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Abstract: Much recent attention has been paid to quantifying anatomic and functional neuroimaging on
the individual subject level. For optimal individual subject characterization, specific acquisition and anal-
ysis features need to be identified that maximize interindividual variability while concomitantly minimiz-
ing intra-subject variability. We delineate the effect of various acquisition parameters (length of
acquisition, sampling frequency) and analysis methods (time course extraction, region of interest parcel-
lation, and thresholding of connectivity-derived network graphs) on characterizing individual subject dif-
ferentiation. We utilize a non-parametric statistical metric that quantifies the degree to which a parameter
set allows this individual subject differentiation by both maximizing interindividual variance and mini-
mizing intra-individual variance. We apply this metric to analysis of four publicly available test-retest
resting-state fMRI (rs-fMRI) data sets. We find that for the question of maximizing individual differentia-
tion, (i) for increasing sampling, there is a relative tradeoff between increased sampling frequency and
increased acquisition time; (ii) for the sizes of the interrogated data sets, only 3-4 min of acquisition time
was sufficient to maximally differentiate each subject with an algorithm that utilized no a priori informa-
tion regarding subject identification; and (iii) brain regions that most contribute to this individual subject
characterization lie in the default mode, attention, and executive control networks. These findings may
guide optimal rs-fMRI experiment design and may elucidate the neural bases for subject-to-subject differ-
ences. Hum Brain Mapp 37:1986–1997, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Many neuroimaging studies seek to use interindividual
variability in anatomic and functional characterization to
gain insight into concomitant variability in a behavioral or
clinical feature of interest [Kanai and Rees, 2011; Zilles
and Amunts, 2013]. Additionally, just as a psychologist
may use a patient’s behavioral score to predict an outcome
or guide a treatment, and just as a genomic profiling may
assess genetic contribution to disease risk, there has been
interest in developing methods and standards that allow
for individual patient anatomic and functional characteri-
zation using neuroimaging [Atluri et al., 2013].

Recent studies have indeed identified significant interin-
dividual variability in behavioral, anatomic and functional
features, and determined that these variables correlate in
significant and intriguing ways. Kanai and Rees cata-
logued numerous examples of studies where particular
behavioral traits can be predicted by individual subject
level region-specific anatomic (DTI, VBM) or functional
(BOLD fMRI, PET, MEG, EEG, MRS) measures [Mueller
et al., 2013]. Additionally, Mueller et al. demonstrated that
there is significant interindividual variability in functional
connectivity assessed with resting state fMRI (rs-fMRI),
and that regions of high variability correlate with regions
of evolutionarily recent cortical expansion as well as
regions thought to determine higher cognitive function
[Mueller et al., 2013]. More recently, Finn et al [2015] dem-
onstrated that functional connectivity is unique across sub-
jects and that it can be used to identify an individual
within a large group.

For studies that seek to develop a functional characteri-
zation of an individual subject, specific acquisition and
analysis features can be identified that maximize this inter-
individual variability while minimizing intra-subject vari-
ability. We therefore sought to expand on the above
referenced studies to analyze rs-fMRI data for factors that
affect this individual subject differentiation, given the
emergence of rs-fMRI as a powerful tool for both neuro-
science and clinical application [Fornito and Bullmore,
2011; Lee et al., 2013; Snyder and Raichle, 2012]. In partic-
ular when compared to task-based fMRI, rs-fMRI has
received interest as a clinical tool due to (i) a lack of
dependence on subject compliance and performance on a
particular task, (ii) a lack of need for specialized stimulus
presentation hardware and software, and (iii) potentially
lower cumulative acquisition times [Kelly et al., 2012]. The
lack of dependence on subject compliance is particularly
important in certain patient classes, such as those with
functional deficits related to brain lesions; patients who
may not be able to understand the task due to cognitive,

hearing or visual disability; patients with language bar-
riers; or in the pediatric population.

There are important differences between the analysis of
task-based and resting-state fMRI data. Without a task
with which to correlate, pairwise similarities between
regions or voxel timecourses are computed instead of a
univariate analysis of the time-series. Additionally, a
whole-brain or network based approach is often utilized
as there may be no a priori knowledge regarding regions
of interest. Typically in rs-fMRI connectivity studies, a
parameter of similarity (e.g., Pearson correlation, partial
correlation, spectral coherence) is calculated between pairs
of timecourses from given regions of interest. These simi-
larity data are organized into an adjacency matrix, one cal-
culated per each subject or scan. Fundamentally each
summary statistic, such as “global efficiency” [Rubinov
and Sporns, 2010], calculated in a rs-fMRI study is a calcu-
lation of the data in these adjacency matrices [Van Dijk
et al., 2010].

