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Abstract

An important subset of asymmetric synthesis is dynamic kinetic resolution, dynamic kinetic 

asymmetric processes and stereoablative transformations. Initially, only enzymes were known to 

catalyze dynamic kinetic processes but recently various synthetic catalysts have been developed. 

This review summarizes major advances in non-enzymatic, transition metal promoted dynamic 

asymmetric transformations reported between 2005 and 2015.
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1. Introduction

One of the ultimate challenges in the field of organic synthesis is the development of 

methods for the construction of enantioenriched, carbon-based molecules. The vast majority 

of processes currently in existence toward this goal proceed through the selective 

construction of a stereocenter where one previously did not exist. An alternative strategy 

involves subjecting a racemic mixture of enantiomers to an enantioselective catalytic 

transformation, wherein the chiral catalyst undergoes preferential reaction with only one of 

the two enantiomers. This phenomenon is known as kinetic resolution, and while highly 

useful, kinetic resolutions suffer from a major practical limitation – they cannot produce 

enantioen-riched products in greater than 50% yield.1,2,3,4,5,6
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If a mechanism for the rapid interconversion of enantiomers can be established in the 

presence of a chiral catalyst, however, the concept of kinetic resolution can lead to full 

conversion of a racemic mixture to a single, enantioenriched product, a concept known 

generally as stereoconvergence. It is the focus of this review to highlight the developments 

of stereoconvergent transformations, with a particular emphasis on transition metal-

catalyzed processes. Within this realm there are three subclasses: Stereoablative 

transformations, Dynamic Kinetic Resolutions (DKRs), and Dynamic Kinetic Asymmetric 

Transformations (DyKATs). Each subclass contains its own section, and is carefully defined 

in the corresponding section’s introduction.

During the preparation of this review, we happened upon a number of asymmetric 

transformations that were conceptually similar to DKR and DyKAT processes; however, the 

chiral information was contained on the substrate, rather than the catalyst. Strictly speaking, 

these transformations do not involve asymmetric catalysis and therefore can be considered 

neither a DKR nor a DyKAT. While few in number, we found these transformations 

intellectually stimulating, and included them in a final section under the title Dynamic 

Substrate-Directed Resolutions (DSDRs).

The final goal of this review is to instruct readers as to the proper use of these terms. Due to 

the inherent similarity of these processes, particularly with respect to DKRs and DyKATs, 

some of the transformations described herein have been incorrectly classified by their 

authors. We have re-classified these examples into their proper categories according to the 

definitions presented in this review. It is our hope that this review will serve as a guide to the 

reader as to the proper use of these terms.

2. Stereoablative Transformations

In the last decade the synthesis of enantiomerically enriched molecules via stereoablative 

processes has received much attention.7 A stereoablative process is one in which a key 

reactive intermediate is formed via the irreversible destruction of a stereocenter; this 

prochiral species then interacts with a catalyst to form a new stereocenter selectively. As 

shown in Figure 1, both enantiomers of starting material, (R)-A and (S)-A, undergo a 

reaction that irreversibly destroys a stereocenter – a process termed “stereoablation” – to 

produce prochiral intermediate B. Interaction of B with a chiral catalyst can lead 

preferentially to one enantiomer of product [(R)-C in this case]. Importantly, stereoablative 

enantioconvergent catalytic systems involve identical or nearly identical rates of 

stereoablation (i.e. kracR ≈ kracS) but display substantially different rates of product 

formation (i.e. kR ≫ kS). Stereoablative processes differ from traditional DKR or DyKAT 

processes in that there is no discernable dynamic or reversible nature to the process with 

respect to the organic stereogenicity.8

While the remainder of this article remains focused on transition metal-catalyzed processes, 

due to the relative scarcity of truly stereoablative transformations, we chose to include 

transformations that operate through the use of chiral organic catalysts. We hope that this 

review will inspire the development of novel stereoablative transformations catalyzed by 

chiral transition metal catalysts.
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2.1 Decarboxylative Processes

2.1.1 Enantioselective Allylic Alkylation—Perhaps the most prevalent and commonly 

utilized stereoablative process is the enantioselective allylic alkylation9 pioneered by Stoltz 

and coworkers (Scheme 1).10 In 2004, the authors introduced a palladium/PHOX-based 

catalytic system for the formation of α-ketone quaternary stereocenters from 

cyclohexanone-based allyl enol carbonates. One year later, they adapted this protocol for the 

use of chiral racemic α-quaternary β-ketoesters substrates 1.11 This process represents a 

substantial advance in the construction of carbonyl α-quaternary stereocenters through a 

three-step process: carboxylation of a ketone enolate with allyl cyanoformate, alkylation of 

the resultant β-ketoester, and finishing with the decarboxylative allylic alkylation to set the 

aforementioned fully substituted tertiary or all-carbon quaternary stereocenter.

Substantial effort has resulted in a detailed mechanistic understanding of this stereoablative 

process.12,13,14 Preliminary studies (Scheme 1) suggested that an internal mechanism (i.e. 

reductive elimination) is a lower-energy pathway than the corresponding external 

mechanism involving attack of the enolate onto an η3-allyl complex; it was later discovered 

that η1-allylpalladium carboxylate 5 was found to be the resting state of the catalyst and that 

decarboxylation was likely rate-limiting.15,16,17 The lowest-energy pathway for carbon–

carbon bond formation occurs through a seven-membered, Claisen-like transition state (6) 

similar to that originally proposed by Echavarren,18 in which the chiral ligand imparts facial 

selectivity of the allylic alkylation. The sigmatropic character of the transition state likely 

accounts for the high efficiency with which these sterically hindered quaternary centers are 

formed, as sigmatropic rearrangements remain a preeminent method for their construction.19 

Crucially, these mechanistic studies found that palladium enolate 2 is the reactive 

intermediate that proceeds to the enantioenriched products. The chiral racemic allyl β-

ketoester starting material is converted to this achiral intermediate through catalytic resting 

state 5, and the catalyst-controlled allylic alkylation event provides the product in an 

enantioenriched fashion. Furthermore, an allyl β-ketoester, allyl enol carbonate, or a 

combination of silyl enol ether and fluoride can be used as the enolate precursor to give 

almost identical yields ee’s, thus confirming the stereoablative nature of the 

transformation.2,20

Since their development of an enantioselective allylic alkylation, the Stoltz group has 

increased the scope of this transformation substantially to include, 1,3-dioxan-5-one- (9),21 

β-thiocyclohexenone-(10),22,23 3-ketal- (11),24 β-alkoxy-cycloheptenone- (12),25,26 5-alkyl- 

and 5-alkoxy- (13), β-aminocyclohexenone- (14), 1-alkoxypiperidine-2,6-dione- (15), 

dihydropyridin-4(1H)-one- (16),27 cyclobutanone- (17),28 valerolactam and 2-piperazinone- 

(18),29 2-aminomethylcyclohexanone- (19),30 4-oxazolidinone- (20), morpholin-3-one- (21), 

1,2-oxazepan-3-one- (22),31 and cyclopentanone-based (23)32 allyl β-ketoesters (Figure 2). 

