at the University of New Mexico (UNM) Dermatology clinic to demonstrate the
effectiveness of the method. We have demonstrated > 99% sensitivity and > 90% specificity
while showing excellent robustness to statistical variation in algorithm-training and patient
data collection. To the best of our knowledge, this is by far the highest reported accuracy and
robustness for any non-invasive method for detection of skin cancer.

This paper is organized as follows: In Section 2 we utilize the knowledge of the TRCs to
postulate the classification of a lesion as benign or malignant as a continuous-time detection
problem. We explain the parametric stochastic model for the TRCs and how we obtained an
analytical form of the auto-covariance functions (ACF), which we use to solve the continuous-
time detection problem. In Section 3 we study the inclusion of a reference signal to the detection
problem, obtained locally from the very same patient under study. More precisely, for each
hypothesis, we define a self-reference signal from the tissue that surrounds the suspicious
lesions. In Section 4 we present the results over a sample of 140 patients and a robustness
analysis of the methodology. In Section 5 we present the discussion and summarize our main
conclusions.

2. Postulation and solution of the detection problem

2.1. Use of dynamic thermal imaging for skin cancer detection

Skin cancers, like all solid malignant tumours, require a blood supply in order to grow larger
than a few millimeters in diameter [31, 32]. Tumours induce the growth of new capillary blood
vessels by producing specific angiogenesis-promoting growth factors. New blood-vessel growth
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continues through the progression from precancerous skin lesions to full-blown skin cancer as
depicted in Fig. 1. The presence of new blood vessels and the increased blood supply somehow
change the thermal response of the tumor cells when a stimulus is applied.

(a) (b) (c)

Fig. 1. Tumor angiogenesis in cancer at different stages: (a) The tumor release growth
factors that activate the growing cells generating blood vessel sprouts. (b) The blood vessels
feed the tumor that growths thanks to cell proliferation. (c) The tumor becomes vascularized
and it starts to metastasize through the blood stream (from webpage [33]).

Under this scenario, we assume that the patient condition is hidden within TRCs of suspicious
lesions. Moreover, we assume that the malignancy of a lesion can be inferred only by monitoring
the tissue of the mole. Later in Section 3, the proposed method is further generalized to
include TRCs of the tissue that surrounds the suspicious lesion as a local reference. Such a
local reference permits the compensation of any possible anomalous behaviour in the lesion
thermal recovery, which, in turn, improves both the theoretical and empirical performance of
the method.

In the next section we propose a physics-based stochastic model for the skin thermal
recovery, which is later utilized in the context of continuous-time detection theory in order
to define an optimal decision rule for classifying a lesion as malignant or benign. To the best
of our knowledge, the TRCs have never been modeled as continuous-time random processes,
and, as such, there is no known relationship between the tumor morphology or blood vessel
development and the statistical properties of the TRCs. As a consequence, the model we propose
in the next section can pave the way to future research in such a relationship in order to further
improve the performance of the proposed method.

2.2. Physics-based stochastic model for the skin thermal recovery

Let us assume that the lesion boundary is defined by visual inspection over the mole region in
a visible image. In Section 4.2 we explain how this is achieved. Since the area that defines the
mole may contain malignant and benign tissue we need to look at the aggregated effect of the
lesion TRC. The most natural and simple way to do such an aggregation is by computing the
average TRC over all the pixels within the region that defines the mole.

In the transfer of heat in biological environments, Pennes bioheat equation [34] is generally
considered as the most suitable method in all the bioheat models so far [35]. The Pennes bioheat
equation is normally simplified as k∇2s + qv = ρC ∂s

∂t , where k, C and ρ are the coefficient of
heat conduction of the skin, the thermal capacity of the skin and the tissue density, respectively.
Here, s is the distribution function of internal temperature (refered in this work as the TRC)
and qv represents the internal heat source of the body. Even though this model is the most
appropriated for the purpose of this work, we want the mathematical model of the TRCs to
be simple enough to ensure a feasible solution with the available information. As such, we
assume that the physics of the problem is simply governed by a heat equation, where an effective
difussion constant, D, captures the cumulative effect of all the subcutaneous thermal processes
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originated by k, C, ρ and qv . We further assume that the model only will be affected by the
variations on the depth of the lesion, x, due to the agregation of TRCs previously discussed.
Therefore, the temperature of the skin sample is assumed to be modeled by the one-dimensional
heat equation,

∂s
∂t
= D ∂

2s

∂x2
,

t ∈ [0,T]
x ∈ [0, H]

, (1)

where T represents the acquisition time and H the bottom of the spatial domain. (To clarify,
x = 0 represents the skin surface.) Using the appropiated boundary conditions [27], we have
found that the temperature at the skin surface is

s(0, t) =

⎛
⎜⎜⎜⎜⎜⎝

TB − h∞H
k

TA

1 − h∞
k

H

⎞
⎟⎟⎟⎟⎟⎠ +

∞∑

n=1

Cn exp
(
−Dμ2

nt
)
, t ∈ [0,T] . (2)

Here, TB is the body core temperature, TA is the air temperature, h∞ is the convective heat
transfer coefficient between the tissue and the air. The coefficients {Cn } are determined by the
generalized Fourier-series expansion of the initial (internal) temperature distribution and μn
are the solutions of the trigonometric equation tan μnH = kμn/h∞ . Clearly, none of these
parameters are known in a deterministic fashion; nevertheless, Eq. (2) gives us a mathematical
structure to model the TRCs as a function of time. We address the inherent uncertainties of
the model by considering each parameter within the model as a random variable. Therefore,
the stochastic-process model for the TRCs is given by the temporal structure prescribed by the
solution of a heat equation in Eq. (2) parameterized by, in principle, an infinite set of random
variables. We have proved different initial temperature distributions across the skin layers to
determine that two coefficients seem to be sufficient in the model because the generalized
Fourier coefficients {Cn } decay rapidly as we increase the number of exponential functions
in Eq. (2). This situation is particularly true for the case of initial temperature distributions with
cubic and exponential functions, which, based on Wilson and Spence’s work [36], present the
most feasible functions as initial conditions. Thus, the TRCs are modeled by the parameterized
stochastic process given by

S(t;Θ j ) = θ j ,1 + θ j ,2 exp
(
−θ j ,3t

)
+ θ j ,4 exp

(
−θ j ,5t

)
+ N (t) , (3)

where j = 0, 1, representing the case when the TRC was measured from a benign and a
malignant lesion, respectively, and N encapsules the noise inherent to the imaging process.
In this work, we have assumed that N has zero-mean and it is statistically independent of the
parameters Θ j .