While group-level reproducibility of rs-fMRI has been
demonstrated for several specific ROIs and networks
[Biswal et al., 2010; Chou et al., 2012; Damoiseaux et al.,
2006; Song et al., 2012; Wang et al., 2013], an analysis of
whole-brain subject level variability has only recently been
described [Mueller et al., 2013], as has the observation that
rs-fMRI data could be used to identify individuals [Finn
et al., 2015]. Mueller et al demonstrate a relatively con-
served topographic distribution of variability of functional
connectivity across individuals, with this variability
increased in heteromodal association cortices compared to
unimodal sensorimotor regions. With a priori knowledge
of a large set of connectivity matrices associated with par-
ticular subjects, Finn et al demonstrate that an individual’s
connectivity profile is unique enough to allow identifica-
tion based on the labeled target set. Both studies utilize
single test-retest resting state-fMRI datasets, and examine
the effect of subject motion on affecting individual charac-
terization; the latter study further examines additional con-
tributory variables such as length of acquisition and
parcellation schemes.

We extend the investigation in two significant ways: first
we include data from four publicly available resting state-
fMRI test-retest datasets which vary in acquisition parame-
ters. The datasets include both single-band and multiband
acquisitions, allowing for inclusion of sampling frequency
as a variable. Second, we develop a non-parametric, rank-
based statistical metric that allows us to quantify the
degree to which a given acquisition and analysis scheme
maximizes interindividual variability while minimizing
intra-individual variability. We then use this metric to
determine which factors most contribute to individual
subject differentiation. A non-parametric, rank-based sta-
tistic has several advantages compared to more typical
approaches, such as intraclass correlation [Shrout and
Fleiss, 1979]. First, it can operate readily on multivariate
and non-Euclidean quantitative data. Second, it is model-
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free, in that it does not make any assumptions about the
distribution of the data. Third, because it is based on order
statistics, it is robust to many kinds of artifacts, such as
spurious or missing data.

METHODS

We examined the effect of the following variables in
determining subject characterization on four different rest-
ing state fMRI datasets: length of acquisition, sampling fre-
quency, parcellation scheme, and method of time course
extraction. In addition, we determined whether nuisance
variables (motion and physiological noise) contributed to
individual differentiation. For differentiation, an unsuper-
vised test-retest pairing algorithm was used, as described
below. The regions of the brain that most contribute to
individual differentiation were also investigated.

Data Sets Analyzed

Four publicly available data sets were analyzed, each
consisting of two resting-state fMRI acquisitions separated
in time. Each of these data sets is available publicly
through the Neuroimaging Informatics Tools and Resour-
ces Clearinghouse (NITRC; www.nitrc.org):

1. KKI: A total of 21 subjects, ages 22–61 years, each
scanned twice at 3T for 7 minutes, TR 5 2.0 sec. One
subject was excluded due to an artifact evident dur-
ing one of the acquisitions. Scan details: single band
2D EPI ascending order; 3 mm isotropic voxels (80 3

80 voxels), TE 30 ms; flip angle 758 [Landman et al.,
2011].

2. NKI Standard: A total of 23 subjects, ages 19–60 years,
each scanned twice at 3T using single band sequences
for 5 minutes, TR 5 2.5 sec. Scan details: single band
2D EPI interleaved order; 3mm isotropic voxels (72 3

72 voxels), TE 30 ms; flip angle 808 [Nooner et al.,
2012].

3. NKI Multiband: TR 5 1.4 sec: Same subjects and scan-
ner as NKI Standard, each scanned twice using a
multiband sequence for 10 minutes, with TR 5 1.4
sec. Scan details: multi band 2D EPI of acceleration
factor 4; interleaved order; 2 mm isotropic voxels
(112 3 112 voxels), TE 30 ms; flip angle 658 [Nooner
et al., 2012].

4. NKI Multiband: TR 5 0.645 sec: Same subjects and scan-
ner as NKI Standard, each scanned twice using a mul-
tiband sequence for 10 minutes, with TR 5 0.645 sec.
Scan details: multi band 2D EPI of acceleration factor
4; interleaved order; 3mm isotropic voxels (74 3 74
voxels), TE 30 ms; flip angle 608 [Nooner et al., 2012].

Adjacency Matrix Construction

For each scan of each data set, an adjacency matrix
describing its functional connectivity was constructed via
the following steps.