Notably, the use of oxygen- and nitrogen-based heterocycles allows for the facile synthesis 

of quaternary stereocenter-bearing polyketide and pharmaceutical-type fragments in a 

straightforward manner.

2.1.2 Enantioselective Allylic Alkylation in Total Synthesis—Given the value of 

ketones bearing enantioenriched α-quaternary stereocenters, it is not surprising that this 
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chemistry has found substantial application to the total synthesis of biologically active 

natural products. Perhaps most notable is the total synthesis of cyanthiwigin F (31) by Stoltz 

in 2008 (Scheme 3).33,34 Bis-β-ketoester 24 was produced in two steps from diallyl 

succinate as a mixture of racemic and meso diastereomers (1:1). Treatment of 24 with the 

Pd/PHOX catalyst (vide supra) provided a 4.4:1 mixture of syn:meso diallylated products 25 
with the major product produced in 99% ee. The stereoablative nature of this transformation 

simplifies the process of setting two quaternary stereocenters by the clever recognition of 

latent C2 symmetry. As shown in Scheme 4, after a desymmetrizing vinyl triflate formation/

alkyl Negishi coupling sequence to produce tetraene 26 the synthesis is completed in four 

steps: tandem ring-closing/cross metathesis with vinyl boronate and its concomitant 

oxidation to aldehyde 29, radical hydroacylation with a polarity reversal thiol catalyst to 

yield ketone 30,35,36 and a challenging vinyl triflate formation/alkyl Kumada coupling 

sequence. Overall, the total synthesis of cyanthiwigin F (31) was completed in just nine 

linear steps utilizing the enantioselective allylic alkylation.

More recently, the synthetic community has recognized the power of the allylic alkylation 

for setting such crucial stereocenters and as such has responded with a variety of total 

syntheses (Figure 3). In 2009, Stoltz applied the β-ketoester-derived from α-methyl-β-

phenylthiocyclohexenone to the total syntheses of (+)-carissone (32)13a and (+)-cassiol 

(33)13b utilizing the stereoablative allylation chemistry coupled with Stork–Danheiser-type 

cyclohexenone manipulations. Later, the Stoltz and Grubbs groups collaborated on an allylic 

alkylation/ring-closing metathesis strategy for a general synthesis of the chamigrene natural 

products including (+)-elatol (35).37 In 2013, Lupton38 and Shao39 reported the formal and 

total syntheses of (+)-kopsihainanine A (38), respectively, along with the total synthesis of 

(−)-aspidospermidine (39) by Shao. More recently, in 2015 Zhu and coworkers reported the 

total synthesis of (−)-isoschizogamine (41) that utilized a stereoablative, enantioselective 

cyclopentanone allylic alkylation.40 Given the power of this method for the construction of 

valuable all-carbon quaternary stereocenters, it is likely that we will continue to witness its 

use in natural product total synthesis for years to come.

2.2 Enantioselective Protonation

In 2006, Stoltz and coworkers applied this stereoablative concept to the enantioselective 

protonation of trisubstituted ketone enolates (Scheme 5, conditions A).41 By employing an 

allyl β-ketoester with Pd(OAc)2 and a chiral ligand, a similar palladium enolate as 2 
(Scheme 1) was formed; however, instead of allylation, the authors reported that they could 

induce enantioselective protonation using formic acid and 4Å molecular sieves. The authors 

noted that substantial optimization was required for each substrate; as a result, they also 

developed a fully homogenous variant of this reaction shortly thereafter (Scheme 5, 

conditions B).42 In this report, Meldrum’s acid served a dual purpose as both the proton 

source and as an allyl group scavenger. The latter conditions offered improved generality 

and scalability. Although only one antipode of the catalyst was used for these studies, the 

authors noted that the enolates were not always protonated from the same face. Despite the 

synthetic utility of this reaction, the mechanism of protonation remains unclear.
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2.3 Cross-Coupling Reactions

2.3.1 Couplings with Organometallic Nucleophiles—In 2005 Fu and coworkers 

disclosed the use of a chiral nickel catalyst capable of performing enantioselective Negishi 

couplings of racemic alkyl halides (Figure 4).43,44 These reports provide efficient procedures 

of constructing relatively remote tertiary stereocenters that possess three alkyl units. 

Following the initial disclosures the authors have demonstrated the exceptionally wide scope 

of the transformation, with efficient couplings of primary and secondary alkyl chlorides, 

bromides, iodides, carbonates, and sulfonates with alkyl-, vinyl-, and arylzinc nucleophiles 

(Figure 4).45,46,47,48,49,50,51,52,53,54 Furthermore, the authors have also developed conditions 

for enantioselective Suzuki,55,56,57,58,59,60 Hiyama,61 Kumada,62 and zirconium-

Negishi53,63 couplings with a variety of alkyl electrophiles.

In each of the above reports, Fu and coworkers designed a catalyst that could overcome the 

inherent challenges associated with this type of coupling, most notably the use of alkyl 

electrophiles and nucleophiles without any competing β-hydride elimination or 

isomerization.65,66,67,68,69 Furthermore, in all cases racemic alkyl electrophiles were 

employed, yet the products are produced in high enantiomeric excess. Recent mechanistic 

studies have elucidated the operating catalytic cycle (Scheme 6).70 The cycle begins with a 

halide abstraction from 49 by in situ-generated nickel(I) species 48 to yield prochiral alkyl 

radical 50 and nickel(II) complex 51. Transmetalation between 51 and an arylzinc reagent 

occurs, generating arylnickel(II) species 52 – the catalytic resting state. Radical addition to 

52 is facile, and at this stage the chiral ligand controls facial selectivity of the prochiral 

radical addition to the metal, generating transient nickel(III) species 53. Subsequent 

reductive elimination furnishes the enantio-enriched cross-coupled product 54.

2.3.2 Cross-Electrophile Coupling—In recent years, there has been a great deal of 

interest in cross-electrophile coupling.71,72,73,74 In particular, nickel catalysts have displayed 

exceptional reactivity and selectivity for cross-coupling processes, rather than simply 

providing statistical mixtures of products. Extensive mechanistic studies by Weix have led to 

an understanding of the relevant catalytic cycles in these couplings (Scheme 7).75 sp2-

Hybridized electrophiles 55 undergo oxidative addition selectively and rapidly in the 

presence of nickel(0) species such as 56, thereby producing nickel(II) complex 57. 

Bimetallic oxidative addition76 of alkyl halide 58 leads to transient nickel(III) species 59. 

Rapid reductive elimination then produces nickel(I) intermediate 60 and the Csp3-Csp2 

product 61; 60 is then reduced to the active nickel(0) catalyst 56 by a low-valent metal 

reducing agent to complete the catalytic cycle.