From the available subject data we have used in this work, the realizations of the random
variables θ j ,1, θ j ,2 and θ j ,4, with j = 0, 1, follow a Gaussian distribution, which is an
assumption we use later. The realizations of the random variables θ j ,3 and θ j ,5 also follow a
Gaussian distribution, but their variances are at least two orders of magnitud lower than their
mean value. In this work we have assumed that θ j ,3 and θ j ,5 area random variables, keeping in
mind that their mean values are positive (0.01 and 0.12, respectively) and that their variances
are very small (2.2 × 10−5, and 1.5 × 10−3, respectively). Comparing θ j ,3 and θ j ,5 variances
with respect to the variances of the other three parameters, we notice that θ j ,1, θ j ,2 and θ j ,4
always dominate the behaviour of Eq. (3). An unexplored reasonable option is to also assume
θ j ,3 and θ j ,5 as deterministic, which is one of the future lines of research we are exploring now.

The binary hypothesis-testing problem (also termed detection problem) of determining
whether a measured TRC, say Y (t), is either from benign tissue (null hypothesis, H0) or
malignant tissue (alternative hypothesis, H1) can be now formulated by the continuous-time
binary detection problem

H0 : Y (t) = S(t;Θ0) , t ∈ [0,T] (4a)
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H1 : Y (t) = S(t;Θ1) , t ∈ [0,T] (4b)

where T represents the TRCs acquisition time, and S(t;Θ j ), with j = 0, 1 is given in
Eq. (3). The alternative hypothesis is assumed to include all the conditions classified as non-
benign, including malignant melanomas (MM), basal-cell carcinoma (BCC) and squamous-cell
carcinoma (SCC) cases.

The distributions and the correlations between the random vectors Θ j = [θ j ,1 · · · θ j ,5],
j = 0, 1 must be determined, in principle, from patient data with known condition. It is possible,
in principle, to utilize the vector of random parameters Θ j to perform a statistical decision
regarding the malignancy of the suspected lesions, but it will not be necessarily optimal. It can
be optimal if exact extraction from the TRCs of these parameters is possible, but this is not
the case here due to the noise inherent in infrared imaging. Thus, we solve the continuous-time
detection problem in Eq. (4) by first constructing an analytical auto-covariance function of the
TRC under each hypothesis (and hence account for the majority of the statistical correlation in
the TRC), and then following Grenander’s approach [37] to perform the statistical decision.

2.3. Analytical form of the auto-covariance function

The auto-covariance function (ACF) of the stochastic processes S(t;Θ j ) is defined by
C j (t , u) = E

[
S(t;Θ j )S(u;Θ j )

]
− E

[
S(t;Θ j )

]
E

[
S(u;Θ j )

]
, where E [·] denotes the

(ensemble) expectation operation. By expanding the first expression, the jth ( j = 0, 1) ACF
can be recast as

C j (t , u) = E
[
θ j ,1

2
]
+ E

[
θ j ,1θ j ,2 exp

(
−θ j ,3u

)]
+ E

[
θ j ,1θ j ,4 exp

(
−θ j ,5u

)]

+ E
[
θ j ,1θ j ,2 exp

(
−θ j ,3t

)]
+ E

[
θ j ,2

2 exp
(
−θ j ,3(t + u)

)]

+E
[
θ j ,2θ j ,4 exp

(
−θ j ,3t

)
exp

(
−θ j ,5u

)]
+ E

[
θ j ,1θ j ,4 exp

(
−θ j ,5t

)]

+E
[
θ j ,2θ j ,4 exp

(
−θ j ,5t

)
exp

(
−θ j ,3u

)]
+ E

[
θ2j ,4 exp

(
−θ j ,5(t + u)

)]
,

+E
[
N2(t)

]
− E

[
S(t;Θ j )

]
E

[
S(u;Θ j )

]
(5)

for (t , u) ∈ [0,T]2.
The first term in Eq. (5) is E

[
θ j ,1

2
]
, which can be easily estimated from the patients with

known diagnosis. Following Bohrnstedt and Goldberger ideas [38] we have found that the terms
with three random variables can be expressed by

E
[
θ j ,nθ j ,m exp

(
−θ j ,�t

)]
= E

[
θ j ,n

]
E

[
θ j ,m

]
E

[
exp

(
−θ j ,�t

)]

+E
[
θ j ,n

]
cov

(
θ j ,m , exp

(
−θ j ,�t

))

+E
[
θ j ,m

]
cov

(
θ j ,n , exp

(
−θ j ,�t

))

+E
[
exp

(
−θ j ,�t

)]
cov

(
θ j ,n , θ j ,m

)
. (6)

As mentioned earlier, it was observed from the available subject data that these random
parameters follow a joint Gaussian distribution, i.e. θ j ,n ∼ N

(
μ j ,n , σ

2
j ,n

)
, then E

[
θ j ,n

]
=

μ j ,n , for j = 0, 1 and n = 1, 2, 3, 4, 5. Now, for a fixed t ∈ IR, E
[
exp

(
−θ j ,�t

)]
=

exp
(
−tμ j ,� + σ2

j ,�t
2/2

)
also for j = 0, 1 but for � = 3, 5. Moreover, the random variables given

by the products of the form θ j ,n exp
(
−θ j ,�t

)
can be approximated to as a random variable that

follows a Normal–log-Normal distribution [39–41]. In particular, from Chen’s work we know
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that the covariance of these products can be approximated by [39]

cov
(
θ j ,n , exp

(
−θ j ,�t

))
= ρn ,�σ j ,nσ j ,�t exp

⎛
⎜⎜⎜⎜⎜⎝−tμ j ,� + t2

σ2
j ,�

2

⎞
⎟⎟⎟⎟⎟⎠ ,

where ρn ,� is the estimated correlation coefficient between θ j ,n and ln(θ j ,� ). An important
observation must be made at this point. Due to the positive mean and the small variance of the
realizations of the random parameters θ j ,� for j = 0, 1 and � = 3, 5, the parameter ρn ,� can be
calculated ensuring that it always takes the log of a positive random variable. Moreover, given
the small variance of the random parameters θ j ,� for j = 0, 1 and � = 3, 5, they can be assumed
to be deterministic (please refer to the previous section for more details), then the terms with
three random variables are simplified to

E
[
θ j ,nθ j ,m exp

(
−θ j ,�t

)]
=

(
cov

(
θ j ,n , θ j ,m

)
+ E

[
θ j ,n

]
E

[
θ j ,m

])
exp

(
−θ j ,�t

)
,

which is a simplification we decided to not use in this work. A similar approach can be used to
describe the expectation of four random variables under the observation that they follow a joint
Gaussian distribution and a similar simplification can be done by assuming the parameters θ j ,�
for j = 0, 1 and � = 3, 5 as deterministic; the details are not shown here.

