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Network analyses based on comprehensive molecular
interaction maps reveal robust control structures in yeast
stress response pathways
Eiryo Kawakami1,6, Vivek K Singh2,6, Kazuko Matsubara3, Takashi Ishii1, Yukiko Matsuoka3, Takeshi Hase3, Priya Kulkarni2,
Kenaz Siddiqui2, Janhavi Kodilkar2, Nitisha Danve2, Indhupriya Subramanian2, Manami Katoh3, Yuki Shimizu-Yoshida1,4, Samik Ghosh3,
Abhay Jere2 and Hiroaki Kitano1,3,4,5

Cellular stress responses require exquisite coordination between intracellular signaling molecules to integrate multiple stimuli and
actuate specific cellular behaviors. Deciphering the web of complex interactions underlying stress responses is a key challenge in
understanding robust biological systems and has the potential to lead to the discovery of targeted therapeutics for diseases
triggered by dysregulation of stress response pathways. We constructed large-scale molecular interaction maps of six major stress
response pathways in Saccharomyces cerevisiae (baker’s or budding yeast). Biological findings from over 900 publications were
converted into standardized graphical formats and integrated into a common framework. The maps are posted at http://www.
yeast-maps.org/yeast-stress-response/ for browse and curation by the research community. On the basis of these maps, we
undertook systematic analyses to unravel the underlying architecture of the networks. A series of network analyses revealed that
yeast stress response pathways are organized in bow–tie structures, which have been proposed as universal sub-systems for robust
biological regulation. Furthermore, we demonstrated a potential role for complexes in stabilizing the conserved core molecules of
bow–tie structures. Specifically, complex-mediated reversible reactions, identified by network motif analyses, appeared to have an
important role in buffering the concentration and activity of these core molecules. We propose complex-mediated reactions as a
key mechanism mediating robust regulation of the yeast stress response. Thus, our comprehensive molecular interaction maps
provide not only an integrated knowledge base, but also a platform for systematic network analyses to elucidate the underlying
architecture in complex biological systems.
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INTRODUCTION
Living organisms are constantly affected by diverse internal
and external stressors; for example, changes in nutrient and
ion concentrations and temperature. They respond to such
perturbations by orchestrating complex interactions between
large numbers of intracellular molecules, including receptors,
secondary messengers, modification enzymes, and transcription
factors. This response to counteract stress stimuli is conserved
throughout biology, from simple unicellular organisms to
multicellular animals, and serves to maintain their homeostasis.
Stress response pathways are thought to allow organisms to

transmit abrupt stimuli and trigger a range of cellular responses
that enable the cell to respond properly to environmental
challenges. Molecular mechanisms that can ensure stability of
response include switch-like mechanisms, which generate thresh-
old responses when stimuli reach a specific concentration.1 From
the perspective of global network architectures, it has been
argued that a bow–tie structure, where diverse stimuli sensing
upstream signals converge into a limited number of ‘core’
molecules, which then trigger diverse effector molecules or
genes, is an evolutionarily conserved core architecture of

biological networks, a version of which can be observed in
signaling networks.2,3

To understand the overall picture of molecular stress
responses, we chose to investigate stress response pathways in
Saccharomyces cerevisiae (baker’s or budding yeast). Budding yeast
is a well-established model eukaryote organism, owing to its
genetic and biochemical tractability, efficient growth ability,
and the availability of extensive curated databases.4,5 It also
shares stress response mechanisms, including MAPK cascades,
heat shock chaperones, and redox proteins, with multicellular
eukaryotes.6–8 Thus, insights obtained using budding yeast can be
applied to multicellular organisms.
Dynamic modeling approaches are frequently used to under-

stand the behaviors of signaling networks.9–11 However, such
approaches are not scalable when networks contain more than a
thousand states and interactions. Network analyses serve as
powerful alternative tools to extract fundamental features
from complex networks. Protein–protein interaction (PPI) and
gene regulatory network12–14 are popular platforms for network
analyses but often suffer from limited accuracy and a lack of
detailed information. Therefore, we have taken a ‘deep curation’
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approach to integrate experimentally derived network database
data with information derived from publications.
Amassing a vast quantity of information from disparate sources

into a common framework (namely, a large-scale molecular
interaction map) can complement experimental efforts and
provide a standardized format for subsequent network analyses.
Current tools and standards in systems biology, such as
CellDesigner, software designed to express various features of
intracellular reactions in a graphical format,15,16 encoded using
Systems Biology Markup Language (SBML; http://sbml.org/),17

provide computational platforms to collate and interpret such
large-scale interaction maps. Using SBML and CellDesigner, signal
transduction maps have been constructed for the epidermal
growth factor receptor (EGFR), toll-like receptor (TLR), mammalian
RB/E2F, and mammalian target of rapamycin (mTOR) signaling
networks.18–21 In addition, consensus maps detailing the cell cycle
processes and metabolic pathways of S. cerevisiae have been
reported recently.22,23 However, to the best of our knowledge, no
comprehensive molecular interaction map detailing a range of
stress response pathways in S. cerevisiae currently exists.
In this paper, we first outline the creation of a map of yeast

stress responses incorporating 26 different stimuli, grouped into
six signaling pathways. On the basis of this map, we performed
systematic, network-driven analyses to unravel three specific
aspects of the underlying architecture of the network. First,
bow–tie analyses demonstrated bow–tie structures for yeast stress
responses, with a limited number of core molecules integrating
multiple upstream signals and distributing these to downstream
pathways. Second, controllability analyses indicated a
characteristic control structure, with close correlations between

bow–tie structures and experimental phenotypes. Finally, network
motif analyses revealed characteristic motifs in stress response
pathways, closely related to the core molecules within bow–tie
structures.
Overall, we demonstrate a potent network-oriented strategy to

elucidate underlying architectures in signaling networks, powered
by comprehensive molecular maps.