In 2013, Reisman and coworkers reported an enantioselective cross-electrophile coupling of 

acyl chlorides and racemic benzyl chlorides (Scheme 7, product 62).77 The authors propose 

a mechanism similar to that proposed by Fu70 wherein enantiodiscrimination occurs upon 

addition of a prochiral radical to nickel(II) species 57. Since this original report, the authors 

have also disclosed the enantioselective coupling of vinyl halides with racemic benzyl 

chlorides (product 63)78 and that of heteroaryl halides with racemic α-chloronitriles 

(product 64).79
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2.4 Enantioselective Oxindole Functionalization

2.4.1 Copper Catalysis—3,3-Disubstituted oxindoles are prominent pharmacophores and 

as such methods for their construction are in high demand. In 2009 Stoltz and coworkers 

introduced an enantioselective protocol for their construction from substituted 3-

bromooxindoles using a copper-bisoxazoline catalyst.80,81 In the presence of an amine base, 

the bromide-bearing stereocenter at the 3-position of 65 is ablated, generating o-azaxylylene 

66 – an extended π-electrophile – that is attacked by the Lewis acid-bound enolate. Chirality 

is transferred from the ligand to generate a variety of enantioenriched 3,3-disubstituted 

oxindole motifs (68). The Stoltz group has utilized this strategy for the syntheses of 

communesin F82 and perophoramidine.83

2.4.2 Brønsted Acid Catalysis—Since the initial report on the use of stereoablation as a 

handle for the efficient construction of 3,3-disubstituted oxindoles, a number of groups have 

disclosed similar strategies. Intriguingly, no other group has reported the use of copper-

bisoxazoline catalysts, opting instead to employ cinchona alkaloid-based hydrogen-bonding 

catalysts.84 Yuan and coworkers reported in 2012 the use of cinchona alkaloid 73 for the O-

alkylation of aldoximes with oxindole-based electrophiles (product 69).85 Their system was 

later modified to allow for the use of ketone enolates as π-nucleophiles (product 70).86 More 

recently, Jing and coworkers developed cinchona catalyst 74 that bears a squaramide 

hydrogen-bond donor for the O-alkylation of α-nitrophosphonates under similar conditions 

(product 71).87

2.5 Miscellaneous Reactions

Terada and coworkers disclosed an enantioselective aza-Petasis–Ferrier reaction in 2009 

(Scheme 9).88 The authors found that treatment of racemic O-vinyl-N,O-acetals 76 with 

chiral phosphoric acid (CPA) 77 (Figure 5) promoted the cleavage of these labile fragments 

to their corresponding enolate-iminium ion pair (78, Scheme 9), the collapse of which 

provided the corresponding Mannich adducts 79 after reductive workup. Not surprisingly, 

the authors noted a strong dependence of the enantioselectivity of the transformation on the 

geometry of the latent enolate (a product of the olefin geometry of the O-vinyl group). This 

observation led the authors to develop a set of novel, bulky bisphosphine-nickel complexes 

for the convenient preparation of the starting materials from the readily accessible O-allyl 

analogues 78.

In contrast to many enantioselective catalysis protocols, the authors found that the 

enantioselectivity of the reaction increased with increasing temperature. The authors later 

disclosed a thorough mechanistic evaluation to further probe this reaction and account for 

the anomalous temperature effect.89 They found that the CPA catalyst serves two purposes, 

acting both as a hydrogen-bond donor to the N-Boc-imine and a hydrogen-bond acceptor 

from the transient enol. This scaffolding bifunctionality is responsible for both the large 

degree of anti-selectivity as well as the high enantioselectivities the authors typically 

observed. Additionally, through an elegant crossover experiment they elucidated the 

underlying cause of the temperature effect: at high temperatures the two ions produced from 

the fragmentation of the N,O-acetal dissociate fully and the catalyst-controlled addition of 

the enol to the protonated imine is the dominant mechanism, resulting in high anti-selectivity 
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and high enantioselectivity. At low temperature, however, dissociation of the two ions is 

incomplete and a non-catalyst-controlled pathway becomes competitive, thus leading to 

diminished enantioselectivity.

As a final example, in 2013 Terada disclosed a CPA catalytic system coupled with Hantzsch 

ester hydride for the enantioselective 1,4-reduction of 1-benzopyrylium ions (Scheme 10).90 

In this case, racemic benzannulated lactols 81 are converted to achiral benzopyrylium ions 

82 through the action of the CPA catalyst (77). This intermediate is then reduced in a 1,4-

fashion with diallyl Hantzsch ester 80 to provide enantioenriched 4-aryl-4H-chromenes 83 
with high yields and enantioselectivities. To our knowledge, this is the only report of a 

stereoablative process wherein the stereocenter created is not that which was originally 

destroyed.

2.6 Concluding Remarks – Stereoablative Transformations

In conclusion, stereoablative enantioselective catalysis is a field that has burgeoned over the 

past decade, seeing advances in palladium, nickel, copper, and organocatalysis during that 

span. In contrast to DKR and DyKAT systems that often feature reversible racemization 

pathways, true stereoablative processes involve irreversible racemization and 

enantioselective reaction of the prochiral intermediate thereafter. Given the substantial 

amount of growth in this field over the past decade, we can expect to see even more in the 

years to come.

3. Dynamic Kinetic Resolutions

Introduction

In contrast to Stereoablative Transformations, Dynamic Kinetic Resolutions involve the 

reversible racemization prior to the selective reaction of one enantiomer with the chiral 

catalyst. The first requirement that must be fulfilled to achieve efficient and selective DKR is 

that the interconversion of enantiomers must be rapid and independent of the catalyst [the 

equilibration of (R)-A and (S)-A with a high krac, as shown in Scheme 11]. The second 

requirement is that the reaction of one enantiomer of substrate with the chiral catalyst must 

occur with a significantly higher rate than that of the other enantiomer (i.e. kR ≫ kS) to 

provide the enantioenriched product [(R)-B in this case]. As one enantiomer of substrate A 
reacts with the catalyst, the equilibrium between (R)-A and (S)-A shifts according to Le 

Châtelier’s principle, such that all of the racemic starting material is eventually funneled 

through a single enantiomer by the chiral catalyst. As a result, the maximum theoretical 

yield for a DKR process is 100%.

3.1 Annulation Reactions

Asymmetric Spiroannulation: Luan and coworkers devised a novel approach to affect 

axial-to-central chirality transfer via Pd-catalyzed DKR (Scheme 12).91 In the event, 

racemic biaryl phenolic substrates (84) were efficiently converted to enantioenriched 

spirocyclic products (86) in good to excellent yields and enantioselectivities. It is proposed 

that the catalyst system comprising of Pd(OAc)2 and chiral NHC ligand 87 (Figure 6) 

complex can preferentially undergo oxidative addition with one of the rapidly 
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interconverting atropisomers of the brominated biaryl phenol substrate. The alkyne partner 

then intercepts the Pd-bound intermediate and following a phenolic dearomatization event, 

the sprioannulated product is formed. The methodology is quite general and a wide variety 

of substitutions are tolerated on the bromide-bearing (hetero)aromatic ring as well as on the 

alkyne unit. Interestingly, the positional isomer of substrate 84 where the phenolic –OH 

group is at the 3-position, affords the expected product albeit as a racemate. This observation 

can be explained by taking into account the detrimental effect of the –OH functionality on 

facile rotation along the biaryl bond. Although unsymmetrical alkynes react smoothly giving 

excellent yields, regioselectivities were modest (1.3:1–2:1), slightly favoring the product 

with the smaller substituent proximal to the quaternary spirocenter.