Assembling these results into Eq. (5) we observe that one can compute the ACF analytically
by simply estimating pairwise moments of the random parameters of the TRCs. These moments
are estimated from a collection of TRCs by assuming that each measured TRC is a realization of
the random process of interest. The resulting ACF from the parameters of patients with known
benign and malignant conditions are depicted in Fig. 2(a) and Fig. 2(b), respectively. More
information on the patient data is detailed later in Section 4. In both cases, the acquisition time
for each TRC was 100 seconds. By looking the ACFs from the left plane, as shown in Fig. 2(c)
and Fig. 2(d), one can clearly note some of the differences between them. Thus, each ACF
encapsules the different statistical correlations that describe the TRCs under each hypothesis
and, therefore both can be used to statistically describe the detection problem under Grenander’s
approach.

2.4. Mercer’s theorem and the Karhunen-Loève expansion of the thermal recovery
curves

According to Mercer’s theorem [42], the jth ACF ( j = 0, 1) can then be expanded by the
absolutely-convergent series

C j (t , u) =
∞∑

k=1

λ j ,kφ j ,k (t)φ j ,k (u) , (t , u) ∈ [0,T]2 , (7)

where
{
λ j ,k

}∞
k=1

and
{
φ j ,k

}∞
k=1

are the eigenvalues and the corresponding orthonormal
eigenfunctions of the jth ACF, C j (·, ·). The eigenvalues and eigenfunctions are the solutions of
the integral equation

λ j ,kφ j ,k (t) =
∫ T

0
C j (t , u)φ j ,k (u) du , t ∈ [0,T] , (8)

with
∫ T

0
φ j ,k (t)φ j ,� (t) = δk ,� , where δk ,� is the Kronecker delta. This equation is known as

a Fredholm integral equation of the second kind. The expansion (7) is known as the Mercer’s
theorem and it is the key enabling theorem to solve our problem. In this work we solve Eq. (8)
numerically following a similar approach as the one presented by Chen et al. [43] in order to
obtain two sets of eigenvalue-eigenfunction pairs (one for each hypothesis).
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(a) (b)

(c) (d)

Fig. 2. (a) Auto-covariance function for the null-hypothesis (H0) estimated from patient
data with known benign condition. (b) Auto-covariance function for the alternative-
hypothesis (H1) estimated from patient data with known malignant condition. In order
to highlight their differences, (c) and (d) show the projection onto one of the left plane
of the Auto-covariance function for the null-hypothesis and the alternative-hypothesis,
respectively.

The two sets of eigenfunctions, namely
{
φ0,k

}∞
k=1 and

{
φ1,k

}∞
k=1, are two complete sets

because the corresponding ACFs, C0 and C1, are symmetric and positive definite [42, 44]. The
completeness of these two sets allow us to represent (in the mean-square sense) any process
with either of these sets. We choose to represent each signal with its own set; namely, for the
jth hypothesis

S(t;Θ j ) =
∞∑

k=1

Sj ,kφ j ,k (t) , t ∈ [0,T] , (9)

where the expansion coefficients Sj ,k are known as the Karhunen-Loève (KL) coefficients
associated with the stochastic process S(t;Θ j ). The KL coefficients are computed as the
projections of each process on its respective basis functions, namely

Sj ,k =

∫ T

0
φ j ,k (t)

(
S(t;Θ j ) − E

[
S(t;Θ j )

] )
dt ,

k = 1, 2, . . .
j = 0, 1

, (10)

where E
[
S(t;Θ j )

]
represents the mean of the corresponding random process S(t;Θ j ). One of

the main properties related with the KL expansion for random processes is that the expansion
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coefficients have zero mean and are uncorrelated [42]. The KL expansion enables us to
conveniently decouple randomness (compactly contained in the KL coefficients, Sj ,k ) and time-
variations (embodied in the sequence of eigenfunctions, φ j ,k (t)) for the TRCs under each
hypothesis. As such, the KL expansion enables us to equivalently view the continuous-time
TRC stochastic signals S(t;Θ j ) for j = 0, 1, as sequences of uncorrelated random variables,
namely the KL coefficients Sj ,k , for j = 0, 1 and k = 1, 2, . . . . These two sequences of
KL coefficients in effect constitute the set of statistical features that fully describe the TRC
for each patient under each hypothesis. With such statistical equivalence between a TRC and
its KL sequences, Grenander’s theorem [42] states that the solution obtained by employing
optimal-inference theory (i.e., by invoking the likelihood-ratio function) to the KL coefficients
to announce the hypothesis yields the optimal solution to the corresponding continuous-time
hypothesis testing problem, which we casted originally in Eq. (4). Therefore, with this statistical
equivalence we can recast the detection problem (4) as

H0 : S0,k , k = 1, 2, . . . (11a)

H1 : S1,k , k = 1, 2, . . . (11b)

The main challenge in solving Eq. (11) by optimal-inference theory is the need to know
the probability density function of the KL coefficients under each hypothesis and for each
k = 1, 2, . . . (in order to be able to describe the probability density function of the likelihood-
ratio function, to be introduced later); this is extremely difficult in general, if not impossible [42].
An important exception to this difficulty is when the random processes S(t;Θ j ) are Gaussian,
which is an assumption we adopt here given the dominance of the Gaussian parameters θ j ,n
with j = 0, 1 and n = 1, 2, 4. Under this assumption and since the KL coefficients are
always uncorrelated, they are also independent random variables, with Sj ,k ∼ N

(
0, λ j ,k

)
; thus,

the original continuous-time detection problem becomes the discrete (but infinite) detection
problem between two Gaussian distributions with different (diagonal) covariance matrices.
Hence, for the observation process Y (t), we have the discrete detection problem

H0 : Y0,k ∼ N (
0, λ0,k

)
, k = 1, 2, . . . (12a)

H1 : Y1,k ∼ N (
0, λ1,k

)
, k = 1, 2, . . . (12b)

where the KL coefficients of the observation Y (t), namely Yj ,k , j = 0, 1 are the KL expansion

coefficients of Y (t) under the jth hypothesis, namely Yj ,k =
∫ T

0
φ j ,k (t)Y (t) dt, j = 0, 1.

The discrete-time detection problem cast in Eq. (12) has a likelihood-ratio function defined
by

L(Y ) � p1(Y )
p0(Y )

=

∞∏

k=1

(
λ0,k

λ1,k

)1/2

exp

⎡
⎢⎢⎢⎢⎢⎣
1
2

∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

Y 2
0,k

λ0,k
−

Y 2
1,k

λ1,k

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ , (13)

where Y denotes {Yk }∞k=1, the vector that contains all the KL coefficients. The first restriction
required to ensure the convergence of (13) is that λ1,k > λ0,k for k = 1, 2, . . . , and the

convergence of the second term is ensured if
∑∞

k=1

(
Y 2

0,k
λ0,k
− Y 2

1,k
λ1,k

)

< ∞ (because the logarithm

function is monotonic). The convergence in mean-square of each term within the summation can
be proven by following the same procedure as in Poor [42] (pp. 305-306) by letting X̂2

k
= Y 2

j ,k
and λk = λ j ,k , for j = 0, 1 in Equation (VI.D.20); the details will not be shown here.
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The test-statistic associated with (13) is obtained as usual by separating the terms that depend
on the KL coefficients of the observation process and letting the remaining terms be absorbed
by the threshold. After some algebra, we find that the test-statistic, Z is defined by

Z =
∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

Y 2
0,k

λ0,k
−

Y 2
1,k

λ1,k

⎞
⎟⎟⎟⎟⎟⎠ � η , (14)

where the threshold η must be determined under an optimal prescribed decision rule (NP
decision rule in our case) as we explain next.