RESULTS
Comprehensive map characteristics
In this study, we first constructed comprehensive yeast stress
response maps (Figure 1) to capture biochemical reactions
associated with the different biological events comprising stress
responses in S. cerevisiae, including the binding of external ligands
to specific receptors, signal transmission via kinase cascades,
eventual delivery of signals to the cell nucleus, and gene
transcriptional regulation.
Molecular species and their interactions were constructed using

CellDesigner 4.3 editor by curating experimental evidence of
functional interactions derived from published data (902 in total;
Supplementary Information S1). The relevant publications relating
to each interaction were stored in model notes and ‘MIRIAM
(Minimum Information Required In the Annotation of Models),24

with links to the source database.
Using standardized notations from the Systems Biology

Graphical Notation (SBGN) process description diagram,25 a
mechanism-oriented view was included in the maps, capturing
details such as state transition (phosphorylation, degradation, and
transportation), complex formation, intracellular localization, and

Figure 1. Comprehensive maps of the stress response pathways for the budding yeast, Saccharomyces cerevisiae, categorized into six groups:
ion homeostasis; nutrient adaptation; osmotic and cold stress; oxidative stress; heat shock; and pheromone response. These maps were
created with CellDesigner version 4.3.0. The SBML files and high-resolution image PDF files are available in Supplementary Information S2 and
S3, respectively. The poster size version, integrating all six maps, is available in Supplementary Information S4.
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other biological features obtained from the literature. This detailed
format not only enables informative summarization of data
distributed across a vast literature, but also facilitates network
analyses and mathematical model construction.
The source CellDesigner xml and PDF format files of the

individual maps are provided in Supplementary Information S2.1,
respectively. The poster size version of all six maps is also provided
in Supplementary Information S4.
Twenty-six different signals (stimuli) are represented in the

maps, including heat shock, dimethyl sulfoxide, cold shock,
hyperosmolarity, hypo-osmolarity, zymolyase, alkali, H+, Na+, K+,
Li+, Ca2+, Mg2+, Mn2+, Cu2+, Cd2+, Zn2+, Fe3+, oxidative stress,
low glucose, amino acids, nitrogen source, glucose, citric acid,
sorbic acid, and pheromone. According to standard biological
classification,26 the pathways were categorized into the following
six groups: (1) ion homeostasis; (2) nutrient adaptation; (3) osmotic
stress; (4) oxidative stress; (5) heat shock; and (6) pheromone
response. The biological features of each group are described in
Supplementary Information (S5). The numbers of species and
reactions in each of the six maps are provided in Table 1. The
occurrence of specific entities in each of the six maps is
summarized in Supplementary Information (S6).

Bow–tie analyses
While there are reports of bow–tie structures in mammalian TLR
and EGFR pathways,18,19 it is unclear whether such structures also
exist in the stress response pathways of budding yeast. To
evaluate whether yeast stress response pathways also contain
bow–tie structures, we calculated bow–tie scores, (b(m)∈ [0, 1]).
The bow–tie score, b(m), represents the fraction of connecting
paths between a source (S) and target (T) containing node (m).27

This score can be considered a specialized form of ‘betweenness
centrality’, in which all possible connections from all vertices to all
others are considered.28 Thus, nodes with high bow–tie scores are
repeatedly used in various signaling pathways connecting sources
and targets. We defined external stimuli (e.g., heat shock, ions,
and osmotic stress) as sources and mRNAs expressed as a
consequence of stress responses as targets.
In all six yeast stress response maps, we found that there were

small numbers of nodes with high bow–tie scores, whereas the

majority of other nodes had very low scores (Table 2), suggesting
that bow–tie structures are indeed present in yeast stress
response pathways. For instance, only four proteins, Hog1, Sho1,
Pbs2, and Msn2, in the osmotic and cold stress response map had
bow–tie scores 40.5. All of these molecules are core components
of the high-osmolarlity glycerol (HOG) pathway, indicating that
the majority of osmotic and cold response signals pass through
the HOG pathway, as reported previously.29 Even when a
threshold bow–tie score of 40.2 was considered high, only 20
molecular species (6.0%) were included in this category. By
contrast, relatively large numbers of molecules with high bow–tie
scores were identified in the pheromone response map.
This suggests the presence of non-redundant core processes,
composed of relatively large numbers of molecules, in the yeast
pheromone response. In fact, in the pheromone response, mating
signals are transmitted directly via multiple MAPK-related
molecules, which are sequentially activated using Ste5 as a
binding platform.30 Thus, bow–tie scores clearly provide important
information about the architectures of signaling pathways in yeast
stress responses. We defined molecules with bow–tie scores 40.2
as candidate bow–tie cores (Supplementary information S7). In all
six maps, molecules with high bow–tie scores connected densely
with each other, suggesting that these core molecules co-operate
in central processes. Overall, bow–tie analyses revealed important
bottlenecks in each stress response pathway.
As expected bow–tie scores demonstrated a degree of

