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Cross-species gene expression analysis identifies a novel
set of genes implicated in human insulin sensitivity
Rima Chaudhuri1,2, Poh Sim Khoo2, Katherine Tonks2,3, Jagath R Junutula4,10, Ganesh Kolumam4, Zora Modrusan4,
Dorit Samocha-Bonet2,5, Christopher C Meoli2, Samantha Hocking6,9, Daniel J Fazakerley1,2, Jacqueline Stöckli1,2, Kyle L Hoehn7,
Jerry R Greenfield2,3,5, Jean Yee Hwa Yang8 and David E James1,2,9

OBJECTIVE: Insulin resistance (IR) is one of the earliest predictors of type 2 diabetes. However, diagnosis of IR is limited. High fat fed
mouse models provide key insights into IR. We hypothesized that early features of IR are associated with persistent changes in gene
expression (GE) and endeavored to (a) develop novel methods for improving signal:noise in analysis of human GE using mouse
models; (b) identify a GE motif that accurately diagnoses IR in humans; and (c) identify novel biology associated with IR in humans.
METHODS: We integrated human muscle GE data with longitudinal mouse GE data and developed an unbiased three-level cross-
species analysis platform (single gene, gene set, and networks) to generate a gene expression motif (GEM) indicative of IR. A logistic
regression classification model validated GEM in three independent human data sets (n= 115).
RESULTS: This GEM of 93 genes substantially improved diagnosis of IR compared with routine clinical measures across multiple
independent data sets. Individuals misclassified by GEM possessed other metabolic features raising the possibility that they
represent a separate metabolic subclass. The GEM was enriched in pathways previously implicated in insulin action and revealed
novel associations between β-catenin and Jak1 and IR. Functional analyses using small molecule inhibitors showed an important
role for these proteins in insulin action.
CONCLUSIONS: This study shows that systems approaches for identifying molecular signatures provides a powerful way to stratify
individuals into discrete metabolic groups. Moreover, we speculate that the β-catenin pathway may represent a novel biomarker for
IR in humans that warrant future investigation.
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INTRODUCTION
Insulin resistance (IR) and obesity are major risk factors for a range
of diseases including type 2 diabetes (T2D) and cardiovascular
disease. However, some obese people are insulin sensitive as lean
individuals,1–3 whereas a subgroup of IR individuals are lean.4,5

Hence, there is a need to improve diagnosis of IR because lifestyle
changes can prevent or delay such disease onset. However, this is
a challenge as IR persists for many years without obvious
perturbation in glucose homeostasis and so IR individuals may
not present to their physician before T2D or cardiovascular disease
onset. This is compounded by the fact that current clinical
measures such as body mass index, waist/hip ratio, and fasting
glucose have limited diagnostic value.
Most accurate methods for assessing IR such as the

hyperinsulinemic-euglycaemic clamp6 or surrogate measures such
as liver lipid analysis are not feasible in routine clinical use.
Metabolite biomarkers that correlate with insulin sensitivity and
T2D have been reported,7–11 but their diagnostic value is unclear.
Gene expression (GE) represents a potential alternative for
measuring disease risk as it represents an integrated response of
multiple system parameters. For example, where the functional
consequence of a single-nucleotide polymorphism (SNP) is altered

transcription, GE can accurately predict an individual’s SNP
genotype,12 which may be the true determinant of disease risk.
Although gene expression has been explored as a biomarker for

IR this has been limited by the inability to detect large numbers of
differentially expressed genes.13 This could be explained by a
range of factors: IR could represent a multitude of diseases; GE
could be too dynamic with an underlying rhythmicity that masks
IR-specific changes; technical variance may exceed biological
variance. This requires additional approaches to overcome these
potential barriers. One approach to circumvent variation in
human data is the use of cross-species data integration.14–16 The
rationale here is that model systems can be used to recapitulate
human diseases with much less variance than is found in human
data sets. Robust changes in GE in such model systems can then
be tested as a positive training set in human data. This will
reveal shared features between the model system and human
disease and aid identification of human disease-associated
signatures that would not have been isolated from analysis of
human data alone.
High fat diet (HFD) fed rodents are widely used as models for

human IR.17–20 As in humans, exposure of rodents to HFD results
in increased adiposity, glucose intolerance, hyperinsulinemia and
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peripheral IR in muscle, adipose tissue, and liver.17–24 This is
comparable to phenotypes seen in prediabetic humans.
We have conducted a proof of principle study to evaluate the

feasibility of developing a molecular profile using cross-species
muscle GE analysis that can accurately diagnose IR in humans. We
describe a gene expression motif (GEM) comprising 93 genes that
substantially improves IR diagnosis when tested in 115 individuals
across 3 separate studies. In addition, we identified pathways
including β-catenin (Wnt Signaling) and Jak1 (Jak-Stat Signaling)
to be up-regulated in muscle biopsies of insulin resistant
individuals. Inhibition of these proteins in muscle cells showed
significant defects in glucose uptake indicating an important role
in muscle insulin action.