Asymmetric Heck Cyclizations: In 2006 the Stephenson group examined the mechanistic 

aspects of the asymmetric Heck reaction methodology previously laid out by Overman and 

coworkers.92,93,94,95 The Overman group had found that intramolecular Heck cyclization of 

2-iodoanilides produced either enantiomers of 3,3-disubstituted oxindoles using a single 

enantiomer of chiral bisphosphine ligand. In further studies by the Stephenson et al.96 over a 

range of temperatures, a distinct pattern took place (Scheme 13): reaction profiles at low 

conversions saw low ee’s, while at high conversions high ee’s were observed. This 

observation could not be explained simply by the interconversion of the rotameric forms of 

the starting material leading to DKR induced enantioenriched formation of the product. 

Instead, the authors used a variety of x-ray crystal structures to propose a pathway between 

the Pd-bound oxidative addition complexes of the P and M helices opened in the presence of 

silver phosphate. Whereas the transformation from the M starting material to its 

corresponding Pd-bound complex is faster than that from the P starting material, the 

conversion of the (M)-Pd-bound complex to the (P)-Pd-bound complex is faster than the 

reverse, thereby leading to preferential access to the (S)-(−) form of the product and provides 

a suitable explanation for the change in ee based on conversion.

Ozeki and Yamashita recently reported an interesting example of Pd-SYNPHOS-catalyzed 

asymmetric Heck reaction that proceeds via DKR (Scheme 14).97 The hindered rotation 

about the aryl–alkenyl bond results in atropisomerism in triflate 92 and, at temperatures 

above 60 °C, equilibrium is attained between the atropisomers. Recognizing the potential of 

an intramolecular Heck reaction via DKR, the authors subjected triflate 92 to Pd(OAc)2 and 

(R)-SYNPHOS (89, Figure 6) and obtained tricyclic product 93 with excellent yield and 

high enantioselectivity. The authors postulated that the chiral Pd complex readily 

differentiates between the two enantiotopic faces of the cyclohexenyl ring, so as to 

selectively produce the favored enantiomer. A detailed mechanistic discussion, including 

DFT calculations on the various possible transition states, can be found in the original 

reference.

3.2 Enolate Alkylation

Jacobsen and coworkers reported a Cr(salen)-catalyzed method for enantioselective 

alkylation of acyclic α,α-disubstituted tin enolates (Scheme 15).98 It is known that tin 

enolates readily undergo tautomerization in solution,99 leading to the dynamic 

interconversion of the E and Z isomers. The Cr(salen) complex 97 (Figure 7) is able to 
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selectively react with one of the rapidly equilibrating geometric isomers and leads to the 

enantioselective construction of quaternary carbon stereocenters.100,101

3.3 C–H Activation

In recent years, DKRs proceeding via C–H activation have attracted attention from 

researchers around the globe.102,103,104 In one example, the You group described a 

dehydrogenative Heck coupling that occurred via the Rh-catalyzed C–H activation of biaryl 

substrates 99 to produce corresponding alkenylated biaryls 100 with high efficiency and 

enantioselectivity (Scheme 16).105 The atroposelectivity the authors observed is believed to 

originate from the recognition by the chiral catalyst complex of only one atropisomer of 

either the substrate or the reactive intermediate. This methodology is the first instance in the 

literature where a chiral CpRh complex (98, Figure 7) is utilized in an oxidative coupling 

reaction. Although the substrate scope remains limited, this methodology is a promising lead 

that can spawn more general applications.

3.4 Amination

Zhao and coworkers recently disclosed a useful protocol for the conversion of racemic 

secondary alcohols to enantio- and diastereopure secondary amines (Scheme 17).106 The 

transformation utilizes cooperative catalysis involving chiral Ir complex 103 and CPA 

catalyst 104 (Figure 8). Impressively, a mixture of four isomers of alcohol 101 can be 

converted to predominantly a single diastereomer of acyclic amine 102 through a 

“borrowing hydrogen,” redox-neutral pathway. The racemic alcohol substrate is first 

dehydrogenated to ketone by the Ir-catalyst (103), followed by CPA-promoted 

enantioselective protonation, resulting in the formation of an imine intermediate. This 

species is then reduced diastereoselectively by the [IrH2] complex to afford the amine 

product in high enantio-and diastereopure fashion. In addition to providing facile access to 

chiral secondary amines, the Zhao group has also shown that chiral amino alcohols (R2 = 

OTBS) can be obtained using this methodology. As the racemization is not affected by the 

catalyst responsible for establishing the initial point of enantioselectivity, this example is 

classified as a DKR, rather than a DyKAT (vide infra).

3.5 Acylation

In 2012, the Fu group reported the first example of a non-enzymatic DKR of aryl alkyl 

carbinols via enantioselective acylation (Scheme 18).107 Previously, these authors had 

established a classical kinetic resolution for the acetylation of secondary alcohols using 

planar-chiral DMAP derivative 105 (Figure 8).108 Unfortunately, direct application of these 

conditions to a dynamic variant by simply adding a Ru-based racemization catalyst (106) did 

not prove fruitful.109 It was observed that the Ru complex was being acylated by Ac2O, 

thereby inhibiting the racemization catalyst. To circumvent this problem, less electrophilic 

acyl carbonates were explored as alternative acylation agents. Of the acyl carbonates 

examined, acetyl isopropyl carbonate gave the best yields and enantioselectivities. Using a 

mixture of toluene and t-amyl alcohol as solvent, the DKR of a variety of aryl alkyl 

carbinols was achieved in both high yield and enantioselectivity. Of note, this methodology 

applies to branched alkyl substrates, a current limitation of the analogous enzymatic 
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methodologies. Substrates with electron-rich and electron-poor as well as ortho-, meta-, or 

para-substituted aromatic groups, extended π-systems and allylic alcohols were well 

tolerated. Mechanistic studies reveal the reversible nature of the N-acylation of the chiral 

DMAP catalyst (105) and the rate-determining step as the acyl transfer from 105 to the 

alcohol facilitated by carbonate anion.

3.6 Asymmetric Reduction

The Noyori group laid the foundations in the field of asymmetric hydrogenation with their 

pioneering research in the Ru-catalyzed asymmetric hydrogenation of β-ketoesters via 

DKR.110 Since then, asymmetric hydrogenation and asymmetric transfer hydrogenation 

have become the most extensively studied and utilized class of transition-metal-catalyzed-

DKR transformations. The huge numbers of reports on this concept cover a broad substrate 

scope and are routinely used on milligram-scale in research laboratories to multikilogram-

scale in industrial settings. Due to the large number of examples reported in the literature 

covering asymmetric reduction via DKR, this review will only cover a select few and the 

reader is directed to references for the rest.

3.6.1 Asymmetric Hydrogenation—In the present context, DKR–asymmetric 

hydrogenation processes have been a popular method to reduce aldehydes, ketones, and 

carbon–carbon double bonds. The typical catalyst system includes a transition-metal 

(usually Ru, Rh, Ir, Ni, Pd, and Pt) precatalyst, a chiral 1,2-diamine ligand, and in some 

cases a chiral bisphosphine ligand. The chiral catalyst reacts preferentially with one 

enantiomer of the substrate. For aldehydes, ketones and other enolizable substrates, the 

reaction is performed in the presence of a base, which facilitates the substrate racemization 

via enolate formation, thus rendering the overall transformation dynamic kinetic resolution.