It is worth mentioning that there is a practical limit in the number of eigenvalue-eigenfunction
pairs one can reliably extract from the estimated ACFs. Nevertheless, the KL expansion offers
the optimality-under-truncation property, i.e., the mean-square error resulting from a finite
representation of the process is minimized [44]. Such a property allows us to still optimally
represent our processes and our resulting test-statistic, when the most important eigenvalue-
eigenfunction pairs are used.

2.5. Neyman-Pearson decision rule

In this section, we describe how to optimally define the threshold, η such that detection
probability is maximized for a fixed, prescribed false-alarm probability. By detection probability
we mean the probability of announcing H1 when H1 is true; in symbols PD = Pr(H1 |H1) =
Pr(L(Y ) > η|H1). By false-alarm probability we mean the probability of announcing H1 when
H0 is true; in symbols PF = Pr(H1 |H0) = Pr(L(Y ) > η|H0). It is clear that the definitions of
PF and PD require us to know the distribution of either the likelihood ratio or the test-statistic,
which is what we address next.

The KL coefficients under H0 are Y0,k = Y1,k = S0,k , k = 1, 2, . . . . As such, the test-statistic
under H0, denoted here by Z0, is given by

Z0 =

∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

Y 2
0,k

λ0,k
−

Y 2
1,k

λ1,k

⎞
⎟⎟⎟⎟⎟⎠ =

∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

S2
0,k

λ0,k
−

S2
0,k

λ1,k

⎞
⎟⎟⎟⎟⎟⎠ =

∞∑

k=1

(

1 − λ0,k

λ1,k

) S2
0,k

λ0,k
. (15)

Under the assumption of Gaussian random processes, the KL coefficients are also Gaussian,
then the random variables S2

0,k/λ0,k , for k = 1, 2, . . . are χ2-distributed because the variance
of the kth KL coefficient S0,k is precisely λ0,k . Moreover, since λ1,k > λ0,k , for k = 1, 2, . . . ,
the weights in the summation are positive. If we denote the χ2-distributed random variables by
Xk , then (15) can be recast as

Z0 =
1
2

∞∑

k=1

ak Xk , (16)

where ak = 2(1 − λ0,k/λ1,k ) > 0 are the coefficients of a linear combination of χ2-distributed
random variables. (The pdf for this linear combination is discussed later.) Similarly, if H1 is
true, the test-statistic is given by

Z1 =

∞∑

k=1

⎛
⎜⎜⎜⎜⎜⎝

S2
1,k

λ0,k
−

S2
1,k

λ1,k

⎞
⎟⎟⎟⎟⎟⎠ =

∞∑

k=1

(
λ1,k

λ0,k
− 1

) S2
1,k

λ1,k
=

1
2

∞∑

k=1

bk Xk , (17)

where bk = 2(λ1,k/λ0,k − 1) > 0 are the coefficients of another linear combination of χ2-
distributed random variables.

In summary, the test-statistic under each hypothesis is a linear combination of χ2-distributed
random variables, with a different set of positive coefficients for each hypothesis. For a
finite number of KL coefficients (16) and (17) are quadratic forms of the Gaussian random
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variables, S0,k and S1,k , k = 1, 2, . . . , K . The distribution of quadratic forms of independent
and identically-distributed Gaussian random variables with positive coefficients was studied
by Pachares [45]. Pachares’ main result was that the cumulative distribution function (CDF)
of any finite linear combination of independent χ2-distributed random variables with one
degree of freedom, Xk , with positive coefficients c = [c1 c2 · · · cK ], i.e., the CDF of Z j =
1
2 (c1X1 + c2X2 + · · · + cK XK ), is given by

G(τ; c) = Pr(Z j ≤ τ) =
√

τK

c1c2 · · · cK
∞∑

k=0

(−τ)k
k!

E
[
Z∗
j

]

k

Γ(M/2 + k + 1)
, (18)

where Z∗
j
=

∑
i c−1

i
Xi and E

[
Z∗
j

]

k
is the kth moment of Z∗

j
that can be computed from its

cumulants. Thus, we compute the false-alarm probability by

PF � Pr(L(Y ) > τ |H0) = Pr(Z0 > η) = 1 − Pr(Z0 ≤ η)=1 − G(η; a) , (19)

where a = [a1 a2 · · · aK ] with ak = 2(1 − λ0,k/λ1,k ). Similarly, the detection probability is
computed by PD � Pr(L(Y ) > τ |H1) = 1−Pr(Z1 ≤ η)=1−G(η; b), where b = [b1 b2 · · · bK ],
with bk = 2(λ1,k/λ0,k − 1). Now, for a prescribed level of false-alarm, say α, the NP lemma
tell us that the optimal threshold, η0, will be given by

η0 = G−1(1 − α; a) , (20)

where G−1 represent the inverse of the CDF function (18). When using this optimum threshold,
the detection probability PD = 1 − G(η0; b) is maximum amongst all the other possible
test one may design. The complexity of implementing (18) makes the implementation of its
inverse function an almost impossible task. Therefore, we numerically solve the equivalence by
parameterizing the false-alarm and detection probabilities by the threshold, η. Figure 3 depicts
the how the false-alarm and detection probabilities are parameterized by η for different number
of used eigenfunctions.

Fig. 3. False-alarm and detection probabilities parameterized by the threshold value, η, for
different number of eigenfunctions used in the construction of the test-statistic (14)

Once the desired false-alarm probability is specified, say PF = α, the parameterized optimum
threshold, η0 can be obtained from Fig. 3 and Eq. (20). Such an optimum threshold is later used
to classify patient data by comparing the test-statistic of a patient with unknown diagnosis: if
the test-statistic exceeds the optimum threshold then is classified as malignant. More details are
given in the following section. With the parameterized false-alarm and detection probabilities,
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one can construct the so-called receiver-operating characteristic (ROC) curve, a standard
measure of the decision-rule performance that depicts the direct relationship between the
theoretical false-alarm probability and the corresponding (theoretical) detection probability. The
ROC curve of a perfect classifier correspond to a line that achieves 100% detection (sensitivity)
for any value of the false-alarm probability (i.e., PD = 1.0 for PF ∈ (0, 1)). We show the ROC
curve corresponding to the parameterized probabilities in Fig. 4, where it can be noted that, as
expected, as we include more eigenvalue-eigenfunction pairs, more features are extracted from
the TRC and the theoretical performance is improved, plateauing at a level, around the twelfth
pair.