MATERIALS AND METHODS
The following sections are contained within the Supplementary
Information.

Study design
Supplementary Methods 1.1.

Human subject and mouse phenotype studies
Supplementary Methods 1.2.1.

Microarray studies
Supplementary Methods 1.2.2-1.2.5.

Statistical analyses
Supplementary Methods 1.3-1.9.

Experimental validation
Supplementary Methods 1.10.

R-code for data analysis
(SI.zip: Main_Analysis_Chaudhuri_et_al.zip).

RESULTS
Our goal was to identify a GE signature that could accurately
diagnose whole body insulin sensitivity. This is important because
IR is one of the earliest determinants of T2D. We designed our
study with the following innovative attributes: use of state of the
art methods to define metabolic status including a hyperinsuli-
nemic glucose clamp (ClampIS), the gold standard for measuring
whole body insulin sensitivity, and liver lipid fat; while IR is
associated with obesity many obese people are not IR and so we
wanted to identify a signature that predicts IR independently of
obesity. Thus, we studied individuals who were either obese
insulin sensitive or matched for adiposity with IR; we sought a
signature that predicted IR and not T2D per se because of the
complications associated with T2D like hyperglycemia. Because of
inherent variance in human GE data we first identified IR-
associated genes and pathways in a mouse IR model and used
these data in a weighted analysis of the human GE data (see
Figure 1 for workflow summary and Supplementary Methods (SM)
1.1 for details).
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Five days of HFD was sufficient to cause glucose intolerance
in mice24 (Supplementary Figure S1A and B). Muscle GE was
measured after 0, 5 and 42 d of HFD feeding. IR develops rapidly in
liver24 and more slowly in muscle, reaching a plateau by 1 or 3 wks
on HFD, respectively. Hence, this time course of HFD feeding was
selected to enable identification of genes that do not just correlate
with IR but that may also be causal. A cohort of 81

age-matched humans was selected to comprise four distinct
groups: obese insulin sensitive (OIS), obese IR (OIR), T2D and
lean.25 Human GE data was derived from muscle biopsies of a
subset of these individuals. OIS, OIR, T2D groups had higher
adiposity, body mass index, waist/hip ratio and visceral adiposity
than lean subjects.25 Lean and OIS groups were more insulin
sensitive than OIR and T2D groups, measured by the clamp or
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Figure 2. Single gene and gene-set cross-species analysis reveals 129 genes implicated in IR and/or obesity. Red indicates upregulation and blue
indicates down-regulation of genes. (a) Transformation of statistical significance (P value) of genes from mouse DE analysis to standardized
weights (b) the fold change (log2 scale) of genes across the different comparisons from the single gene-by-gene analysis in humans. Fold
change⩾ 1.5, significance of 0.05 and average gene expression47 was used for identifying DE genes from the human analysis. (c) Tight
clustering of co-regulated genes in the mouse time course GE data identified 10 tight clusters (d) shows the proportion, magnitude, and
direction of regulation of these 10 gene clusters from mouse GE data in humans across the six group comparisons. All heatmaps were generated
using R package gplots (http://CRAN.R-project.org/package=gplots). DE, differentially expressed; GE, gene expression; IR; insulin resistance.
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non-oxidative glucose disposal (NOGD), a semi quantitative
estimation of glycogen synthesis, and fasting insulin
(Supplementary Figure S1C–K and SM 1.2; in-silico regression
analysis is able to reproduce this as shown in Supplementary
Figure S2).