Aldehydes: Zhou and List independently reported the Ru(II) catalyzed asymmetric 

reduction of racemic, α-branched aldehydes via DKR (Scheme 19). While the Zhou group 

enlisted SDP as the chiral ligand (111, Figure 9) to obtain moderate to good 

selectivity,111,112 List and coworkers found that DM-BINAP (116, Figure 9) affords the 

alcohol product (110) with excellent enantioselectivity.113 The List group has also reported 

reductive amination via DKR of the same substrate class.114

Ketones: Within the past few years, a number of groups have developed methods for the 

asymmetric hydrogenation of various α-functionalized ketones via DKR.115,116,117 In 2009 

the Zhou group developed a chiral RuCl2-SDP/DPEN-catalyzed asymmetric hydrogenation 

of racemic α-amino aliphatic ketones to their corresponding chiral amino alcohols with two 

adjacent stereocenters of anti configuration (Scheme 20a).118 Both alkyl and aryl 

substitution alpha to the ketone and on the nitrogen atom are tolerated, as are secondary 

amines. In 2010 these authors extended this methodology to α-aryloxydialkyl ketones 

(Scheme 20b).119 Again using a chiral RuCl2-SDP/DPEN catalyst, the substrates were 

converted to their corresponding chiral β-aryloxy alcohols with two adjacent stereocenters 

with anti configuration. The substrate scope could be extended to α-aryl substitution, as well 

as to α-heteroaryloxy substitution. In 2009 the Hamada group also employed a DKR process 

to access anti amino alcohols (Scheme 20c).120 In contrast to Zhou’s approach, Hamada 
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utilized nickel catalysis to effect the asymmetric hydrogenation of aromatic α-aminoketone 

hydrochlorides to their corresponding β-aminoalcohols, again with anti stereochemistry. In 

2013, the Zhang group utilized ruthenium catalysis to convert α-amido-β-ketophosphonates 

to their corresponding β-hydroxy-α-amido phosphonates with syn stereochemistry (Scheme 

20d).121 The scope of this transformation extends to alkyl, aryl and heteroaryl ketones with 

secondary amines of acyl or Cbz protection. Similarly, in 2010 Ratovelomanana-Vidal, 

Genêt and coworkers achieved the ruthenium-catalyzed asymmetric hydrogenation of α-

chloro β-ketophosphonates to their corresponding α-chloro-β-hydroxyphosphonates with 

syn stereochemistry (Scheme 20e).122

β-Ketoesters: In addition to ketones, several examples have also been reported on the 

asymmetric hydrogenation via DKR of racemic β-ketoesters,123,124,125 especially with 

amino groups at the α-position.126,127,128,129,130 A representative example on this topic 

described by the Hamada group is depicted in Scheme 21.131 An Ir(I)–(S)-MeOBIPHEP 

(123, Figure 10) catalyst system is used in the hydrogenation of racemic α-amino-β-

ketoester hydrochlorides 121 to obtain anti-β-hydroxy-α-amino acid derivatives 122 in high 

yield, high enantioselectivity and with excellent diastereoselectivity.

Indoles: In 2010, Zhou and coworkers reported an asymmetric hydrogenation protocol of 

unprotected indoles that proceeds via DKR.132,133,134 Both mono- and disubstituted indoles 

are readily reduced in the presence of a Brønsted acid promoter and Pd(II) and (R)-H8-

BINAP (125, Figure 10) as the catalyst (Scheme 22). The reaction is believed to proceed 

through the equilibrating iminium species 129a and 129b, which are generated through 

reversible, non-selective protonation of the indole 3-position. The iminium ions thus 

produced are then selectively reduced to afford the desired indoline (130) in high yield and 

enantioselectivity.

3.6.2 Asymmetric Transfer Hydrogenation—In contrast to the examples discussed 

above where a number of transition-metal catalysts have been developed, Ru-based catalysts 

almost exclusively catalyze the corresponding asymmetric transfer hydrogenation (ATH) 

transformations. Additionally, the reducing agent is generated in situ using a number of 

recipes, most common being a 5:2 cocktail of formic acid and triethylamine. As was the case 

in the asymmetric hydrogenation reactions that proceed via DKR, the asymmetric transfer 

hydrogenations of enolizable substrates are also performed under conditions that are 

conducive to enolization.

Ketones: Fernández and Lassaletta have made significant contribution in the field of Ru-

catalyzed hydrogenation of ketones and imines. For example, in 2005 they reported a highly 

enantio- and diastereoselective reduction protocol for α-substituted cyclic imines (Scheme 

23a), with catalyst loadings as low as 0.2 mol %.135 These authors also made another 

interesting breakthrough in the field by developing a method for the reduction of α-halo 

ketones to the corresponding vicinal halohydrins (Scheme 23b)136 without the concomitant 

reduction of the alkyl halide, a common problem with this type of substrate.

Through the endeavors of a number of research groups all over the world, a wide range of 

functionalities is now tolerated at the α-position of carbonyl 
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compounds.137,138,139,140,141,142 In 2009, Zhang and coworkers disclosed the asymmetric 

transfer hydrogenation DKR strategy for the reduction of cyclic and acyclic β-ketosulfones 

under mild conditions with a broad substrate scope (Scheme 24).143 Along similar lines, β-

formyl-sulfones can also be reduced efficiently to the corresponding primary alcohols.144

A substantial impact in the ATH-based DKR arena can be attributed to the Johnson group. 

They have developed a robust methodology for the reduction of α-acyl phosphonates (133) 

that provides access to α-hydroxyalkylphosphonates (134) in excellent yield along with very 

high enantio- and diastereocontrol (Scheme 25a).145 Another noteworthy accomplishment 

from Johnson and coworkers is the reduction of β-aryl α-ketoester via DKR followed by 

cyclization onto a pendent malonate to form lactone products (Scheme 25b).146 This 

methodology provides access to highly functionalized γ-butyrolactones (136) that possess 

three contiguous stereocenters and, not surprisingly, has found applications in natural 

product synthesis and is discussed in Section 3.6.4 of this review.

Liu and coworkers have demostrated that this technology can also be used to control 

diastereoselectivity in a 1,3-fashion in the reduction of β-ketophthalides (137) to obtain β-

hydroxy isobenzofuranones (138) (Scheme 26).147 The reaction only requires very low 

catalyst loading and affords desired product in excellent yield and enantioselectivity albeit 

with modest to good diastereoselecitvity.