Fig. 4. The theoretical receiver-operating characteristic (ROC) curve graphically shows
the expected performance of the detector as we increase the number of eigenvalue-
eigenfunction pairs. The larger the number of the pairs utilized to construct the test-statistic,
the more statistical features utilized and the better the performance of the algorithm

2.6. Eigenvalue-eigenfunction pairs selection

Here we investigate the maximum number of reliable eigenvalue-eigenfunction pairs that can
be extracted from estimated ACFs. In our study, we sorted the largest sixteen eigenvalues and
examined the corresponding eigenfunctions for both hypotheses. It was observed that both
eigenfunction sets are essentially the same under each hypothesis. However, as we require
more eigenfunctions from the ACFs a slight phase difference begins to appear. Once the phase
difference becomes notorious (e.g., for K > 10) the eigenfunctions lose their similarity, and
as a consequence, the cross-orthogonality (among eigenfuctions corresponding to different
hypothesis) is also lost. Our results indicated that after the twelfth eigenvalue, the eigenfunction
start to become noisy. The source of this problem is estimation error in associated with the ACFs.
It is expected that after having more patient data available with sufficient variability, higher K
value can be considered.

To produce a systematic method for finding the highest reliable value for K , we first computed
the Discrete Fourier transform (DFT) of each eigenfunction and for each hypothesis. It is
observed that as the eigenvalue number is increased, the peak spectrum of each eigenfunction is
slightly shifted and reduced in amplitude. The maximum K value can be determined by looking
for abrupt changes in the peak of the spectrum of the set of eigenfunctions. In our example such
abrupt drop occurs at K = 12.

2.7. Summary of the procedure for detecting malignancy of a suspicious lesion

To this end, we assume that the auto-covariance functions were correctly estimated from patient
data with known condition (i.e., training patient data), and that the eigenvalues-eigenfunction
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pairs were also obtained and sorted based on the value of the corresponding eigenvalues. We
denote the number of the stored (and sorted) pairs under each hypothesis by K . We also
assume that the optimum threshold, η0 was already defined by means of the NP decision rule as
described in the previous section.

Fig. 5. Block diagram of the detection stage of the proposed algorithm. The KL coefficients
are computed by using the eigenfunctions of each hypothesis. These coefficients and the
eigenvalues are used to compute the patient’s test-statistic, which is later compared with
the optimum threshold to declare the malignancy

Let the aggregated TRC of the patient with unknown condition be denoted by Y (t). We first
utilize the eigenfunctions to compute the KL coefficients under each hypothesis, i.e., Yj ,k =
∫ T

0
φ j ,k (t)Y (t), for j = 0, 1 and k = 1, 2, . . . , K . This computation is depicted graphically in

Fig. 5 (left dashed block). We next utilize the KL coefficients and the corresponding eigenvalues
to construct the test-statistic as defined in Eq. (14). Such a calculation is depicted in Fig. 5
(middle dashed block). The test-statistic is later compared with the optimum threshold, η0. This
last step is termed the decision stage and it is depicted in Fig. 5 (right dashed block). By the
extraction of the KL coefficients and the thresholding of the test-statistic by the optimally
defined threshold, the detection problem is guaranteed to ensure the maximum achievable
detection probability, and, as such, it presents an upper bound in the expected performance
of the detector.

Next, we generalize the proposed approach to include a self-reference TRC of the very same
patient under analysis. The idea is that the additional information introduced by this new TRC
can compensate out anomalous behaviour of the lesion TRCs either improving the overall
performance of the algorithm or achieving the same performance as with one TRC but requiring
less eigenvalue-eigenfuncion pairs.
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3. Generalization to a self-referenced approach

3.1. Theoretical rationale and generalized KL expansion for vector random processes

In this section, we study the inclusion of a reference signal to the detection problem, obtained
locally from the very same patient under study. More precisely, for each hypothesis, we define a
self-reference signal from the tissue that surrounds the suspicious lesions. The hope is that the by
self-referencing the patient’s TRC, abnormal features from the lesion TRCs can be compensated
out and, as a consequence, a reduced number of KL coefficients is required to correctly detect
the malignant lesions.

For simplicity, we utilize one aggregated TRC of the lesion and one of the surrounding skin.
As before, we define the lesion TRC as the average TRC over all the pixels within the lesion
boundary. Similarly, we define the reference TRC as the average TRC over all the pixels outside
the lesion boundary. The lesion boundary can be selected manually only by visual inspection
by the practitioner that conducts the analysis or by a color-based image classifier.

Let us define then the new random process that describe the jth hypothesis as the vectorial
random process

X
(
t;Θ j

)
=

⎡
⎢⎢⎢⎢⎣

S
(
t;ΘS , j

)

T
(
t;ΘT, j

)

⎤
⎥⎥⎥⎥⎦ , t ∈ [0,T] , (21)

where S
(
t;ΘS , j

)
is the same aggregated TRC of the lesion used in the previous section and

T
(
t;ΘT, j

)
is the aggregated TRC of the lesions’ surrounding skin. Therefore, including the

reference signal from the surrounding tissue into the detection problem can be stated by the
following continuous-time hypothesis-testing problem:

H0 : Y (t) = X (t;Θ0) , t ∈ [0,T] , (22a)

H1 : Y (t) = X (t;Θ1) , t ∈ [0,T] . (22b)

The ACF associated with each hypothesis is a 2 × 2 matrix [44] given by

Rj (t , u) � E
[
X (t;Θ j )XT (u;Θ j )

]

=

⎡
⎢⎢⎢⎢⎣

E
[
S

(
t;ΘS , j

)
S

(
t;ΘS , j

)]
E

[
S

(
t;ΘS , j

)
T

(
t;ΘT, j

)]

E
[
T

(
t;ΘT, j

)
S

(
t;ΘS , j

)]
E

[
T

(
t;ΘT, j

)
T

(
t;ΘT, j

)]

⎤
⎥⎥⎥⎥⎦ . (23)

In Fig. 6 we show the obtained estimations of the matrix ACFs for both hypotheses using the
same patient dataset used in the previous section.

3.2. Karhunen-Loève expansion for vector processes

Once again, we wish to represent this matrix ACF as a linear combination of eigenvalues
and eigenvectors as we did for the single-signal approach. Van Tress [44] and Oya et al. [46]
stated that the optimal way to address this problem is by defining vector eigenfunctions, since
it was proved by Kelly and Root [47] that the vector eigenfunction with scalar eigenvalue
representation is a generalization of the KL expansion, and, as such, is optimal. Hence, let
us assume that we have a complete set of vector eigenfunctions {Φ j ,k }∞k=1, j = 0, 1 to represent
the vector random processes of the jth hypothesis, where each vector eigenfunction is defined

by Φ j ,k (t) =
[
φ(1)
j ,k

(t) φ(2)
j ,k

(t)
]T

, and the corresponding vector random process of the jth
hypothesis X (t;Θ j ) can be expanded over this vector eigenfunctions by

X (t;Θ j ) =
∞∑

k=1

XkΦ j ,k (t) . (24)
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(a) (b)

Fig. 6. ACFs for the case of vectorial random processes: (a) Autocorrelation function for
the null-hypothesis (H0) estimated from patient data with known benign condition. (b)
Autocorrelation function for the alternative-hypothesis (H1) estimated from patient data
with known malignant condition.