Cross-species integrated analysis identifies 129 genes implicated
in IR
It has been previously reported that there is limited signal in GE
data from human muscle from which to generate a signature of
muscle IR.13 Therefore, we set out to use a cross-species
integration approach, using GE data from a mouse model of
insulin resistance to guide analysis of the human GE data. A
weighted analytic approach was performed to integrate human-
mouse GE data, whereby differentially expressed mouse genes
were assigned prior importance and tested for differential
expression in human data. Two stages of analysis were
implemented to identify differentially expressed genes under
conditions of IR/T2D and obesity: (a) individual level analysis,
through a standalone human GE analysis, a weighted linear model
where significantly altered mouse genes are tested in human data
and MA-plots in human GE. Supplementary Results (SR) 1.1A and

SR 1.2 provides details for all 43 genes altered at the single gene
level in humans (Figure 2a, b); (b) group level assessment, such as
Gene Set Test on human GE profiles using co-regulated gene
clusters from mouse data (Figure 2c, d). Further details can be
found in SR 1.1B. These analyses resulted in identification of 129
differentially expressed genes (43 from (a) and 86 unique genes
from (b)) (Supplementary Data S1). Pathway analysis of this gene
set revealed an enrichment of the insulin signaling pathway and
other pathways linked to insulin action and IR, including PPAR
signaling,26,27 sphingolipid and ceramide metabolism,28 amino
acid metabolism,11 and TCA cycle29 (Supplementary Data S3).

Optimization
We performed weighted gene co-expression network analysis30,31

to optimize these 129 genes by defining modules/clusters with
similar expression patterns, and relating them to benchmark
phenotypic traits for OIR and OIR individuals only, leading to
identification of 12 distinct clusters (Figure 3a). We next
considered how well these 12 modules correlated with metabolic
traits: ClampIS/NOGD, which is quantitative measure of
whole body insulin sensitivity, visceral adiposity and liver fat32

correlate with insulin resistance, and Homeostatsis Model
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Assessment - Insulin Resistance (HOMA-IR)33 is a crude measure of
insulin sensitivity. Six gene modules comprised of 90 genes were
positively correlated with ClampIS/NOGD (* in Figure 3a). No
module correlated with liver fat. We also calculated the individual
gene-phenotype correlations for each gene; 64 were significantly
associated with at least one clinical trait (Figure 3b,
Supplementary Data File S1) and 48 correlated with whole body
insulin sensitivity measured by clamp (details in SR 1.3).
Overall, we identified six candidate gene modules from the

weighted gene co-expression network analysis and five individual
genes (DMD, MAOA, PFKFB3, XIST and SLC1A4) from a linear
regression analysis using ClampIS as response variable34 (SR 1.3).
This subset of genes was closely related to whole body insulin
sensitivity for OIS and OIR subjects. This optimized set of 93 genes
is referred to as GEM. The functional enrichment of GEM is shown
in Supplementary Data S3.

Validation
To quantify the utility of the information contained within the
GEM as a diagnostic for IR, we undertook a systematic validation
approach to measure its performance as a signature to segregate
individuals based on their whole body insulin sensitivity (see
Supplementary Methods (SM) 1.7–1.8). The prediction accuracy of

whole body insulin sensitivity measured by clamp is 100%, as the
OIS and the OIR individuals were segregated based on these
criteria, and the random outcome is ~ 50%. Thus, the expected
performance ratio (prediction accuracy/random) of the clamp in
classifying OIR from OIS people is ~ 2 (i.e., 100/50), (Figure 4)
whereas a ratio of 1 corresponds to random chance. In our
simulations, whole body insulin sensitivity (ClampIS/NOGD)
reached a median performance ratio of 1.94. The routine clinical
measures (waist/hip ratio, blood sugar level and body mass index)
had a median ratio of ~ 1.2, while the more sophisticated clinical
measures liver density, visceral fat and HOMA-IR had a value of
~ 1.33. As the GEM was derived from the TonksS1 GE data we
tested its prediction accuracy in TonksS2, an additional cohort of
GE data from the same original study25 comprised of a total of 16
individuals and the GEM prediction ratio was ~ 1.6, which was a
considerable improvement over office-based clinical measures. To
extend the validation of GEM we examined its ability to diagnose
IR in 2 external GE data sets. The performance median ratio score
of GEM in both external GE data sets was ~ 1.65. It is highly
significant that GEM was highly diagnostic outside of the training
dataset and that it outperformed alternate measures of insulin
sensitivity (i.e., visceral fat and liver fat).
We next compared the performance of the GEM to two external