Pre-processing: For pre-processing we used a series of
steps common to many resting state fMRI studies (e.g.,
[Landman et al., 2011]), with the details of specific steps
described below. Following data retrieval from the NITRC,
we conducted the following pre-processing on each scan
independently. Each BOLD time-series underwent a stand-
ard preprocessing sequence of slice timing correction,
motion correction/realignment, co-registration to the sub-
ject’s anatomic T1-weighted images, spatial normalization
to the Montreal Neurological Institute MNI152 2mm tem-
plate using ANTs (Advanced Normalization Tools) regis-
tration (stnava.github.io/ANTs), detrending via high pass
filtering, principal component analysis (PCA)-based CSF
and white matter nuisance regression (following [Behzadi
et al., 2007]), 6 parameter motion regression, bandpass
temporal filtering (0.01–0.1 Hz), and spatial smoothing
(6mm Gaussian kernel). For PCA-based nuisance regres-
sion, anatomic CSF and white matter masks were gener-
ated from segmentation maps that were then eroded by
one (CSF) or two (white matter) voxels. Nuisance regres-
sors were estimated as PCA components that encompass
up to 95% of the variance of the unsmoothed time-series
corresponding to each of the eroded masks. Spatial
smoothing was completed as it may improve signal to
noise, allow for a more Gaussian distribution of the series
data, and is a standard preprocessing routine for many rs-
fMRI studies. Note that the multiband data sets did not
undergo slice-timing correction. All analysis was com-
pleted in MATLAB (Mathworks, Natick, MA) and SPM8
(Wellcome Trust, UK). We specifically chose not to apply
global signal regression as recent studies have suggested
that this step may exacerbate motion related artifacts [Jo
et al., 2013] and that global rs-fMRI signal may have sig-
nificant neurophysiological correlates of interest
[Sch€olvinck et al., 2010].

Parcellation Scheme: After preprocessing, a parcellation
map was applied to the time-series data so that each gray
matter voxel was uniquely assigned to one region of inter-
est (ROI). Two parcellation schemes were tested. For each,
the target number of regions of interest (ROIs) for each
parcellation scheme was varied in powers of 2 from 128 to
2048. The highest target number of 2048 was chosen as at
this target the typical ROI size was slightly larger than the
Gaussian kernel used for spatial smoothing in preprocess-
ing, thereby allowing the highest ROI number that main-
tained minimal ROI interdependence.

For the first parcellation scheme, the “uniform” type, the
gray matter was subdivided into uniform sized ROIs
(maximum of size differences between ROIs was one
voxel) using the algorithm of Zalesky et al. [2010].

For the second scheme, the “functional” type, we uti-
lized a scheme from Craddock et al. based on clustering
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rs-fMRI data [Craddock et al., 2012]. The goal of this
method was to cluster voxels with the highest effective
intra-ROI connectivity versus inter-ROI connectivity, while
maintaining spatial proximity [Craddock et al., 2012]. Of
note, due to the clustering algorithm the number of ROIs
in the resultant parcellation may be lower than the indi-
cated target ROI number, especially for larger target ROI
numbers. In accord with the published protocol for this
scheme, the fMRI data used for generating these parcella-
tions were from three subjects from a different, publicly
available data set included in the distribution of the pub-
lished parcellation code.

After calculating a parcellation for each of the above tar-
get ROI values, via either of the above schemes, the same
set of parcellations was used throughout the analyses
described below.

Timecourse Extraction and Adjacency Matrix Construction:
Timecourses were extracted from each ROI as either the
average (mean) of the timecourses corresponding to each
voxel, or the first principal component (eigenvariate) of
the collection of ROI timecourses.

Following timecourse extraction, an “adjacency matrix”
was calculated in which each matrix row and column cor-
responded to a single ROI, and matrix elements corre-
sponded to Pearson correlation coefficients between the
pair of timecourses for the ROIs of that row and column.
In other words, a weighted non-directional graph was cal-
culated for each dataset with graph vertices corresponding
to each parcellation ROI and graph edge weight (w) calcu-
lated as the Pearson correlation coefficient (w 5 r) between
the timecourses of the corresponding ROI pair.

As rs-fMRI analysis can be significantly affected by
noise, we aimed to evaluate the degree to which nuisance
timecourse correlations influenced our results. For this
nuisance-based analysis (Fig. 3, third and fourth rows), pair-
wise Pearson correlation coefficients between nuisance
regressor timecourses were used for each scan to generate
the initial adjacency matrix edge weights, instead of the
denoised ROI timecourses.

Thresholding: In the case of thresholded analysis (Fig. 4),
edge weights lower than an indicated percentile threshold
across the graph were set to zero.

Individual Differentiation Efficacy

Rank sum statistic

We developed a metric that would allow us to quantify
the efficacy and efficiency of the choice of analysis proce-
dure to differentiate individuals (Fig. 1).

We consider a non-parametric, order based strategy. To
proceed, we first calculated a distance matrix dk,k 0 5 d(Gk, Gk 0)
for graphs Gk and Gk 0. In our current analysis,

d(Gk,Gk 0) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij wij-w’

ij

� �2
r

where wij, w’ij are edge weights

between the ith and jth ROIs of graphs Gk, Gk 0 respectively.

Then, from the distance matrix, we calculated a rank
matrix as follows: for the ith row (which corresponds to
the ith scan) in the distance matrix, a numerical rank
between 0,1,2,. . .n 2 1, is assigned to each element, where
n is the number of scans in the data set, and so that a rank
of 0 is assigned to the element corresponding to the dis-
tance between a the graph of a scan and itself, and a rank
of n 2 1 corresponds to the maximal distance between
pairs of adjacency matrices in that row.