correlation with those for betweenness centrality in each map
(Table 2; R2 = 0.22–0.89), likely due to generic similarities between
the two measures in capturing network structure. However, there
are a number of connections that may be unrelated to signaling
flow, particularly in signaling pathways rich in branched and
reversible reactions, such as the ion homeostasis and the heat
shock responses. In these instances, betweenness centrality does
not clearly represent the importance of particular nodes in
biological signaling pathways. Moreover, nodes with high bow–tie
scores do not necessarily have a high degree, indicating that
bow–tie cores are different from network hubs. Thus, the bow–tie
score is suitable for investigating network structure and identify-
ing core molecules, particularly in networks with directional
signaling. The bow–tie and betweenness centrality scores, and
degree, are summarized in Supplementary information S8.1 for all

Table 1. Statistical properties of yeast signal transduction maps constructed in this study

Ion homeostasis Nutrient adaptation Osmotic stress Oxidative
stress

Heat shock Pheromone
response

Stimuli H+, Na+, K+, Li+, Ca2+, Mg2+,
Mn2+, Cu2+, Cd2+, Zn2+, Fe3+,
alkali, citric acid, sorbic acid

Glucose, low glucose,
amino acids, nitrogen

source

Hyper-osmolarility,
hypo-osmolarility,
cold shock, DMSO,

zymolyase

Oxidative
stress

Heat
shock

Pheromone

Number of species 1,082 580 586 517 481 217
Proteins 368 256 215 167 167 87
Complexes 137 110 79 61 49 71
Genes and RNAs 400 134 228 217 203 40

Other moleculesa 121 (4) 49 (1) 40 (2) 42 (0) 19 (1) 6 (0)
Number of reactions 768 472 424 464 366 155
Associations and
dissociations

105 99 62 83 36 46

State transitions 145 170 111 124 87 51
Transcriptions and
translations

284 94 130 132 123 30

Transports 99 59 26 28 20 13
Number of Referencesb 281 274 239 253 174 152

Abbreviation: DMSO, dimethyl sulfoxide.
aOther molecules include simple molecules (e.g., ATP, glucose, NADH), ions, and drugs. The number of drugs is indicated in brackets, since drugs are not
naturally present in yeast cells.
bA full list of publications referred to in the maps is available in Supplementary Information S1.
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molecules. When we applied our analysis method to previously
published signaling maps, we found that molecules that have
been proposed as bow–tie cores in the TLR and EGFR
pathways18,19 also had high bow–tie scores (in TLR pathway,
NF-κB/CBP: b(m) = 0.89 and MyD88: b(m) = 0.45; and in EGFR
pathway, Rac/Cdc42: b(m) = 0.70 and PI3,4,5-P3: b(m) = 0.63),
supporting the validity of the bow–tie score as a method for
identifying core molecules.
In addition to core molecules in the individual maps, we also

found that a few molecules, including Msn2/4, Tpk1/2/3, and
TORC1, had high bow–tie scores in the majority of maps analyzed.
For example, Msn2 exhibited bow–tie scores of 40.20 in all stress
response maps, with the exception of the pheromone response
map. These molecules receive various different stress signals
and broadly control stress-responding genes, indicating a global
bow–tie structure throughout the yeast stress response
(Figure 2a).
Next, we evaluated the maps we constructed as tools for

estimation of the sites of action of drugs or stressors. To this end,
each connecting path was weighted with differential expression
change (log-fold change) of target mRNA. Weighting in this way
allowed us to evaluate whether each bow–tie core molecule is
also important as a signaling bottleneck under specific conditions.
After NaCl treatment,31 components of the HOG pathway (Hog1,
Pbs2, and Sho1) exhibited high ‘weighted’ bow–tie scores,
indicating increased expression of genes downstream of the
HOG pathway (Figure 2b). In addition, heat shock condition
(measured at 45 min after a shift in culture conditions from 30 to
37 °C)32 induced a characteristic increase in the weighted bow–tie
score of Hsf1 in the heat shock response map, whereas scores
were ablated in core molecules related to the pheromone
response (Figure 2c). Finally, we confirmed that TORC1 and EGO
complexes displayed characteristic high bow–tie scores when
stimulated with rapamycin33 (Figure 2d). This is consistent with
the role of rapamycin in preventing activation of TORC1, which
suppresses catabolic-related genes in nutrient-rich conditions.
These results are consistent with previous studies indicating
the efficacy of weighted bow–tie analyses for integrating
transcriptome data to estimate important signaling bottlenecks
under specific conditions. Our analyses indicate that our methods
will be useful for elucidating the functional mechanisms of
uncharacterized drugs.