gene signatures: (i) a publically available T2D gene set that was
assembled by literature curation; and (ii) an external set of 12 T2D
biomarkers from muscle recently reported by Väremo et al.,35 GEM
outperformed both of these signatures in distinguishing between
OIR and OIS subjects (Figure 4). The median values for the
diagnostic accuracy for all three gene signatures across the cross-
validation rounds in the 3 GE data sets (Supplementary Table S1;
external datasets described in Supplementary Data File S2)
highlights the substantial difference between the gene-signature
based median accuracy and random diagnosis in all
data sets. There was good individual prediction concordance
between GEM and Väremo et al., whereas T2DKEGG predicted
poorly in two out three GE data sets. There was only one common
gene (HK2) between the 45 T2DKEGG gene set and the 93 GEM
genes and pathway analysis revealed one overlapping
pathway (the insulin signaling pathway). There were no
genes in common between GEM and genes from Väremo
et al.35 Therefore, this validates GEM as an independent identifier
of human IR.
To characterize the subject-specific classification response rate

of GEM, we calculated the misclassification rate of all subjects in
our internal data sets (TonksS1 and TonksS2) and refer to this as a
GEM score (Supplementary Figure S3A). Subjects frequently
misclassified by GEM (high GEM score) were of interest. These
included B13 and D16 (TonksS1) and B6 and D17 (TonkS2). B13
and B6, were classified as OIR by clamp but OIS by GEM; D16 and
D17 were reciprocally classified. B13 and B6 had the lowest
visceral/subcutaneous fat ratios and highest NOGD in the OIR
group, whereas the visceral/subcutaneous fat ratios for D16 and
D17 were in the top 25% (Supplementary Figure S3D, E, G).
Various studies have suggested that visceral fat is a more
important contributor to IR than body mass index36,37 and
accumulation of subcutaneous fat provides protective effects
against IR.38–40 Recently, several new genetic loci were reported
that links insulin biology and IR to body fat distribution.41 The
respiratory quotient during the clamp for D17 and D16 were the
lowest in the OIS group, a measure of metabolic flexibility. Hence,
despite being insulin sensitive, they displayed indications of
metabolic impairment (Supplementary Figure S3F) (see SR 1.4 for
other details). These findings suggest that GEM classification may
take into account global metabolic dysfunction associated with IR,
rather than just impaired whole body glucose clearance.
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Network level analysis
Our original gene set of 129 genes and GEM enriched for several
metabolic transcription factors, mitochondrial proteins and genes
with SNPs associated with T2D/obesity or altered lipid and
metabolite levels (SR 1.5). To further interrogate our gene sets

we examined their connectivity with the insulin signaling pathway
(ISP) proteins as this is the dominant driver of insulin action in
muscle. A network-based enrichment analysis42 identified genes
such as JAK1, β-catenin (CTNNB1), 14-3-3-gamma (YWHAG), SCD,
PPP3R1, NR3C1, PFKFB3, GRB14, ACLY and RETN (resistin) within the
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in red; both β-catenin and Jak1 are labeled with arrows to indicate their extent of connectivity to the ISP genes. (b) The genes that comprise
each of the six significantly correlated gene modules (represented by their module colors from weighted gene co-expression network analysis
analysis) with EMP measures are listed here. The bar plot quantitatively represents the degree of connectivity of each gene within these six
GEM gene modules with the ISP. The hubs of each module are highlighted (*), if the hub is a member of ISP then the next ranking non-ISP
member is marked with (+) (c) Bottleneck or between-ness distribution of the genes comprising the GEM modules. Similar to (a) top ranking
bottlenecks within each module are marked with (*) and second ranking non-ISP members are marked with (+).
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original 129 that potentially cross-talk with those comprising the
ISP through a protein–protein interaction map (Figure 5a) (see SM
1.9 and SR 1.6).
Next, we focused on genes comprising the GEM. Only the hub

proteins (degree) in yellow (β-catenin: member of Wnt signaling
pathway) and gray (Jak1: member of Jak-Stat pathway) modules
were not members of the ISP and hence novel nodes in insulin
action (SM 1.9) (Figure 5b). Similarly, we identified five novel
bottlenecks, β-catenin, 14-3-3-gamma, PFKFB3, GRB14, and APOA2
(Figure 5c). Although there is extensive evidence relating the
above proteins to IR (SR 1.7); the link between Jak1 and β-catenin
to IR is relatively unexplored. This prompted us to interrogate the
role of these proteins in insulin action in muscle cell.