The rank sum metric is the sum of these numerical
ranks across all the elements of the rank matrix that corre-
spond to true test and retest scan pairs, e.g., the first off-
diagonal elements of a rank matrix in which true test and
retest pairs are in adjacent rows/columns. Ideally, the dis-
tance between the graphs of true test-retest pairs will be
the smallest nonzero distance, so that these ranks will be 1
across the data set. Correspondingly, the ideal rank sum
would be equal to n, the number of scans in the data set.
The minimum rank sum is the ideal sum of n, and the
maximum rank sum is n(n 2 1) so that this metric is closed
and bounded, with a range that is independent of the
choice or scale of the particular distance metric. We can
therefore grade the ability of an analysis procedure to dif-
ferentiate individuals within a test-retest data set by how
closely its rank sum approximates n.

The benefits of using this statistic for comparison
include having an absolute minimum (equal to the num-
ber of scans in the data set) and easy to define statistics
based on random permutation of pairings. This metric is
minimized by factors that allow maximal differentiation of
individual subjects, with greatest reproducibility (minimal
inter-individual variance) between test and retest.

Permutation testing

To generate a distribution that the calculated rank sums
could be compared to, 1,000 rank sums were calculated
using random pairings of scans across the data set, with-
out including the true test-retest pairings. Notably, the
true pairing is only one of n!/[2*(n/2)!] possible pairing
that these 1,000 permutations sample from, where n is the
number of scans in the data set.

Unsupervised sorting of test-retest pairs

An unsupervised genetic algorithm, one in which no
a priori knowledge of subject labeling was included,
was developed to find the pairings of scans within each
data set that minimized the rank sum, under the
hypothesis that such a search would find the true test-
retest pairings as those pairs should have minimal dif-
ferences between their adjacency matrices and therefore
minimal total rank sum. The genetic algorithm optimi-
zation was completed using the “gaoptimset” function
of MATLAB.
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A population of random pairings of scan numbers was
generated, with each pairing represented as a string of
numbers corresponding to the scan IDs taken as pairs.

The crossover function of the optimization generated
members of a subsequent population by flipping the order-
ing of a substring of the string of the prior generation.

The mutation function of the optimization generated
members of a subsequent generation by swapping random
elements of the string of the prior generation.

Finally the fitness function was minimization of the rank
sum for each member of the population, which was com-
puted using the corresponding distance matrices (see Fig. 1).

Each generation consisted of a population of 100 strings
and each optimization was run for 400,000 generations,
with convergence halted if the average change over suc-
cessive generations was less than the internal default toler-
ance function.

Each optimization was repeated for subsamplings of
acquisition time of length 9, 15, 30, and 45 seconds, and 1

min, 2 min, 3 min and so on up to the maximum acquisi-
tion time for that data set. Presented are the minimal
acquisition times for generating perfectly accurate test-
retest pairings for the indicated condition.

Localization of Interindividual Differences

To determine the brain regions and connections that
contribute to this individual subject differentiation, for
each dataset the rank sum metric was calculated for differ-
ences of each element of the adjacency matrix (using the
functional parcellation, with the maximal number of ROIs,
and eigenvariate time-series extraction). The brain regions
containing the highest proportion of edges with the lowest
rank sum (< 5th percentile across all edges) were deter-
mined (Fig. 5). To determine the relevant networks repre-
sented by these ROIs, large scale resting state networks
were identified by performing K means clustering with
target k 5 10 on an adjacency matrix averaged across all

Figure 1.

Minimum rank sum statistic enables non-parametric comparisons

of test-retest acquisition and analysis parameters. To assess the

efficacy of differentiating individual subjects, adjacency matrices

were first made for each scan where each matrix element corre-

sponded to the correlation between time-series extracted from

the indicated pair of regions of interest (ROIs; left, schematic on

top, example from real data on bottom). The adjacency matrix

shown here represents a sample correlation matrix of a subject

using a parcellation generated with a target of 2048 ROIs; addi-

tional adjacency matrices for each parcellation were created as

described in the methods. Each row or column therefore corre-

sponds to one ROI. Next, for each dataset a distance matrix was

calculated where each element corresponded to the Euclidean dis-

tance (square root of sum of square differences for individual

matrix elements) between the indicated pair of adjacency matrices

(middle). Thus, for the KKI dataset, each matrix element repre-

sents the distance between two adjacency matrices of the 40 indi-

vidual scans (20 individual subjects 3 2 scans each), and for each

NKI dataset, each element represents the distance between two

adjacency matrices of the 46 individual scans (23 individual subjects

3 2 scans each). The sample matrix shown here represents a dis-

tance matrix utilizing the NKI Standard dataset. Each row or col-

umn therefore corresponds to one scan. Then, a rank matrix was

calculated where each element corresponds to the rank of the dis-

tance between the indicated pair of scans compared to the set of

distances in that row. The sample matrix shown here represents a

rank matrix utilizing the NKI Standard dataset. Note, the rank

matrix is not necessarily symmetric (right; minimum rank equals 1).