β-Ketoesters and β-Ketoamides: Transfer hydrogenation-based DKR has been extended to 

β-ketoesters and β-ketoamides, including those with heteroatom substitution at the α-

position (Scheme 27). The products thus obtained are valuable chiral building blocks. For 

example, the Ratovelomanana-Vidal group has developed a protocol that delivers mono-

differentiated syn-1,2-diols with high enantio- and diastereocontrol via the reduction of 

racemic α-alkoxy-β-ketoesters (Scheme 27a).148,149 Seashore-Ludlow, Somfai and 

coworkers employ a similar catalyst system to effectively reduce racemic α-NHBoc-β-

ketoesters to anti-β-hydroxy-α-amino acid derivatives in aqueous media (Scheme 27b).150 A 

team of researchers from Merck led by Limanto and Krska has found that α-alkyl β-

ketoamides to be excellent substrates for Ru-catalyzed ATH-DKR that afford syn-α-alkyl β-

hydroxyamides with high enantio- and diastereoselectivity (Scheme 27c).151

3.6.3 Reduction with Hydride—In 2008 Yamada extended Bringmann’s DKR-based 

synthesis152 of axially chiral biaryl compounds via the reduction of biaryl lactones (Scheme 

28).153 With the β-ketoiminatocobalt(II) catalyst ((S,S)-141, Figure 11) various substituted 

optically active biaryl compounds were synthesized in good yields and high ee’s. Biaryl 

lactones required an increase in temperature to 50 °C for facile racemization of 

atropisomers. These new conditions allowed for the synthesis of chiral biaryls in high yields 

and enantioselectivity.

3.6.4 Application of Asymmetric Reduction in Complex Molecule Synthesis

Asymmetric Transfer Hydrogenation

Megaceratonic acid & Shimobashiric acid: The Johnson group recently reported the first 

asymmetric total synthesis of megacerotonic acid (145) and shimobashiric acid (146) that 
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utilizes their group’s methodology for the asymmetric construction of g-butyrolactones 

using a Ru-catalyzed, ATH-based DKR strategy (Scheme 29).154 The racemic substrates 

were prepared in one step via an NHC-catalyzed Stetter reaction of β-aryl enones 147 and 

148 with ethyl glyoxylate. The crude product was subjected to the key ATH-based DKR 

with Rumonosulfonamide 127 (Figure 10) as the catalyst. The requisite alcohol products 150 
and 151 were obtained with over 90% yield with high enantio- and diastereoselectivity. With 

an efficient route to these key intermediate, the asymmetric synthesis of megacerotonic acid 

(145) and shimobashiric acid (146) was accomplished in nine and eleven steps, respectively.

(−)-epi-Cytooxazone: A useful addition to the scope of ATH via DKR methodology is the 

asymmetric reduction of prochiral cyclic sulfamate imines that was pioneered by Lee and 

workers (Scheme 30).155,156,157 The methodology provides an enantioselective technique to 

synthesize cyclic sulfamates that can be valuable chiral building blocks for the synthesis of 

complex molecules. In their initial efforts, substrates bearing aryl and alkyl groups at the 4-

position were studied and enantioenriched products were obtained, however only with a 

maximum of 75% ee, while substrates bearing alkyl groups at the 5-position afforded 

products in 98% ee. In order to improve the results, the authors hypothesized that by 

increasing the acidity of the hydrogen at the 5-position, rapid racemization would be 

facilitated and improve the stereoselectivity of the transformation. Excellent results were 

obtained with electron withdrawing groups at the 5-position. In a representative example, 

sulfonyl imine 152 was treated with a chiral rhodium catalyst to obtain sulfamate 153 in near 

perfect yield, enantio-, and diastereoselectivity, and was used to synthesize (−)-epi-
cytoxazone (154).156

Reboxetine: Another interesting application of DKR-based ATH from the Lee laboratory 

describes the construction of two contiguous stereocenters in one step to obtain various 2-

substituted morpholine analogs (Scheme 31).158 In the event, subjecting racemic 

morpholin-3-one 155 to ATH conditions cleanly affords the reduction product 156 with 98% 

yield and 99% ee. The method provides access to the pharmaceutically relevant 2-substituted 

morpholine benzyl alcohols in enantioenriched form. Alcohol 156 was transformed to the 

known antidepressant (S,S)-reboxetine (157) in a few straightforward steps.

Other noteworthy examples of ATH-based DKRs in complex molecules syntheses that are 

not discussed presently are depicted in Figure 12.159,160,161,162

Asymmetric Hydrogenation

(+)-γ-Lycorane: In a series of publications, Xie and Zhou have disclosed their group’s 

efforts on the application of Ru-catalyzed asymmetric hydrogenation involving DKR for the 

total synthesis of a number of natural products.163,164,165,166 Racemic a-substituted cyclic 

ketones substrates were processed via this technology to establish two or three contiguous 

stereocenters. This approach has several advantages: the reaction is carried out on readily 

accessible substrates, tolerates a number of functional groups, and works well with sterically 

hindered substrates. The most impressive application of this methodology is showcased in 

the total synthesis of (+)-γ-lycorane (162).155 α,α′-Disubstituted ketone 163 was subjected 

to asymmetric hydrogenation to afford alcohol 164 thus creating three stereocenters via 
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DKR in a single step (Scheme 32). With facile access to enantiopure 164, Xie, Zhou and 

coworkers completed the asymmetric synthesis of 162 in three additional steps.

PF-00951966: Lall and coworkers reported the use of β-ketopyrrolidinone 165 as the 

substrate for asymmetric hydrogenation-based DKR (Scheme 33).167 In a reaction 

performed on multi-gram scale, 165 was reduced via a ruthenium-catalyzed process that 

afforded β-hydroxylactam 166 in good yield and excellent selectivity. Alcohol 166 was then 

transformed to furnish fluoroquinolone antibiotic 167 (PF-00951966) in ten steps.

Glucagon Receptor Antagonist: A tour de force application of asymmetric hydrogenation–

DKR transformation was developed at Merck, with the key reaction performed on an 

impressive 110 kg scale en route to the synthesis of 172, a glucagon receptor antagonist 

(GRA) (Scheme 34), which has been recognized as potential candidates in the treatment of 

type-2 diabetes.168 In the event, ketone 173 was reduced in the presence of Ru-SEGPHOS 

(168, Figure 13) catalyst to afford alcohol 174 in 94% and greater than 98% ee and dr. In 

five subsequent steps, alcohol 174 was processed to the target molecule.

Reduction with Hydride

Eupomatilone-3: In 2005 Buchwald and co-workers completed the first asymmetric total 

synthesis of eupomatilone-3 (173, Scheme 35).169 All members of the family possess a 

highly oxygenated biaryl moiety appended to a cis-4,5-disubstituted butyrolactone which, 

for eupomatilone-3, was accessed via the asymmetric conjugate reduction via DKR of the 

intermediate 3-methyl-4-aryl butenolide. Using MeO-BIPHEP (123, Figure 10) as the chiral 

ligand, PMHS as the hydride source, and an excess of base at room temperature, the 

corresponding cis-4,5-disubstituted lactone was obtained as a single diastereomer in 85% 

yield and 93% ee. The scope of this DKR was successfully extended to other 3-methyl-4-

aryl butenolides; however, the extension of these conditions to γ-alkyl lactones proved 

unsuccessful. Nonetheless, this work represents the first copper-catalyzed DKR of an 

unsaturated lactone, enabling the asymmetric total synthesis of eupomatilone-3 in six steps 

and in 48% overall yield.