β-catenin and Jak1 have a role in insulin action
We tested in-silico to confirm if Jak1 and β-catenin were the
bottlenecks of communication between their respective source
pathways, Jak-Stat and Wnt signaling pathways, and the ISP
(SM 1.9 and Supplementary Figure S4). Through between-ness
distributions of the protein interaction network of Wnt signaling
and the ISP, we determined β-catenin to be the top bottleneck of
communication (Figure 6a). Similarly, Jak1 was one of the top five
most important proteins enabling interactions between Jak-Stat
pathway and the ISP, (Figure 6b).
We further interrogated the Wnt:ISP and Jak-Stat:ISP networks

by detecting community structures within them through a
hierarchical decomposition process (SM 1.9). We focused on the
communities that contained β-catenin and Jak1, respectively, and
obtained a map of their first-degree neighbors (Figure 6c, d). We
observed rich connections between β-catenin and insulin signal-
ing proteins (red circles) such as GSK3B, FOXO1, PTPN1, PIK3R1,
PTPRF, and IKBKB. Similarly, through the first-degree neighbor
map of Jak1, we found dense connections with key insulin
signaling proteins such as INSR, IRS1/2, GRB2, SH2B2, RAF1, PRKCZ,
and PIK3R1. Using gene-set tests, we also found the Wnt and Jak-
Stat Signaling Pathways to be up-regulated in OIR compared with
OIS individuals in both our internal GE data sets (TonksS1: Wnt P
value 8.86e-06; Jak-Stat 0.1 and TonksS2: Wnt 0.1, Jak-Stat 0.006).
Based on these observations we predicted that β-catenin and Jak1
likely have an important role in skeletal muscle insulin action. To
test this, we examined the consequences of perturbing these
nodes on insulin action in L6 muscle cells (Figure 6e, f). Treatment
of L6 myotubes with pyrvinium pamoate, an inhibitor of β-catenin
and Wnt signaling,43 inhibited insulin stimulated 2-deoxyglucose
uptake (Figure 6e). Similarly, treatment with the Jak1 inhibitor
GPLG0634,44 inhibited insulin stimulated 2-deoxyglucose uptake
in a dose-dependent manner (Figure 6f). These effects were not
due to direct inhibition of glucose transporter activity
(Supplementary Figure S5 and SM 1.10). This highlights the power
of such approaches for identifying not only novel disease
signatures but also novel regulatory nodes that act upstream of
well established processes.

DISCUSSION
IR is one of the earliest risk factors for metabolic disease yet
clinically it often remains undiagnosed. Most methods for
assessing IR are either expensive or too specialized, emphasizing
the need for improved and simplistic approaches. Variation in
human GE data can preclude identification of GE signatures that
describe a phenotype. To circumvent this we devised a cross-
species integration framework. Here robust GE changes in mice
progressing to IR were used to augment GE differences in humans.
This enabled identification of a 93 gene expression motif that
diagnoses individuals with IR more accurately than commonly
used clinical measures both in internal and external GE data sets

(Figure 4). One of the key regulatory nodes associated with this
GEM was the β-catenin pathway.
A major confounder for IR diagnosis is obesity; while many IR

people are obese this is not always the case. To circumvent this
problem, in the present study we compared OIS with OIR enabling
us to exclude a potential role for obesity per se. GEM was able to
predict outliers within the obese groups that had been classified
based on the hyperinsulinemic euglycemic clamp. For example,
the GEM score identified two individuals who were classified as
OIR by clamp and OIS by GEM, they had a very low visceral to
subcutaneous adipose tissue ratio that is indicative of insulin
sensitivity.36–40 Such features can now act as a future predictor of
the performance of GEM in patient-specific diagnosis i.e.,
individuals with alternate clinical features such as low visceral/
subcutaneous fat ratio and borderline NOGD are likely to be
diagnosed as OIS instead of OIR by GEM. Hence, these individuals
may represent a discrete IR subgroup(s). It will also be exciting to
determine if these subgroups also segregate based on other
features such as lifestyle or genetics. Overall, this suggests that
multi-gene signatures like GEM may be diagnostic of combinator-
ial features making this approach potentially more clinically useful
than single physiological measures.
The ability of GEM to identify subgroups of IR individuals also