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

r Airan et al. r

r 1990 r

http://wileyonlinelibrary.com


subjects and datasets, utilizing the 1,000 ROI functional
parcellation. The resultant 10 clusters were manually
labeled as one of the known canonical resting state net-
works based on the topographic features of the clusters.

RESULTS

Maximizing Ability to Differentiate Individuals

We used minimization of the rank sum statistic
(described in Methods) to define the ability of a method to
differentiate individual subjects. For each analysis and
acquisition parameter that was varied, several general
trends were seen (Figs. 2 and 3). As expected, a longer
acquisition time and a higher number of ROIs in the par-
cellation allowed greater ability to differentiate between
individual subjects, with acquisition parameters (such as
length of acquisition and TR) having greater effect.

Acquisitions with shorter TR tended to allow greater
individual subject differentiation, with the multiband
acquisition data sets producing lower rank sums com-
pared to standard, single-band acquisitions for the same
acquisition duration. For the data sets analyzed, between 7
and 10 min of acquisition time was sufficient to minimize
the resultant rank sum suggesting that longer acquisition
duration would produce only minimal incremental gain in
individual subject characterization, for the number of sub-
jects in these data sets (n 5 20 or 23, Figs. 2 and 3).

To determine whether the effect of TR on minimum rank
sums was purely a function of increased sampling versus
acquisition time, the data were organized by number of data
points acquired, instead of by real time (Fig. 4, top). These data
seem to indicate that increased sampling frequency alone does
not ensure lower rank sums. Instead, data sets with smaller
TR (and similar intrinsic signal to noise ratio) tended towards
high rank sums when the number of data points were kept
constant, suggesting an apparent trade-off of increased

Figure 2.

Varying acquisition time and parcellation for each test-retest data

set. Top: Sum of distances (a measure of intra-individual reprodu-

cibility; lower distances imply lower variability and higher repro-

ducibility) between test-retest scan pairs versus acquisition time,

for varied number of regions of interest in each parcellation (data

using a functional parcellation scheme [Craddock RC et al., 2012]

and eigenvariate time extraction; see “Methods” section: Methods

for details). Dashed line is the mean 6 s.e.m. calculation for a set

of 1000 randomly assorted pairs for the maximum ROI parcella-

tion. Bottom: Sum of ranks of test-retest scan pairs (a measure of

interindividual differentiability; lower sums indicate higher individ-

ual differentiability) for the indicated data set by ROI, using the

same conditions as the Top row. Black line at bottom is the mini-

mum possible rank sum. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

Varying methods of time-series extraction and parcellation gen-

eration for each test-retest data set and analysis of nuisance

timecourses. First row: Sum of test-retest scan pairs comparing

method of timecourse-series extraction, plotted similar to Fig-

ure 2. See “Methods” section for details. Second row: Sum of

test-retest scan pairs comparing method of parcellation genera-

tion, plotted similar to Figure 2. Third row: Sum of test-retest

scan pairs for adjacency matrices calculated from the nuisance

timecourses (motion, CSF, white matter, and global signal), plot-

ted similar to Figure 2. Fourth row: Sum of test-retest scan pairs

for adjacency matrices calculated from the motion-related nui-

sance time- courses only, plotted similar to Figure 2. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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sampling frequency and longer acquisition times. This is
consistent with prior work demonstrating that for a fixed
target sample number, reproducibility of rs-fMRI data was
shown to increase with greater scan time [Birn et al., 2013].
However, while the results of [Birn et al., 2013] indicate
that longer acquisition times yield increased reproducibility
of rs-fMRI data out to >20 min, we see at most marginal
increases with acquisition times longer than 7–10 min for
the slightly different question of individual differentiation
(Figs. 2 and 3). These differing results are likely due to the
inclusion into our rank sum metric of both interindividual
as well as intra-individual variability, both of which affect
individual differentiation, while reproducibility studies pri-
marily assess for intra-individual variability.

As thresholding of the adjacency matrices is commonly
utilized to reduce data dimensionality and eliminate likely
noisy data, the minimum rank sum was calculated for
each adjacency matrix after eliminating correlations below
a percentile threshold (i.e., at a “25%” threshold, all corre-
lations within the bottom 25th percentile for that adjacency
matrix were set to 0). With this analysis (Fig. 4, bottom),
the data set with the least sampling (NKI, standard acqui-
sition with TR 5 2,500 ms, 5 min acquisition) showed a
steady improvement of subject differentiation with increas-
ing thresholding, with minimal effects for the TR 5 1400
and 2000 ms data sets, and no appreciable effect for the
TR 5 0.645 ms data set.