Controllability analyses
Our bow–tie analyses indicated that the bow–tie structure may
function as a central subsystem controlling the yeast stress
response. To further investigate this phenomenon, we conducted
controllability analyses to determine how individual molecules are
controlled within bow–tie structures. Controllability analysis
determines nodes required to control the network (driver nodes)
by maximum matching in the network.34 A driver node can be
considered as a regulator that controls downstream molecules via
a directed path. If a large fraction of driver nodes (fD) are necessary
for control, as in the case of the Internet,35 then the network does
not have systematic regulation and each component node will be
controlled separately. On the other hand, networks with a low fD,
such as the neural network of C. elegans,36 are systematically
controlled by a few master regulators. In addition to the driver
nodes, we can also assess the importance of a node in regulatory
signal transmission by removing it from a network and examining
the effect on fD. If fD increases when a node is removed, then the
node is defined as a critical node, as the systematic network
control is somewhat lost under conditions of node failure. In other
words, losing a critical node means that some of the regulatory
paths connecting regulators and their targets are disconnected,
necessitating an increase in individual regulators (Figure 3a). Thus,
critical nodes can be considered as important transmitters of
regulatory signals. Biologically, this implies that inhibition of a
molecule corresponding to a critical node by genetic knockout or
treatment with an inhibitor would lead to dysregulation of several
molecules controlled by using the critical node as a signal
transmitter. Using controllability analysis, we investigated how
systematically the yeast stress response is controlled, and explored
the relationship between controllability and bow–tie structures.
As shown in Figure 3b, all of the stress response pathways

examined exhibited moderate fD values (~0.4) comparable to
those of the metabolic networks of yeast and E. coli,37 suggesting
that a moderate fD is likely to be a common feature of self-
assembled molecular biological networks, in which modular
control is a widely observed mechanism effective for the local
containment of perturbations and damage.3 Of interest, the
majority of the bow–tie cores were not identified as driver nodes
(Supplementary information S7 and S8). A substantial number of
the driver nodes resided upstream of the bow–tie cores
(Supplementary information S7). By contrast, we found that the
fraction of critical nodes was significantly higher among those
with high bow–tie scores (40.20) compared with other nodes

Table 2. Distribution of bow–tie scores b(m) in each stress response pathway

Bow–tie score
b(m)

Ion
homeostasis

Nutrient adaptation Osmotic
stress

Oxidative stress Heat shock Pheromone response

0.5–1.0a 5
Sho1/Pbs2,
Hog1, Pbs2,
Hog1/Msn2,

Hog1

12
cAMP, EGO complex, Sit4, TORC1,
Tap42/TORC1, ATP, Sit4/Tap42/

TORC1, fructose 1,6-biphosphate,
fructose 6-phosphate, glucose

6-phosphate

6
Hog1/Msn2,
Pbs2, Hog1,
Sho1/Pbs2

8
Sit4, Msn2,

Hyr1/Yap1/Ybp1,
Yap1-Ox, Glc7/
Reg1, Bmh2

5
cAMP,
Cdc25,

Cyr1/Srv2,
Msn2, Bcy1

23
Cdc24/Far1/Ste4/Ste18, Ste4/

Ste18, Bem1/GTP/Cdc42/Cdc24/
Far1/Ste4/Ste18, Bem1/GTP/

Cdc42/Cdc24/Far1/Ste4/Ste18/
Ste20, GTP Gpa1/Ste4/Ste18,Ste5/

Ste50/Ste11/Ste7/Kss1, Ste5/
Ste50/Ste11/Ste7/Fus3, Ste12,
Dig1/Dig2/Ste12, Kss1, a-factor/

Ste3, alpha-factor/Ste2
0.2–0.5 3 28 14 30 19 7
o0.2 81 133 67 71 41 2
0 529 325 245 268 190 162
R2 coefficientb 0.3165 0.8881 0.6902 0.5531 0.2243 0.8096

aFor molecules with very high bow–tie scores (0.5–1.0), the number of molecules in the map with bow–tie scores b(m) within this range are indicated above a
list of molecules/complexes with these scores in each map. Molecules in different states (modification or localization) are represented without distinction.
Instances separated with '/' indicate complexes.
bR2 coefficient between bow–tie score and betweenness centrality.
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(Po0.001; paired t-test; Figure 3c). This indicates a potential role
for bow–tie cores, not as regulators, but as important transmitters
of regulatory signals. In addition, we found a significantly higher
fraction of critical nodes among complexes than monomeric
proteins (P= 0.023, paired t-test; Figure 3d).
Next, we assessed whether controllability is correlated with

experimental phenotypes created by genetic deletions. Systematic
deletion analyses in the budding yeast have revealed that only a
small fraction (~20%) of genes are individually indispensable,
whereas combinations of mutations in two or more genes
frequently lead to cell death, a phenomenon termed ‘synthetic
lethality’. For comparison, genes whose corresponding proteins
are included in at least one critical node (protein or complex) were
designated ‘critical genes’. Although we did not find differences in
the ratios of individually lethal genes between critical and non-
critical gene categories, the ratio of genes with at least one
synthetic lethal interaction was significantly higher for critical
genes (P= 8.3 × 10− 5; χ2-test; Figure 3e). This indicates that critical
proteins tend to increase the instability of other factors when they
are deleted. We also evaluated whether controllability correlated
with single-gene deletion phenotypes under specific stress
conditions. In the ion homeostasis map, critical genes tended to
have deletion phenotypes related to impaired stress responses to
the ions (Supplementary Information S9). However, in the
remaining maps, we did not observe similar phenomena. Instead,
in the map relating to the oxidative stress response, a larger
proportion of non-critical genes exhibited stress response defects.
In summary, our results indicate that controllability does not
correlate with single-gene deletion phenotypes under general or