The corresponding expansion coefficients associated with this representation are given by

X j ,k �
∫ T

0
ΦT

j ,k (t)X (t;Θ j ) dt =
∫ T

0
XT (t;Θ j )Φ j ,k (t) dt. (25)

We want the projection coefficients to be uncorrelated, i.e., E
[
X j ,k X j ,�

]
= λ j ,�δk ,� ; this is

achieved when ∫ T

0
Rj (t , u)Φ j ,� (u) du dt = λ j ,�Φ j ,� (t) , (26)

which is the equivalent of the eigenvalue-eigenfunction integral equation for vector-valued
processes. According to Van Tress [44] and Oya et al. [46] this representation satisfies the
conditions for Mercer’s theorem; as a consequence

Rj (t , u) = E
[
X (t;Θ j )XT (u;Θ j )

]
=

∞∑

k=1

λ j ,kΦ j ,k (t)ΦT
j ,k (u) . (27)

A useful property of this expansion is that the expansion coefficients are scalar, which is a
property we exploit in the following section.

3.3. Solution of the dual-signal detection problem

The resulting vector eigenfunctions allow us to represent the dual TRC under each hypothesis
with scalar expansion coefficients by

X (t;Θ j ) =
∞∑

k=1

X j ,kΦ j ,k (t) , t ∈ [0,T], j = 0, 1 . (28)

Since this series representation for vector random processes can be considered as a
generalization of the KL expansion [44, 46], then the scalar expansion coefficients contain all
the statistical features of the dual TRC, in a similar way that the KL coefficients contained the
statistical temporal features in the single TRC approach. As a consequence, we can also solve
the dual TRC problem by solving the statistical equivalent problem of detecting the malignancy
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of the lesion based on the expansion coefficients. In symbols, the dual TRC detection problem
can be recast as

H0 : X0,k , k = 1, 2, . . . (29a)

H1 : X1,k , k = 1, 2, . . . , (29b)

where, as before, we assume that the expansion coefficients are Gaussian as a consequence
of assuming that the TRCs are Gaussian random processes. It can be easily shown that, the
expansion coefficients have zero mean and are uncorrelated; therefore, they are also independent.
It is clear now, that under the series expansion utilized in this approach, we have transformed
the original dual TRC problem onto a new problem of scalar and independent coefficients, that
follow a Gaussian distribution with variance equal to the corresponding eigenvalues. This is
exactly the same form of problem that we already solved for the single TRC approach, and
therefore, the mathematical structure of the likelihood ratio and the distribution of the test-
statistic are the same. Moreover, we utilize the same structure of the NP decision rule, because
the resulting test-statistic is a linear combination of χ2-distributed random variables (just as
in the single-TRC approach) but with different eigenvalues, and, as a consequence, different
coefficients for the CDFs defined in Eq. (18).

In the following sections, we evaluate the performance for the single- and the dual-TRC
approach.

4. Results

In this section we demonstrate the efficacy and delimit the scope and robustness of the skin
cancer detection algorithm by measuring its empirical performance. The metrics we utilize to
evaluate the empirical performance of the algorithm are the empirical false-alarm and detection
probabilities. The empirical false-alarm probability, PF,e , is defined as the ratio between the
true-negatives (patients with benign condition as dictated by the biopsy that are declared as
benign by the algorithm) and the total number of benign patients. The empirical detection
probability, PD ,e , is defined as the ratio between the true-positives (patients with malignant
condition as dictated by the biopsy that are declared as malignant by the algorithm) and the
total number of malignant patients.

A cohort study with 140 subjects was performed to investigate the proposed approaches. Fifty
eight percent of the subjects were male and, from the biopsy result, out of the 140 subjects 82
had benign condition and 58 had malignant condition. Out of those 58 subjects with malignant
condition, 6 were diagnosed with malignant-melanomas (MM), 42 with basal-cell carcinoma
(BCC) and 10 with squamous-cell carcinoma (SCC). The subjects were diagnosed by means
of excisional biopsies performed at the University of New Mexico (UNM) Dermatology Clinic,
New Mexico, USA, and all patient data was acquired at the same center. The acquisition harware
used in this setting is described next as well as the data pre-processing stages required to apply
the proposed techniques.

4.1. Image acquisition hardware

We performed DTI with three components. The first component is a cooling unit that is used to
impart the temperature stimulus to the lesion and the surrounding skin tissue. Two different
cooling unit were used in our study. The first one was a a Ranque-Hilsch vortex tube that
generates an oil-free, moisture-free, ultra-quiet air flow. It was later replaced by a commercially
available air-conditioning (AC) unit due to its portability. It was observed that by properly
modifying the time the cool air was applied to the skin, the imparted temperature was almost
the same for both cooling units.
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The second component is an infrared marker, which is used for correction of involuntary
movement of the subject (i.e., image registration); the IR evolved from a canvas paper marker
to a square piece of plastic with a square opening in the middle. Since the only purpose of the
marker is to aid in the registration of the infrared sequence of frames, changing the material of
the marker did not change the acquisition protocol.

The third component includes the imagers. The first imager is a commercial visible still
camera that is used to capture a reference image before the DTI acquisition commences. The
second and most important imager is a longwave infrared (LWIR) camera that is used to capture
a sequence of frames of the thermal recovery of the skin after the cool stimulus is applied.
The LWIR camera consists of a 320×256 focal-plane array (FPA) of quantum-well infrared
photodetectors (QWIP) operating at 60K. The noise equivalent temperature difference (NEDT)
of the FPA is 20mK and the QWIP camera is fitted with a 50mm, f/2 LWIR lens, yielding an
approximate spatial resolution of 300 microns per pixel. The QWIP camera was chosen for
our study because it has higher array uniformity, lower NETD and high spatial resolution as
compared with other IR camera technologies [22, 48].

All the components of the acquisition hardware are pictorially represented in Fig. 7(a)
whereas Fig. 7(b) shows the infrared imager as well as the acquisition software. Next we explain
the imaging procedure.