Necessary Acquisition Time

to Differentiate Individuals

To explore the question of the acquisition time necessary
to differentiate individual subjects by their non-thresholded
adjacency matrices, an unsupervised genetic algorithm was
utilized to sort scans into their test-retest pairs using the
rank sums as the optimization metric, the rs-fMRI derived
adjacency matrix as the only input, and without including
any a priori information of subject labeling. Indeed, only 3–4
min of acquisition time was necessary to perfectly sort up to
23 subjects without any a priori subject labeling (Tables I and
II) for all but the least sampled data set (NKI TR 5 2500 ms).
Choice of parcellation type produced only marginal differ-
ences with respect to time necessary for perfect pairing of
subjects, as did number of ROIs in the whole-brain parcella-
tion beyond �1,000.

Localization of Interindividual Differences

The brain regions that contributed most to individual dif-
ferentiation (Fig. 5) were located in association and second-
ary cortices in the prefrontal cortex, the precuneus and
parietotemporal cortices; with no appreciable contribution
of the primary motor, sensory, and visual cortices and deep

Figure 4.

Factors affecting achieving the minimum rank sum. Top: Rank

sums of test-retest pairs for each data set as a function of num-

ber of data points acquired. Bottom: Adjacency matrices were

thresholded such that edges with correlation less than the indi-

cated percentile were set to zero (FDR: threshold set to the

Benjamini-Hochberg false discovery rate). Values presented are

for the indicated data set processed using the functional parcel-

lation of 1920 ROIs and using eigenvariate time-series extrac-

tion. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

TABLE I. A genetic algorithm perfectly sorts true

test-retest pairs using minimal acquisition time by

minimizing the rank sum metric, with minimal variation

with choice of parcellation

Parcellation Functional Uniform
Dataset 1000 ROIs 1920 ROIs 1024 ROIs 2048 ROIs

KKI (TR 5 2.0s) 4 3 4 3
NKI (TR 5 2.5s) – – – –
NKI (TR 5 1.4s) 2 2 2 2
NKI (TR 5 0.645s) 3 3 8 3

Elements of the table show the minimum acquisition time (in
minutes) to perfectly sort scans from the indicated datasets and
parcellation schemes. No value is given for conditions in which a
perfect sorting was not identified.
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gray matter structures. Additionally, we see a better resolu-
tion of localization with greater acquisition time likely due
to better estimation of the functional connectivity that
underlies this determination. Networks that contributed
most to subject differentiation were the default mode, exec-
utive, and attention networks, with less contribution of the

visual, motor, and deep gray matter networks. Notably, this
general pattern held when we analyzed the data sets indi-
vidually (Supporting Information Fig. S1).

DISCUSSION

In this study, we used a non-parametric statistical test
for determining the ability of a specific set of rs-fMRI
acquisition and analysis variable values to differentiate
individual subjects (Fig. 1). For individual differentiation,
we see several general trends: more data is better up to a
point; more ROIs in a parcellation is generally better;
thresholding the data helps when there is lower data sam-
pling; and some brain regions and connections have
greater importance than others. These findings are dis-
cussed in further detail below.

Unsurprisingly, more data generally allows for better
individual differentiation (Figs. 2 and 3). For instance, lon-
ger acquisition times yield lower rank sums as do sequen-
ces with smaller TR. This effect seemed largely due to the
increased number of samples, although qualitatively this
effect was modulated by TR. When keeping the number of
data points constant, lower TR paradoxically trended
towards decreased ability to differentiate individuals (Fig.

Figure 5.

Map of brain regions that define unique identifiers of individuals.

Left: Brain regions color coded by greatest proportion of connec-

tions with the lowest (< 5th percentile) test-retest rank sum, aver-

aged across the four data sets, calculated using all the available

acquisition time. Similar results were found for each individual data

set (Supporting Information Fig. S1). Warmer colors code to

regions that enable higher individual differentiation (higher number

of connections that have low test-retest rank sum). Right: Average

number of low (<5th percentile) rank sum edges per ROI for the

indicated resting state network, averaged across the data sets at

the indicated amounts of acquisition time. For data sets with <10

min of acquisition time, KKI and NKI 2500, their adjacency matri-

ces using the full amount of acquisition time (7 min for KKI, 5 min

for NKI 2500) were used in the average for the later time points.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE II. A genetic algorithm perfectly sorts true