The examples discussed above were chosen to give the reader an idea of the versatility of the 

asymmetric hydrogenation-DKR strategy in complex molecules synthesis. Other examples 

that were not covered are depicted in Figure 14.170,171,172,173,174,175,176

3.7 Concluding Remarks – Dynamic Kinetic Resolutions

DKRs have become a vital piece in the organic chemists toolkit, particularly with respect to 

asymmetric hydrogenation and transfer hydrogenation. The possibility of funneling all 

material through a single enantiomer brings incredible value to DKRs, especially when 

compared to classical kinetic resolution. It is our hope that this important research area will 

continue to grow in the coming years.
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4. Dynamic Kinetic Asymmetric Transformations

The third section in this review belongs to Dynamic Kinetic Asymmetric Transformations, 

or DyKATs.177 Similar to DKRs, DyKATs also involve an equilibration of substrate 

enantiomers; however, they differ in that a chiral catalyst is responsible for this equilibration. 

Furthermore, DyKATs can be divided into two types. Type I DyKATs involve the binding of 

both enantiomers of the substrate to the catalyst to provide a mixture of diastereomeric 

substrate-catalyst pairs {cf. (R)-A•[cat] vs. (S)-A•[cat], Scheme 36a}. These pairs are then 

rapidly equilibrated, often through a prochiral intermediate B (B•[cat]), with one of the two 

reacting to form the product [(R)-C in this case] with a much higher rate than the other (i.e. 

kP-R ≫ kP-S, Scheme 36a). Type I DyKATs resemble DKRs in that the rate of enantiomeric 

equilibration krac must be faster than the rate of product formation kP-R, with the notable 

difference that the interconversion of enantiomers is catalyst-mediated. In contrast, Type II 

DyKATs involve the loss of the substrate’s chiral center during its interaction with the chiral 

catalyst to form a prochiral substrate B bound to the chiral catalyst. Selectivity in the overall 

transformation is achieved when one enantiomer of the product [(R)-C in this case] is 

produced with a significantly higher rate than the other (i.e. kP-R ≫ kP-S, Scheme 36b). Type 

II DyKATs bear similarity to stereoablative transformations in that the rate of racemization 

of each enantiomer must be similar, and that both must be faster than the rate of product 

formation [i.e., kracR ≈ kracS ≫ kP-R (or kP-S)]. Crucially, the loss of chirality in Type II 

DyKATs is both reversible and catalyst-mediated, distinguishing them from stereoablative 

transformations (Section 2).

4.1. Carbon–Carbon Bond Forming Reactions

4.1.1 Asymmetric Allylic Alkylation (AAA)—Recognized as one of the most general 

and reliable transformations, the AAA reactions come in many flavors including DyKAT. 

This particular subset has found numerous applications and has been reviewed 

periodically.178,179,180,181 As such, a limited number of examples are presented here for 

illustration and the reader is advised to consult previous reviews dedicated to this topic for 

more information.

In 2009 Trost and coworkers disclosed the allylic alkylation of benzylic nucleophiles 

generated from the deprotonation of BF3-bound 2-alkyl pyridine units.182 A mixture of 

BF3·OEt2, LiHMDS, and n-BuLi was needed to affect this challenging deprotonation, while 

a Pd-ANDEN (173, Figure 15) catalyst system was used to activate the racemic cyclic-

pivalate electrophile. This combination makes for a highly efficient and selective method for 

the construction of vicinal tertiary stereocenters, a stereodyad whose construction is 

certainly not trivial.

The Fletcher group disclosed an important breakthrough in this area of non-stabilized AAA 

reactions with their report on the copper-catalyzed AAA between alkyl zirconium reagents 

and racemic allylic chloride substrates (Scheme 38).183,184 The organozirconium species can 

be conveniently generated in situ from alkenes and Schwartz reagent (Cp2ZrHCl). 

Interestingly, neither Pd- nor Ir-based catalysts delivered the desired product. While it is not 

entirely clear as to how the chiral catalyst system interacts with the substrate and the 

alkylzirconium species to afford the product, the authors believe a rapid, copper catalyst-
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promoted syn-SN2′ mechanism to be the reason behind the observed dynamic behavior. The 

most practical aspect of this transformation is that readily available terminal alkenes can be 

added to allylic halides to obtain products in good to excellent yield and enantioselectivity. 

A minor drawback of this strategy, however, is that the presence of Schwartz reagent in the 

reaction may limit the overall functional group tolerance of the transformation. Thus, there 

is room for expanding the substrate scope for this methodology.

4.1.2 Cross–Coupling Reactions

Suzuki–Miyaura Cross-Coupling: Fernández and Lassaletta demonstrated that the DyKAT 

strategy could be applied to generate axial chirality via C–C bond construction in racemic 

biaryl substrates (Scheme 39).185 Using Pd(0) and TADDOL-derived phosphoramidite 

ligand 175 (Figure 15) as the catalyst system, a Suzuki–Miyaura coupling between racemic 

1-aryl-2-triflyloxynaphthalenes and triaryl boroxines effected the asymmetric synthesis of 

atropisomeric heterocycles.186,187,188,189,190,191 It is postulated that the palladium 

intermediate generated upon the oxidative addition of a racemic 1-aryl-2-

triflyloxynaphthalenese 176 to Pd(0) can rotate freely around the biaryl bond, allowing for 

the facile interconversion of enantiomers. There are two possible mechanisms for 

enantiodiscrimination: enrichment of one of the two possible oxidative addition products 

prior to reductive elimination (Type I DyKAT), or a relatively equal ratio of the two in 

solution with different rates of reductive elimination leading to enantioenriched products 

(Type II DyKAT). The authors demonstrated that this strategy was effective when a number 

of 2-substituted pyridines and isoquinolines as well as 4-substituted quinazolines were 

utilized, obtaining the corresponding products with good to high yield and enantioselectivity.

Nickel-Catalyzed Cross-Couplings: In 2015, Molander and Kozlowski disclosed 

mechanistic insights into the asymmetric cross-coupling reactions between a racemic 

secondary alkyltrifluoroborate (178) and three aryl bromides (179) (Scheme 40).192 The 

catalyst system for the transformation comprises of an Ir(III) photoredox catalyst (187), 

Ni(COD)2, and biox ligand 188 (Figure 16). The iridium(III) photocatalyst 187 plays a dual 

role in the overall transformation, generating carbon-centered radicals from the 

alkyltrifluoroborate via single electron transfer (SET) and by reducing Ni(I) species 186 to 

regenerate the Ni(0) catalyst. DFT calculations suggest that enantioselectivity arises via 

reversible association and dissociation of the stabilized radical to the Ni(II) intermediate. 

The authors propose that the diastereomeric Ni(III) complexes display different rates of 

reductive elimination, providing modestly enantioneriched products through a Type II 

DyKAT process. The authors did not report the yields of these coupling reactions.

4.1.3 Cycloadditions

[3+2] Cycloadditions: In 2013, the Davies group reported the first example of DyKAT in 

carbenoid chemistry in the formation of cyclopentene derivatives from the gold(I)-catalyzed 

formal [3+2] cycloaddition of enol ethers 190 and vinyldiazoacetates 191 (Scheme 41).193 

This reaction delivered highly functionalized spirocyclic cyclopentene products in high yield 

and in greater than 90% ee. The reaction generates three contiguous stereocenters in a single 

step and, remarkably, the products are formed as a single diastereomer. It is proposed that 

both enantiomers of the product are accessed via rapid, gold-promoted equilibration of E- 
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and Z-enol isomers via the diastereomeric complex 190-[Au]. Intriguingly, the chiral center 

itself is inert to the transformation, but this equilibration of enol isomers results in 

scrambling of its R and S identity. Subsequent to this equilibration, only the enantiomer that 

is matched for the reaction at the Re face of the DTBM-SegPhos [(R)-170, Figure 13] gold-

vinylcarbene undergoes cycloaddition via initial attack at the vinylogous position of the 

vinylcarbene intermediate.