specific stress conditions. Recently, genome-wide synthetic
genetic interactions have been quantitatively explored with
high-throughput screens, including synthetic genetic arrays
(SGAs).38–41 We next considered ‘negative genetic interactions’,
which are defined as cases where synthetic genes combine to
cause lethality or a negative effect on fitness, obtained using data
derived from SGA screens. Genes determined to be critical in our
controllability analyses had significantly more negative genetic
interactions than non-critical genes (P= 7.1 × 10− 5; Mann–Whitney
two-tailed U-test; Figure 3f), consistent with a correlation between
these genes and synthetic lethality. These results suggest that the
controllability of the molecular interaction maps reflects certain
aspects of biological vulnerability to genetic deletion. The
controllability and experimental phenotypes of proteins are
summarized in Supplementary information S9.
As we have demonstrated the role of bow–tie cores in the

signaling processes of yeast stress response pathways, it is
interesting to compare these features with the bow–tie structures
observed in metabolic networks. In metabolic processes, the
bow–tie cores are tightly connected and exhibit robust small-
world properties.42 This means that relatively small fluctuations in
the molecules of bow–tie cores in metabolic processes, such as
ATP and pyruvate, are lethal, and they are tightly regulated by
allosteric and feedback mechanisms to inhibit fluctuations.43 By
contrast, we found that the cores of signaling bow–tie structures
do not appear to be as robustly regulated as those of metabolic
networks. However, interestingly, most of the core molecules in
yeast stress responses are robust against overexpression as
measured using the genetic tug-of-war method.44 Of 76 bow–tie
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Figure 2. (a) An illustrative representation of bow–tie structures identified in yeast stress response pathways. In addition to core molecules in
individual stress response pathways, some molecules, including Msn2/4, Tpk1/2/3, and TORC1, appeared repeatedly in multiple stress
response pathways, indicating a global bow–tie structure throughout the yeast stress response (gray dotted lines). Plots of unweighted
bow–tie scores against bow–tie scores using transcriptome data under conditions of (b) NaCl treatment, (c) heat shock treatment, and (d) a
rapamycin treatment. Bow–tie core molecules with characteristically high-weighted bow–tie scores under each stress condition were
indicated in the graph (e.g., HOG pathway and cAMP).
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core-associated genes with bow–tie scores40.20 in at least
one yeast stress response map, only seven (BMH2, STE12, HSF1,
TIP41, and TPK1/2/3; 9.2% of the total) are dosage sensitive, with a

copy-number limit of 10 or less (Supplementary Information S9).
This is higher than the dosage-sensitive gene ratio of non-bow–tie
core genes (23 of 564 genes = 4.1%; P= 0.0739; Fisher’s exact test),
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Figure 3. Controllability of the yeast stress response pathways. (a) Left is a simple example of a directed network model, in which driver node
a, indicated in green, can control all other nodes. When node c is removed as depicted on the right, the regulatory path connecting a and its
target nodes is disconnected. Consequently, nodes d and e need to be individually controlled and the number of driver nodes increase. Thus,
node c is important in connecting a regulator and its target, and is defined as a critical node. (b) The fractions of driver nodes, fD, for the six
yeast stress response maps and other reference networks. The data for the other reference networks were obtained from a controllability
paper by Liu et al.34 (c) The fraction of critical nodes among those with high and low bow–tie scores, b(m), calculated for six yeast stress
response maps. (d) The fraction of critical nodes among monomeric proteins and complexes calculated in six yeast stress response maps.
(e) Number of proteins whose corresponding genes are individually lethal, with at least one synthetic lethal interaction, and non-lethal
phenotypes, with respect to critical and non-critical nodes. The phenotype relating to each gene was obtained from the SGD database. (f) The
distribution of negative genetic interactions of critical and non-critical nodes represented in a box-and-whisker plot. The bottom and top of
the box represent the first and third quartiles (hinges), respectively. The line through the box shows the median. The whiskers extend from the
hinges to the highest or lowest value within the 1.5 interquartile range. Data not included between the whiskers are plotted as dots. Negative
genetic interactions were obtained from the SGD database. (g) The distribution of copy-number limit of overexpression measured using the
genetic tug-of-war (gTOW) method44 with respect to bow–tie core-associated genes and non-bow–tie core genes represented in a box-and-
whisker plot (as described for f).
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but still limited. Also, we did not find a significant difference in the
average copy-number limit between bow–tie core-associated
genes and non-core genes (Figure 3g; P= 0.156; Welch’s t-test).
Therefore, we speculate that there may be some stabilization
mechanisms to ensure robust signaling through bow–tie struc-
tures. One possible such mechanism is multistep activation of core
molecules. For instance, to be functional, Msn2/4 must first be
transported into the nucleus and then phosphorylated. It is
thought that multistep activation mechanisms provide robustness
to biological processes by the presence of several individual
activation steps that insulate them from noise in the system. In
addition, we consider that protein complexes are more likely to be
critical nodes than monomers. Since the majority of the bow–tie
cores observed in our study contained complexes, we constructed
a working hypothesis that complexes have a specific role in the
robust control of signaling networks.
Some complexes, for example, TORC1 (comprising of Tor1,

Kog1, Lst8, and Tco89) and SBF (comprising of Swi4 and Swi6),
become functional only when all components are assembled in a
fixed ratio. This can prevent accidental activation of the complex
because its overall function would be scarcely affected if one of
the components was unexpectedly overexpressed or activated.45

Although the fixed stoichiometry of functional complexes is a

potent mechanism for robust control, there are also a number
of cores that function as monomeric proteins. Furthermore,
it has been reported that dosage imbalance between complex
components causes fragility,46 suggesting another mechanism of
complex-mediated robust regulation.