test-retest pairs using minimal acquisition time by

minimizing the rank sum metric, with minimally longer

times needed with higher numbers of subjects

Dataset N 5 10 N 5 15 N 5 20 N 5 23

KKI (TR 5 2.0s) 2 3 3 N/A
NKI (TR 5 2.5s) 2 2 – –
NKI (TR 5 1.4s) 2 2 2 2
NKI (TR 5 0.645s) 2 2.5 3 3

Minimum acquisition time (in minutes) for an unsupervised genetic
algorithm to use test-retest rank sum minimization to perfectly sort
scans from the indicated datasets into individual pairs, by number
of subjects in the group (N). When varying N below the maximum
of the data set, the set of subjects was randomly chosen from the
total data set 20 times; presented are median values. No value is
given for conditions in which a perfect sorting was not identified.
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4, top). This result is consistent with work that demon-
strated that, with a fixed target sample number, reproduci-
bility of rs-fMRI data was shown to increase with greater
scan time [Birn et al., 2013]. For the particular question of
individual differentiation, only marginal returns are seen
for acquisition times longer than 7–10 min (Figs. 2 and 3).
Taken together, these results suggest a tradeoff of
increased acquisition time and increased sampling fre-
quency (lower TR) for the question of increasing amount
of data for individual subject differentiation. From our
results, it was not clear whether multiband acquisition
alone had any advantages over standard acquisitions aside
from the generally lower TR.

Higher numbers of ROIs in a whole brain parcellation,
with correspondingly lower size of individual ROIs,
allowed for greater individual differentiation (Fig. 2), with
less contribution of the specific parcellation choice (Fig. 3).
This may be explained by less averaging together of dis-
similar regions with smaller ROIs, with marginal effects
when the ROI size is sufficiently small (�>1000 ROIs in a
whole-brain parcellation).

Factors that had at most minor effect on individual sub-
ject differentiation were (i) choice of the specific parcella-
tion strategy, and (ii) time-series extraction method (Fig.
3).

For datasets using longer TR values, such as TR 5 2.5
sec, thresholding the adjacency matrices allowed for
greater individual subject differentiation, likely due to
removal of predominantly noise contributing elements
(Fig. 4, bottom). However, this effect was not consistent
with data sets with lower TR, suggesting that increased
sampling frequency alone could optimize the attainable
interindividual differentiation.

It was surprising that apparently limited amounts of
data could allow for robust individual subject differentia-
tion (Tables I and II). With only 2–3 min of BOLD acquisi-
tion time using the multiband data sets, an unsupervised
algorithm could reliably sort up to 20 subjects into the
appropriate test-retest pairs—a typical number of subjects
per group for many fMRI experiments. This sorting was
able to occur even though the algorithm had no labels for
which scan corresponded to which patient or even
whether a particular scan was the initial test or the second,
retest scan. The amount of acquisition time necessary for
reliable, fully unsupervised sorting of scans increased for
increasing numbers of subjects, with up to only 3–4 min
necessary for the full n 5 23 data sets. These results under-
score that indeed rs-fMRI data alone contain sufficient
information to robustly differentiate individual subjects
and allow for analysis of the factors that contribute to indi-
vidual subject uniqueness.

The potential contribution of non-neural signal (i.e.,
physiological or other noise) to determine individual dif-
ferentiation in this setting needs to be addressed. Indeed,
physiological noise may account for a large portion of the
BOLD signal, and subject differentiation may thus be

driven by these signals rather than those of neurobiologi-
cal significance. We addressed this issue in two ways.
First, physiological noise of the fMRI time-series was
diminished by a commonly utilized method validated in
rs-fMRI studies (CompCor; [Muschelli et al., 2014]). More
importantly, we utilized only the nuisance signals in rank
sum calculation and found that they were not sufficient
for subject differentiation, even if we restricted the analysis
to a subject specific nuisance signal such as motion (Fig.
3). Thus, we believe that our rank sum metric employs sig-
nal of true biological interest in assessing subject
differentiation.

The step of normalization to an anatomic standard (usu-
ally completed in standard rs-fMRI preprocessing) may
affect these results and inform our determination of inter-
individual differences. Currently such anatomic warping is
a standard practice in processing both task-based and
resting-state fMRI [Van Dijk et al., 2010]. It is possible that
such warping may impart a signal in the derived func-
tional connectivity that allows for individual subject differ-
entiation based more on anatomy as opposed to
fluctuations in neurovascular coupling. To minimize this
possibility, we utilized an ANTs based registration (stna-
va.github.io/ANTs), which has been shown in recent open
challenges to be the most successful template normaliza-
tion and segmentation algorithm [Tustison et al., 2014].
The use of this algorithm should minimize the anatomic
level differences between subjects in our analysis. Further,
if an anatomic-based signal substantially contributed to
our results, we would not expect as strong of an effect of
acquisition time as we see in our results – nor a strong
effect of TR between data sets with the same exact anat-
omy of the subjects such as between the NKI data sets. We
believe that individual anatomic variation across subjects
cannot adequately explain our results. Some of the mar-
gins of the areas of high functional variability (Fig. 5) do
not correspond to known anatomic margins, and anatomic
features known to have high variability across subjects
(e.g., the parieto-occipital fissure and the temporo-occipital
junction [Iaria G and Petrides, 2007]) do not demonstrate
high functional variability across subjects (Fig. 5). Further-
more, this anatomic warping step is necessary for any
analysis that is blinded to subject identification as there
are no known methods for exactly comparing functional
connectivity graphs of unwarped brains in such a manner
as we have completed here. Doing an unwarped analysis
would qualify as an instance of the graph isomorphism
problem, which is computationally complex to the point of
being possibly NP complete for an exact solution [Garey
and Johnson, 1979]. Certainly, future work will seek to
complete a similar analysis, but for BOLD data that is not
spatially warped to an anatomic standard.