(a) (b)

Fig. 7. Acquisition hardware utilized to acquire the patient datasets. (a) Prototype and (b)
Infrared imager and aquisition software

4.2. Imaging procedure

After informed consent, each subject was escorted to a designated room in the UNM
Dermatology Clinic to perform the imaging procedure. The temperature of the room was
controlled to be between 20oC to 22oC to make sure that all the patients were exposed to the
same temperature before applying the cooling stimulus to the area of interest. At the beginning
of the procedure, the square registration marker was placed around the lesion with the lesion
centered in the opening, as shown in Fig. 8(a). A visible image of the lesion was then taken
with the digital camera for reference. After collection of the visible image, a 15 second infrared
image sequence of the marked area was collected to serve as a baseline. Later, the subjectâĂŹs
skin within the marker opening was cooled for 15 or 110 seconds, depending of the cooling unit
used. After cooling, the exposed area was allowed to warm up naturally to ambient temperature.
During the warm-up phase, thermal images of the skin were captured for a total of 2 minutes at
a rate of 60 frames per second with the QWIP camera. All the thermal images were recorded
using an uncompressed 14-bit format. The total time required to complete the entire imaging
procedure was less than five minutes.
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If the subject was scheduled for a biopsy, the biopsy was performed following the data
collection by the attending dermatologist and sent to pathology for diagnosis. The biopsy results
were delivered to us within the two weeks following the imaging procedure. Some patients
were clinically diagnosed with a benign condition by the staff, and, therefore, no biopsy was
performed. These patients are considered as control patients and are included in the set of
benign patients.

4.2.1. Image registration

Since involuntary movements of the patients cannot be avoided, image registration must be
performed over the infrared sequence of images. Moreover, to correctly reference the lesion
location within the IR sequence (i.e., the mole, which not necessarily can be spotted in the IR
sequence), the visible picture must also be spatially aligned with the IR sequence. Therefore, the
visible image is considered as an additional frame for the purposes of the registration process.

The registration is conducted as follows. First, we use the Harris corner-detector
algorithm [49] to automatically detect the four corners of the plastic marker amongst the
entire sequence of frames. Second, by assuming rigid movement of the scene, we estimate
an affine transformation matrix that maps such a movement between the corners of consecutive
frames (one matrix is estimated for each pair of consecutive frames) [50]. Third, we utilize the
inverse of each transformation matrix to align each frame with respect to the first frame of the
sequence [51]. After registration, both the visible image and the entire IR sequence are spatially
aligned, generating a three-dimensional (3D) array real numbers that we term the patient dataset.
Figure 8(b) depicts the first IR frame after the cooling was removed of the same example case
presented in Fig. 8(a); note that both the visible and the first IR frame are spatially aligned. The
thermal recovery curves (TRCs) of the labeled pixels are shown in Fig. 8(c), where it can be
noted that there is some non-uniformity in the cooling process that make these TRCs to start at
different initial temperature.

Fig. 8. Example of a patient dataset: (a) example of one square plastic marker used in the
data acquisition step; (b) first frame of the infrared sequence, note that the visible and this
frame are spatially aligned; and (c) the thermal recovery curves (TRCs) for the labeled
pixels in (b).

4.2.2. Camera calibration

In order to have a temperature measurement of the skin surface as accurate as possible, the
QWIP camera must be radiometrically calibrated. As in any FPA, the camera suffers of the non-
uniform response of its detectors (a problem known in the literature as non-uniformity) and it is

                                                                                Vol. 8, No. 4 | 1 Apr 2017 | BIOMEDICAL OPTICS EXPRESS 2319 



compensated by means of non-uniformity correction (NUC) tables performed and stored during
the factory calibration process.

The radiometric calibration is achieved by means of the two-point calibration technique [52].
This calibration is performed by placing, in the field-of-view (FOV) of the camera, a
uniform-intensity calibration device such as a black-body source at two distinct and known
temperatures [53]. The gain and the bias of each detector are then calibrated across the array so
that all detectors produce a radiometrically accurate and uniform readout at the two reference
temperatures. The reference temperatures where chosen to be within the normal temperature
of the skin, i.e., 25oC and 40oC. Examples of thermal recovery curves after the temperature
calibration was performed were already shown in Fig. 8(c).

4.3. Clinical application, analysis and discussion

Recall we have 140 subjects, out of which 58 had a malignant condition (including melanoma,
basal-cell and squamous-cell carcinoma) and 82 subjects had benign conditions. To reiterate, the
subjects were diagnosed by means of excisional biopsies performed at the UNM Dermatology
Clinic, New Mexico, USA.

By performing the training over different sizes and permutations of datasets from the 140
patients while testing the method on the remaining patients that where not used in the training,
we found that at least 110 patients with known conditions and ten KL coefficients may be used
to train the method in order to perfectly separate both benign and malignant conditions for the
patient datasets used in the training stage. In order to assess the robustness of using a size of 110
patients in the training dataset and 10 KL coefficients, we repeated the training 200 times, each
time with a distinct (but randomly selected) permutation of 110 patients from the totality of 140
patients. Each selection of the 200 training dataset permutations yielded a lesion classifier. We
then tested the method by studying the performance of each of the 200 classifiers, namely, we
used each classifier to determine the condition of each of the 30 remaining patients (outside
of its training dataset). For the purpose of this study, we selected the theoretical false-alarm
probability to be PF = 0.01. Since the eigenvalues were computed for each one of the trained
classifiers, the corresponding optimal decision threshold varied for each classifier.

The empirical results demonstrate that the method achieves 100% accuracy (i.e., 100%
sensitivity and 100% specificity) for 46% of the 200 training selections, which we term
the highly reliable training data-sets, when we specify a theoretical false-alarm rate of 0.01.
Moreover, the tested methodology achieves 100% sensitivity and 95% specificity (i.e., 5% false-
alarm rate) for 76% of the 200 training datasets, and 100% sensitivity and 90% specificity for
93% of the 200 training datasets. These results demonstrate that by using highly reliable training
datasets, the proposed technique is capable of correctly classifying both benign and malignant
skin-cancer conditions with unprecedented accuracy. In addition, we have observed variability
in the sensitivity (below 100%) within only 3% across all the 200 training datasets. Moreover,
for different possible lesion boundaries (required to define the pixel-to-pixel averaged TRCs),
we observed that the method presents a variability of 0.1% due to a change of 30% in the
radius of the selected lesion, proving the robustness of the proposed method to variability in the
selection of the lesion boundary by the operator or the medical practitioner performing the test.

After completing the above study, 11 new patient TRCs with known biopsy results were
acquired: by means of biopsies 5 were diagnosed as malignant and 6 as benign. By testing the
method on this new set of patients while using the same classifiers that were generated by the
200 training datasets from the previous study, we have correctly identified all malignant lesions
and misclassified only one benign lesion for 76% of the original 200 classifiers. Moreover, we
were able to correctly classify all new 11 lesions for 36% (71 classifiers) of the original 200
classifiers. Out of these 71 classifiers, 58 were from the “highly reliable dataset” identified in
the earlier study (original set of 140 patients) as described in the previous paragraph, and 13 of
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the 71 were from the data set permutations that misclassified only one benign in the original set
of patients. This observation shows consistency in the performance of the classifiers that were
trained by the highly reliable datasets.