Network motif analyses
To elucidate the robust regulation of bow–tie cores in the yeast
stress response, possibly mediated by protein complexes, network
motif analyses were performed to identify local characteristic
network structures. When biological networks are represented as
graphs, a series of distinct substructures, namely, ‘network motifs’,
appear in the graphs significantly more often than in randomized
networks. Network motifs are thought to serve as the building
blocks of the network, and the dynamic features and associated
functions of some network motifs have been well investigated
both theoretically and experimentally.47–49 Thus, network motifs
closely relate to biological functions and, therefore, provide
important clues to determine regulatory architectures.
Using the comprehensive maps constructed in this study, we

searched for network motifs specific to yeast stress response
pathways. As depicted in Figure 4A, the maps were converted into

m1 m2

m3

re1
re1m1

m3

m2

1 2 3 4

Figure 4. (a) Conversion of the maps to bipartite-directed graphs for network motif analyses. The map on the left is a representation of a
typical reaction, in which a molecule (m1) transitions to another state (m2) through a reaction (re1) catalyzed by m3. We treated both
molecules and reactions as nodes connected by directed edges. The types of molecules (e.g., proteins, complexes etc.) and reactions
(e.g., modification, transport, and so on) were ignored. All edges from reaction nodes to molecule nodes are in red, indicating ‘product’ edge.
Blue arrows indicate ‘reactant’ edge, from a reactant molecule node to a reaction node, whereas green arrows represent the ‘modifier’ edge,
from an enzymatic molecule node, which acts as a modifier of the reaction, to reaction node. The types of modifier, such as positive catalysis
and inhibition, were ignored. (b) Network motifs specific to stimuli response pathways. Among 30 motifs common to the six yeast stress
response pathways, 12 also appeared in other stimuli response pathways (EGFR, TLR, and mTOR signaling pathway) but not in non-stimuli
response pathways (yeast cell cycle and influenza replication). These 12 motifs can be categorized into three groups, based on substructures.
Motif groups responsible for substructure (a, b, c) are represented in green, purple, and orange, respectively. (c) Network motifs specific to
stimuli response pathways identified without regard to edge labels. Among 47 motifs common to six yeast stress response pathways, only
four also appeared in other stimuli response pathways. All of these motifs contained some of the substructures described in b. For instance,
monocolor motif 1 corresponds to substructures (a, c), whereas these are indistinguishable in the monocolor motif.
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bipartite-directed graphs, treating both molecules, and reactions
as nodes. To distinguish the types of reactions, edges were labeled
with three colors: blue arrows represent the ‘reactant’ edge, from
reactant molecule to reaction nodes; red arrows represent the
‘product’ edge, from reaction to product molecule nodes; and
green arrows represent the ‘catalysis’ edge, from enzymatic
molecule to reaction nodes. Using this labeling method enabled
us to make best use of the information contained in the detailed
molecular interaction maps. In addition, to avoid a dispropor-
tionate emphasis on the trivial motifs, transcription, and transla-
tion, which occur most frequently in all biological networks, these
were removed from the analyses. Consequently, 30 six-node
motifs common in the yeast stress response maps were identified,
which occurred with significant frequencies relative to 100
random networks generated by switching edges between nodes
regarding the edge colors (Po0.05, Z-score42, and occurred at
least five times; Supplementary Information S10). To confirm
specificity, we checked whether these motifs also appear in other
established pathway maps. Interestingly, the majority of yeast
stress response motifs (19–21 of 30 motifs) also appeared
frequently in other pathways responding to external stimuli,
including EGFR, TLR, and mTOR signaling pathways. By contrast,
the motifs were less common in other networks, such as the yeast
cell cycle and influenza replication pathways (7–14 of 30 motifs).
These results suggest that some motifs are conserved among
species and are characteristic of pathways responding to external
stimuli.
Among the six-node motifs identified in the stimuli response

pathways, 12 patterns were found, revealing three shared
substructures (Figure 4B). The first substructure represented a
‘dissociation and recombination’ process (a), which constituted
two different types of reaction, complex dissociation, and recom-
bination (e.g., Tpk1/2/3-Bcy1, TORC1-Tap42, Gpa2-Gpb1-Gpg1,
V-ATPase, and Msn2/4-Bmh2), and ionization equilibrium (e.g.,
MgHPO43Mg2++H++PO4