From the analysis of the brain regions and connections
that most contribute to individual subject differentiation,
several interesting features were identified (Fig. 5 and Sup-
porting Information Fig. S1). First, primary motor and
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sensory cortices and deep gray matter structures do not
appear to contribute significantly to individual subject dif-
ferentiation. Such regions likely have relatively invariant
functional anatomy and connectivity from person to per-
son and therefore would not enable differentiation
between individuals. In contrast, the regions that appear
to contribute most to individual subject differentiation are
found in association and secondary cortices in the prefron-
tal cortex, the precuneus and parietotemporal cortices.
These results are overall consistent with those of Mueller
et al. [Mueller et al., 2013], who found that a similar set of
regions displayed high intersubject variability.

A critical finding in our analysis in contrast to Mueller
et al. is the significant contribution of the precuneus and
posterior cingulate cortex in individual differentiation in
our study. These regions have been the targets of a large
proportion of studies in functional connectivity, and forms
a key component of the default mode network (DMN). On
a group level, alterations in DMN connectivity (specifically
the precuneus/posterior cingulate) have been demon-
strated to be significant in pathology [Barkhof et al., 2014].
However, characterizing dysfunction in the DMN that is
related to disease on a group level has been suboptimal
despite the overall high reproducibility of this network,
likely because of the high interindividual variability of
DMN connectivity that we describe here.

Another finding in contrast to Mueller et al. is our find-
ing of lesser contributions of the cingulate body and tem-
poral poles in subject differentiation. Some of the
differences between our results and those of Mueller et al.
may be due to the inclusion of both intersubject and intra-
subject variability in our rank sum metric for the question
of individual differentiation, compared to the focus on
group level intersubject variability alone in Mueller et al.
[Mueller et al., 2013]. With regard to the recent study by
Finn et al. [Finn et al., 2015], our results largely agree with
theirs in that a “fronto-parietal” network appears to con-
tribute substantially towards individual subject identifica-
tion with rs-fMRI. Key points differentiating our study
compared to Finn et al. are the identification of a statistical
measure that allows quantification of the ability of an anal-
ysis scheme to differentiate individuals; a more granular,
higher spatial resolution analysis of the brain regions that
contribute to this identification, as we analyze at the ROI
level in addition to the network level; an analysis of the
acquisition and analysis factors that contribute most to this
differentiation; and that the blinded, unsupervised algo-
rithm we use to pair repeated scans was blinded with
respect to the subject labeling and the order of scan
acquisition.

In addition to the DMN, the regions that appear to best
differentiate individuals are thought to comprise much of
the attention and executive control networks [Power et al.,
2011]. These networks have been implicated in a heterogene-
ous array of interesting effects in the rs-fMRI literature. Our
findings suggest that these networks are the highest signal

regions for determining the pertinent functional connectivity
for an individual subject. As the functional connectivity of
these regions is highly variable across individuals, our find-
ings warrant caution in interpretation of results that may
average together functional connectivity statistics for these
networks across a group of varied individuals.

Further avenues for research will be to refine our map
of brain regions and connections that best allow the differ-
entiation of individuals. Additionally, given recent advan-
ces in understanding the importance of functional
connectivity dynamics [Allen et al., 2014; Handwerker
et al., 2012; Hutchison et al., 2013] it would be of interest
to use the above methods to define a typical time length
for the stability of individual functional connectivity states,
given that whole brain connectivity may shift between var-
ied connectivity states over minutes, days, months or years
[Choe et al., 2015] depending on the changing cognitive
state of the subject.

CONCLUSION

In this study, we have introduced a non-parametric
measure to evaluate the degree to which a given acquisi-
tion and analysis scheme can differentiate individual sub-
jects. Using this metric, we see that there is a relative
tradeoff of increasing temporal sampling through either
lower TR or longer acquisition times. We further find that
only 3–4 min of acquisition time is sufficient to perfectly
differentiate individual subjects in these data sets. We find
that brain regions that most contribute to this individual
subject characterization lie in regions thought to contribute
to the default mode, attention, and executive control net-
works. These results have application in the design of
studies that analyze determinants of the behavior of indi-
vidual subjects and that clinically evaluate individual
patients.
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