When the dual-TRC approach was utilized to classify the lesions we have observed that the
mean theoretical performance over the same 200 permutations is improved with the help of the
self-reference signal introduced as shown in Fig. 9. Here we utilize the area-under-the-ROC-
curve (AUC) metric to compare the performance and it is defined as the computed area below
the receiver-operating-characteristic (ROC) curve of the detector. (A perfect classifier, i.e., with
100% accuracy, will have an AUC of 1.) The most important characteristic of the proposed
alternatives is that the detection is still performed over an scalar expansion coefficient, which
has equivalent statistical features of the dual TRCs in a similar fashion as the KL coefficients
characterized the single TRCs. The real difference in performance is observed in the empirical
performance when 110 patients are utilized to train the algorithm. In this case, we observed
that perfect classification of all malignant cases is achieved in all the permutations with only
5 eigenvalue-eigenfunction pairs per hypothesis when the highly reliable training datasets are
utilized. (Again, this accuracy is achieved when the theoretical false-alarm rate is specified to
be 0.01.) The same performance was achieved by the single-TRC approach with 110 training
patients with exactly the double of the eigenvalue-eigenfunction pairs. It seems, therefore, that
the inclusion of the reference signal can actually compensate some anomalous behaviour of the
the lesion TRCs. Nevertheless, there some numerical issues when computing the eigenvalue-
eigenfunction pairs that must be compensated in order to further validate this extension of the
proposed methodology.

Fig. 9. Comparison of the mean theoretical ROC curves over 200 permutations when 110
training are used to train the single-TRC algorithm (blue) and the dual-TRC algorithm
(red). Comparison is made by using the mean AUC for different number of used eigenvalue-
eigenfunction pairs, using 110 patients to train the algorithm.

In Table 1 we compare the results between the proposed algorithm (last row) and other
methodologies previously discussed. The ABCDE test is only applied to melanomas, but it
represents a classical approach to non-invasively detect skin cancer. Melafind achieves good
performance in terms of sensitivity (high detection probability) but poor specificity (high false-
alarm probability). Vivosight, on the other hand, achieves good sensitivity and specificity (i.e.,
high detection probability and low false-alarm probability). As it was aforementioned, the
suspicious lesion must be probed several times before such an accuracy is achieved, which
makes the acquisition time prohibitively high for clinical applications. The only approach
found in the literature that utilized DTI with reported sensitivity and specificity is our previous
work [30]. In that work, we performed classification by a distance-based classifier. To do so,
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Table 1. Comparison between the proposed methodology and other non-invasive techniques
Method PD PF

ABCDE [4,5] 0.56 – 0.65 0.11 – 0.53
Melafind [19, 20] >0.95 >0.90
Vivosight [21] 0.79 – 0.94 0.04 – 0.15
DTI (Euclidean-norm–based) [30] >0.95 <0.17
DTI (optimal decision theory) >0.99 <0.01

we computed the aggregated TRCs inside and outside the suspicious lesions and then compared
the normalized Euclidean norm of their distance. Malignant lesions were expected to have a
bigger difference between these two curves, and, as such, have bigger values of their Euclidean
distance. Even though this approach obtained good results, it did not extracted all the statistical
information from the TRCs and neglected the order in the data, i.e., the temporal evolution of
the TRCs; this explains why the method proposed here achieves better results than all other
non-invasive techniques. Moreover, the rapid acquisition time and relatively fast processing are
two other clear advantages of the proposed method as compared with other techniques for skin
cancer detection.

5. Conclusions

In order to construct a suitable stochastic model for the TRCs we have simplified the bio-
heat equation and solved it for properly established boundary conditions. We used this model
to derive analytical auto-covariance functions for the proposed hypotheses whose parameters
are estimated from patients with known conditions. An optimal statistical decision rule was
then derived for which the sensitivity is guaranteed to be at a maximum for every prescribed
false-alarm probability. The algorithm was trained using TRCs from 110 human subjects
and tested on 30 human subjects with unknown diagnosis. All the malignant subjects were
correctly identified (100% sensitivity) for a false-alarm probability below 1% (specificity
> 99%). Robustness analysis was undertaken with various permutations of testing and training
datasets, and under different selections of the lesion boundaries. The maximum variability in the
sensitivity of the method was 3% and 0.1%, respectively, for 200 different random permutations
in selecting the training set and different radii of the region that determine the lesion boundary.

The detection method exploits, in a probabilistic sense, the temporal evolution of the
warming-up process, as obtained from the thermal-image sequence, in order to extract statistical
features that can be utilized to discriminate a case of a benign lesion from a malignant lesion.
The term evolution is emphasized to highlight the importance of the temporal order of the
warming-up data obtained from the image sequence. This is why the performance is far better
than that obtained when the Euclidean norm of the thermal-image sequence is used because
the latter, unlike the proposed method, does not depend on the ordering of the images in the
sequence [30].

The success of the proposed methodology relies on knowledge of the auto-covariance
function of the warming-up process under each hypothesis, which has not been known (to the
best of our knowledge) prior to this work. We have presented the construction of such auto-
covariance function by parameterizing the warming-up process using a few random variables
and by estimating (from patient-data with known conditions) the probability distribution for
these random variables and their relevant correlation functions.

We have also introduced and discussed an approach to represent vector random processes
that in the literature is treated as the vector generalization of the KL expansion. Using this
representation we have solved the detection problem in which each hypothesis is characterized
by a dual TRC. The approach followed has the property of using scalar expansion coefficients,
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equivalent to the KL coefficients for the scalar TRC approach. Hence, after the expansion is
applied to the vector random processes, the dual-TRC detection problem becomes equivalent
to the single-TRC detection problem. As a consequence, once the expansion coefficients are
characterized, they contain most of the statistical information of both of the signals of each
hypothesis, and the solution is trivial because all the properties and limitations discussed for
the single TRC approach hold for this new alternative. We explored both the theoretical and
empirical performance of the proposed alternative using the same training settings utilized to
test the robustness of the single-TRC approach. By comparing the theoretical performance
for different number of eigenvalue-eigenfunction pairs, the dual-TRC approach achieves the
same performance as the single-TRC approach by requiring less eigenvalue-eigenfunction pairs.
The empirical performance follows the same trend, allowing, for example, 100% detection of
malignant patients using one half of the eigenvalue-eigenfunction pairs that the single-TRC
approach required for the same training/testing setting.

To the best of our knowledge, this work reports the highest accuracy and robustness for any
non-invasive method for detection of skin cancer. As a consequence, the method will be valuable
in clinical applications where the accessibility to trained dermatologists is difficult. Moreover,
the methodology is applicably to any continuous-time hypothesis testing problem for which an
analytical parametric form of the auto-covariance function is obtainable.
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