3−). The second substructure, ‘reversible
reaction’ (b), is not a standalone motif, as it mostly occurred with
substructure (a). Thus, these two substructures may have an
important role in ‘reversible complex formation’ as part of the

stress response pathways. The last substructure, ‘redundant
reactions catalyzed by same molecule’ (c), was clearly a distinct
category from the other two. Examples of this substructure
include Crz1 dephosphorylation at distinct sites (all catalyzed by
calcineurin); Bcy1 dissociation from Bcy1-Tpk1/2/3 complexes
triggered by cAMP; and glutathione-dependent redox reaction
catalyzed by Grx2. Instances of these motifs are provided in
Supplementary Information S11.
To investigate the effect of edge labeling on motif analysis, we

computed stimuli response pathway motifs disregarding the
colored labels (i.e., following standard methods for network motif
analysis). As shown in Figure 4C, four monocolor motifs were
found using this analysis. Although all of these monocolor motifs
appeared to contain the substructures identified by edge labeling,
substructures (a) and (c) were not distinguished by this analysis.
Thus, our method of colored motif analysis is capable of
distinguishing biologically relevant substructures, which are not
necessarily captured in standard monocolor motif analysis.
In summary, network motif analyses applied to the detailed

molecular interaction maps revealed characteristic motifs in stress
response pathways. These rather simple motifs appeared repeat-
edly in the stress response pathways, with alterations in their
components, suggesting that they represent ubiquitous principles
of biological function. Interestingly, many of the network motifs
related to core molecules of bow–tie structures. Whereas
the ‘redundant reactions catalyzed by same molecule’ motif
(Figures 4B, c) was clearly responsible for spreading the signal
from the core, the ‘reversible complex formation’ motif
(Figures 4B, a,b) appeared not to have roles in either signal
integration or signal diffusion. Instead, complexes involved in this
motif characteristically had roles in inactivating components. For
instance, Bmh2 retains phosphorylated Msn2/4 in the cytoplasm,
rendering it inactive (Figure 5a), whereas Bcy1 inhibits PKA activity
by forming an inactive heterotetrameric complex with Tpk1/2/3 in
the absence of cAMP (Figure 5b). According to the equilibrium
principle, when the concentration of a core molecule is
unexpectedly decreased, inhibitory complexes should dissociate
to increase the amount of active core molecules. On the other

Figure 5. Diagrams representing regulation of (a) Msn2/4 and (b) Tpk1/2/3 by binding with their inhibitors, Bmh2 and Bcy1, respectively.
Molecular interactions are described with graphical notations, complying with SBML and SBGN standards. Objects with dotted lines indicate
‘activated molecules’. (c) Simple congregative representation of the bow–tie structure, controllability, and complex-mediated network motifs.
In the bow–tie structure, a limited number of core molecules integrate many input signals and regulate many downstream molecules. The
bow–tie core connects many regulators (drivers represented in green) with their targets; thus it tends to be a critical node (red). We observed
that the ‘reversible complex formation motif ’ was often coupled with the bow–tie core (right). In such cases, the inhibitory complex is also a
critical node, indicating the importance of the complex in control of the network.
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hand, an unintended increase of core molecules would induce
association of core molecules with their inhibitors, decreasing the
concentration of active core molecules. Given that ionization
equilibrium uses the same type of structure and is known to
function as a buffer to stabilize the concentration of a particular
ion, this type of complex formation may have a similar role in
stabilizing the concentration of components against perturba-
tions. In support of this theory, inhibitors, such as Bmh2 and Bcy1,
are much more abundant than their targets (Bmh2:Msn2/4,
51–158:1 and Bcy1:Tpk1/2/3, 4.1–8.9:1),50 similar to buffer
solutions, in which excess amounts of conjugate base are
included. The copy-number limits of Msn2/4 are high (42.8 and
270.8 copies, respectively) compared with those of Tpk1/2/3
(0.9, 2.1, and 0.6 copies, respectively),44 suggesting a higher buffer
capacity of Bmh2 than Bcy1. The great abundance of Bmh2
compared to its target is one reason for its high buffer capacity.
Thus, the ‘reversible complex formation’ motif can be considered
as a conserved stabilizer for molecules with a role in bow–tie
cores. As shown in Figure 5c, the bow–tie structure, the
controllability of a network, and the complex-mediated network
motif are closely involved with one another. The importance of
the buffering function involving complexes in the robust control
of bow–tie cores in yeast stress response pathways is evident from
the combined results of these three network analyses.

DISCUSSION
By virtue of vast numbers of experimental studies, many reactions
comprising biological systems have been elucidated in terms of
types of reactions and associated molecules. However, how
reactions work together to mold a characteristic biological
property, such as robustness, remains mostly unclear. This is
partially because dispersed knowledge of biological processes
makes it difficult to perform systematic analyses. Comprehensive
maps built using standardized, computer-readable notations are
potent tools for network analyses because they contain multiple
layers of information, including protein modification, complex
formation, and transportation, which are not included in simple
interaction networks such as PPI. The maps can be easily
converted into a simplified format suitable for specific analyses
by acquiring certain layers of information. Conventional network
analyses usually do not take detailed information, such as types of
reactions and modifications of molecules, into account. In this
study, we integrated detailed, multilayered information derived
from the literature to construct maps of yeast stress response
networks and used these to perform network analyses.
These analyses revealed characteristic features of the networks,
demonstrating the effectiveness of incorporating such detailed
information.
By careful analysis of the network, we also provide answers to

some key questions. Bow–tie scoring was used to quantitatively
define bow–tie structures, demonstrating that yeast stress
response pathways feature bow–tie architectures. Although
bow–tie structures provide robustness against external perturba-
tions, this robustness is entirely dependent on the stability of the
core. Our results demonstrate the importance of bow–tie cores in
connecting regulators to their targets. This suggests a universal
architecture for signal transduction, in which hub molecules, such
as bow–tie cores, do not directly regulate their downstream
molecules, but act to transmit regulatory signals. This seems
logical from a system design perspective as, if cores were
regulators, the core molecules would have to change their
concentration or activity to achieve regulation and their various
targets would drastically change their activity in response to these
core fluctuations. As signal transmitters, bow–tie cores need not,
and should not, change their concentrations and activities to
ensure the stable transmission of signals.