emphasizes the multifactorial/heterogeneous nature of IR, the
clinical manifestations of which remain to be explored. It is
important to point out that the GEM described here emanated
from a cross-species integrated approach using HFD fed mice,
however, it is well established that many other perturbations are
known to trigger IR including exposure to dietary components
other than fat, physical inactivity and steroids. Thus, it will be of
interest to determine if GEMs driven by alternate mouse models
can segregate different forms of IR in humans.
GEM arose from an unbiased systems biology approach and so

it is of interest to explore the inherent biology within this
signature. GEM possesses a number of genes and pathways
previously implicated in IR and/or insulin action (SR 1.5). This
validates this approach supporting the utility of GEM not just as a
classifier but also as a discovery tool. Using network analysis we
identified β-catenin and Jak1 as two potentially novel components
of the IR nexus and a role for both of these pathways in insulin
action was confirmed using functional analysis in muscle cells
in vitro.
Jak1 has previously been implicated in adipocyte IR,45 and

Jak-Stat signaling has been proposed to be involved in the
development of IR in cardiac myocytes;46 to our knowledge this is
not the case for β-catenin. The expression of β-catenin was highly
correlated with the strongest phenotypic predictors of IR, such as
whole body insulin sensitivity, at the single gene level (Figure 3b).
In humans, abnormal Wnt signaling has been associated with early
onset obesity and T2D.47 Recently, it has been shown that loss of
β-catenin renders mice resistant to HFD due to increased energy
expenditure and insulin sensitivity due to hyperactivity.48 Further,
β-catenin binds to, and regulates the activity of both FOXOs and
T-cell factor (TCFs) transcription factors.49,50 In addition, SNPs in
the TCF7L2 gene, which is the transcription factor that regulates β-
catenin, significantly increases the risk of developing T2D.51,52

Intriguingly, TCF7L2 was originally thought to be a beta cell
specific gene that controls insulin secretion.52,53 However,
subsequent studies have found that TCF7L2 principally functions
as a regulator of insulin action in liver and possibly other
tissues.54,55 This is important, as overall most SNPs associated with
T2D are thought to principally have a role in beta cell dysfunction
and very few SNPs have been found in genes that control insulin
action in tissue such as muscle. As we observed β-catenin to be a
major regulatory node in a GEM associated with IR we speculate
that this pathway may represent a major biomarker for defects in
insulin action.

Systems analysis finds insulin resistance genes
R Chaudhuri et al

7

© 2015 The Systems Biology Institute/Macmillan Publishers Limited npj Systems Biology and Applications (2015) 15010



betweenness

Fr
eq

ue
nc

y

0 1000 2000 3000 4000 5000

0

50

100

150

200

0 50 100 150 200 250

0

1000

2000

3000

4000

be
tw

ee
nn

es
s

betweenness

Fr
eq

ue
nc

y

0 1000 2000 3000 4000

0

50

100

150

200

0 50 100 150 200 250

0

1000

2000

3000

4000

gene index
be

tw
ee

nn
es

s

GPLG0634[uM]

2D
O

G
 u

pt
ak

e
(n

m
ol

es
/u

g/
m

in
)

0.00

0.05

0.10

0.15

0.20

*

**

Beta-Catenin

Pyrvinium [uM]

2D
O

G
 u

pt
ak

e
 (n

m
ol

es
/u

g/
m

in
)

Contro
l 

(D
MSO)

Contro
l 

(D
MSO)0.1

25 0.2
5 0.5 1 2 4

0.00

0.05

0.10

0.15

0.20

* ** ** *****

Basal
Insulin

p-value < 0.05  ‘*’
p-value < 0.01 ‘**”

JAK1

5 10

gene index
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of β-catenin and Jak1 to selected insulin signaling proteins; experimental validation of these two proteins provides evidence of their role in
muscle insulin action. (a and b) Shows the between-ness distributions of proteins in the Wnt signaling and insulin signaling pathway (ISP) in
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In conclusion, systems biology approaches as described here
involving cross-species data integration have enormous potential
in preventive medicine. Obviously, longitudinal study designs will
be required to evaluate the true worth of such approaches and
their application to the clinical workplace will be required. The
value of this GE motif needs to be ascertained in a more readily
available clinical sample such as peripheral blood cells. Never-
theless, from this cross sectional analysis of a relatively modest
number of subjects we delineated a multi-gene signature that
encapsulates a complex array of biological pathways to diagnose
IR with comparable accuracy to the best currently available
physiological/clinical methods. This justifies more focus on
systems biology approaches to tackle the cause and prevention
of complex metabolic diseases.
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