Furthermore, network motif analyses, using a unique labeling
method, revealed conserved robust control, mediated by
reversible complex formation. Interestingly, a potential role for
complex formation in enhancing the robustness of key molecules
regulating the cell cycle has been reported.46 That study
concluded that heterodimer formation and associated regulation,
such as phosphorylation, contributed to increased robustness
against dose-level perturbations of molecules that would other-
wise result in extreme fragility of the cell cycle process. In addition,
complex formation and scaffolding were reported to potentially
contribute to the robustness of HOG signaling in yeast using
in silico sensitivity analysis.51 Combined with our findings, these
data suggest that complex formation by key molecules may be a
basic mechanism that contributes to the robustness of cellular
functions against unexpected dose changes. This enables
signaling bow–tie cores to function as robust, yet flexible, signal
mediators that may represent a universal design principle within
biological signaling systems.
In addition, we found specific correlations between the results

from our controllability analyses and experimental phenotypes
caused by genetic perturbations observed in other studies.
Although controllability analysis can assess the effect of node
failure on network control, whether controllability actually reflects
biological properties has not been validated. Interestingly, the
controllability of the molecular interaction map correlated closely
with synergistic genetic interactions, but not with lethality after
deletion of individual genes. Most local loss of function caused by
gene deletion or overexpression can be compensated for by other
genes with shared functions or alternative pathways, whereas this
type of compensation can frequently be disturbed by combina-
torial perturbation, such as that caused by synthetic lethality. This
indicates that there are substantial numbers of factors that make
impacts on the robustness of biological systems, rather than
directly on their function. Thus, the controllability of molecular
interaction maps, related to combinatorial genetic interactions,
can be an index for evaluating biological robustness. As the
high-throughput screens for synthetic genetic interactions were
undertaken under non-stress condition, other synthetic interac-
tions can appear under specific stress conditions. Specifically,
PKC1, SLG1, SKN7 and calcineurin (CNA1, CNB1) were shown to
have genetic interactions with numerous other proteins under
osmotic stress condition.52–55 Interestingly, all of these were
critical in our controllability analysis. It is not practical to perform
high-throughput synthetic interaction screens for each stress
condition. Moreover, in case of mammals, we should consider
more complicated conditions. We assume that the controllability
analysis based on molecular interaction maps will help to predict
such condition-dependent synthetic interactions.
Finally, we would like to emphasize the complementarity of

data-driven and knowledge-based approaches in building and
utilizing biological networks. Recently, high-throughput omics
data have enabled us to predict genetic and physical interactions.
The data-driven approach is a very potent tool for implicating
novel regulators, revealing unrecognized crosstalk between
pathways, and elucidating the overall structures of the network,
as shown by a recent study of the salt-responsive signaling
network in yeast.31 At the same time, as described in this study,
knowledge-based approaches have advantages in uncovering
regulatory architectures, which consist of exquisite coordination of
protein modification, complex formation, and transportation. We
will be able to incorporate novel predictions obtained and
validated by data-driven approaches into our knowledge-based
maps, whereas these will also support data-driven predictions by
providing detailed information about interactions and regulatory
mechanisms, as demonstrated in the weighted bow–tie analysis.
We envisage that comprehensive maps, powered by large-scale
omics data and systematic network analyses, will provide a
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holistic, network-centric framework to organize and interpret the
complexity of biological networks.

MATERIALS AND METHODS
Comprehensive maps
The maps were built using CellDesigner 4.3.0 (http://celldesigner.org)
software, complying with standards SBML17 and SBGN.25 We employed a
top–down approach focusing first on review papers and then on detailed
original research articles. For community-based browse and curation, the
maps are available at http://www.yeast-maps.org/yeast-stress-response/.

Bow–tie analyses
Bow–tie scores (b(m)∈ [0, 1]) were calculated to determine how ‘central’
molecules m were in the signaling pathways, as described previously,27

with some modifications. We defined external stimuli as source (S) and
mRNAs as target (T). In addition, we used simple paths within 30 lengths
from node, s, in the source, to node, t, in the target. Transcriptome data for
the weighted bow–tie analysis were obtained from NCBI Gene Expression
Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) using the GEO Series
Accession numbers GSE4584, GSE54528, and GSE60613.

Controllability analyses
Controllability analysis was applied to the maps as described previously.56

The minimum set of driver nodes was determined using the Hopcroft–Karp
‘maximum matching’ algorithm.57 Next, we identified critical nodes by
examining whether the absence of the node requires an increase in the
number of driver nodes. Experimental phenotypes, including viability and
synthetic lethality, were obtained for each gene from the SGD database
(http://www.yeastgenome.org/).

Network motif analyses
For network motif identification, the maps were converted into bipartite-
directed graphs, treating both molecules and reactions as nodes. Edges
were labeled with three colors. Six-node network motifs with labeled
directed edges were extracted using FANMOD.58

Full Methods and any associated references are available in the
Supplementary Materials and Methods.
Codes for analysis used in this paper will be made available at

https://github.com/eiryo-kawakami/yeast-stress-response.
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