Reactions involving donor–acceptor cyclopropanes (DACs) have recently found widespread 

use.194,195,196,197,198,199 The Trost group reported a Pd-catalyzed formal [3+2] 

cycloaddition between racemic vinyl cyclopropane 193 and alkylidene azalactones 194 via a 

DyKAT process to afford spirocyclic cycloadduct 195 (Scheme 42).200 Impressively, the 

reaction produces mainly one of the four possible diastereomers as the major product in 

good yield and excellent enantioselectivity. Mechanistically, the reaction initiates through 

the non-selective ionization of the vinyl cyclopropane to generate intermediates 196 and 

197. The unique “wall and flap” steric environment created by ligand 189 is able to funnel 

the equilibrating mixture to thermodynamically favored intermediate 196. The malonate 

anion in 196 attacks the azalactone in a 1,4-fashion and the resulting azalactone enolate traps 

the π-allylpalladium moiety to produce the desired product. The methodology can be 

applied to a broad substrate scope and provides access to highly functionalized products.

Xu, Shi and coworkers developed a Pd-catalyzed formal [3+2] cycloaddition reaction of 

vinyl cyclopropanes with β,γ-unsaturated-α-ketoesters to obtain highly functionalized 

cyclopentane derivatives 198 bearing three contiguous stereocenters (Scheme 43).201 The 

reaction tolerates a variety of substitution on the enone substrate and delivers products with 

excellent yields and high enantio- and diastereoselectivities.202 The mechanistic rationale for 

the observed selectivity is expected to be similar to that observed in Trost’s methodology 

(Scheme 42).

Tang and coworkers have reported a DyKAT involving [3+2] annulation of cyclic silyl enol 

ethers and racemic DACs catalyzed by a copper(II)/200 system (Scheme 44a).203 More 

recently, Waser and coworkers reported [3+2] cycloaddition via DKR that utilizes amino-

DACs and aldehydes or enol ethers as annulation partners to afford the tetrahydrofuran or 

cyclopentane products respectively, in good to excellent yields, enantio- and 

diastereoselectivity (Scheme 44b).204 Readily available copper/t-Bu-Box (201, Figure 17) 

complex was used as the chiral catalyst. The authors propose that the facial selectivity of the 

formal [3+2] cyclization event is dictated by catalyst system and that the dynamic process 

proceeds via reversible cyclopropane ring opening/closing, which may also be mediated by 

the copper catalyst.

[3+2] Annulation of racemic allenes with aryl ketimines: Cramer and coworkers reported 

a useful method for the selective construction of substituted indanylamine building blocks 

(Scheme 45).205 The Rh(I)-BINAP (88, Figure 6) catalyzed transformation can tolerate a 

broad substrate scope using readily available precursors. Importantly, the good to excellent 

chemical yield, enantio- and diastereoselectivity obtained makes this technology a 

particularly attractive route to access complex scaffolds. The reaction is believed to proceed 

through a rhodium-catalyzed, ketimine directed C–H activation and is followed by 
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coordination and insertion of the allenic moiety. A dynamic system is established as a result 

of isomerization of the diastereomeric allyl rhodium intermediates (206) as shown in 

Scheme 45. The isomerization occurs faster than the ultimate addition across the imine 

fragment. It was observed that the reaction stereochemistry is controlled entirely by the 

chiral catalyst system and the axial chirality of the allene component has no effect on the 

product stereochemistry. Moreover, submitting enantioenriched allene to the rhodium 

complex in the absence of imine led to complete racemization, providing further evidence 

for a catalyst-mediated interconversion of enantiomers.

4.1.4 Hydroacylation—Willis and coworkers have used allenes as substrates in rhodium–

catalyzed dynamic kinetic asymmetric hydroacylation reactions (Scheme 46).206 

Preliminary reports focused on the use of aliphatic and aromatic aldehydes bearing a 

thiomethyl moiety at the β-position, presumably to facilitate metal coordination and 

subsequent insertion in the aldehyde C–H bond. Under Rh(I)/Me-DuPhos catalysis (211, 

Figure 18), various 1,3-disubstituted allenes smoothly reacted with aldehydes to afford the 

corresponding β,γ-enone products in good to excellent yields and enantioselectivities. The 

authors also carried out mechanistic studies that support a DyKAT mechanism responsible 

for the observed selectivities. Catalyst control was observed when an enantiomerically 

enriched allene was employed in the reaction. Moreover, the ee of the recovered allene was 

found to be significantly reduced, strengthening the proposal of a DyKAT mechanism.

4.2 Carbon–Heteroatom Bond Forming Reactions

4.2.1 Carbon–Nitrogen Bond-Forming Reactions

Amination: In 2005, Trost and coworkers reported the Pd-catalyzed dynamic kinetic 

asymmetric addition of secondary amines to racemic allenyl acetates (Scheme 47).207 The 

reaction efficiently produced allenamine 213 via the rapid interconversion of vinyl-Pd(II) 

intermediates 214 and 215. In addition to secondary amines, this methodology also tolerates 

malonate nucleophiles.208

The Widenhoefer group reported a gold-catalyzed enantioselective intramolecular 

hydroamination209,210,211 of γ-amino allenes 216 to form 2-vinyl pyrrolidine products 217 
(Scheme 48).212, The cationic gold complex participates in the racemization of enantiomers 

218 and 219 selectively reacts with one enantiomer of the substrate, thus qualifying as a 

Type I DyKAT system.213 Under these conditions, disubstituted allenes deliver the 

corresponding product ent-217 with poor enantioselectivity.214

Kawatsura, Itoh and coworkers developed an interesting approach for accessing acyclic, 

chiral CF3-bearing amines from unsymmetrical 1,3-disubstituted allylic acetates and 

carbonates via a Pd-catalyzed DyKAT (Scheme 49). The desired α-product (221) was 

obtained with good to excellent enantioselectivity along with minor amounts of nearly 

racemic γ-product (222). It was found that the presence of silver additive was critical in 

achieving the observed enantioselectivity in this dynamic process.

In 2012 the Nguyen group developed a rhodium-catalyzed regio- and enantioselective 

amination via DyKAT of racemic tertiary allylic trichloroacetimidates with anilines (Scheme 
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50).215 Prior research in their group on racemic allylic amination216 had indicated that the 

oxidative addition of trichloroimidates 226 and 228 occurred with different rates, suggesting 

a kinetic resolution was at play. The authors also noted, however, that isomerization of the 

diastereomeric π-allylrhodium intermediates appeared to be facile, which could be taken 

advantage of in a DyKAT. The authors hypothesized that the use of an appropriate ligand 

that would slow the rate of aniline addition could allow more time for a π-σ-π intercon-

version of the diastereomeric π-allylrhodium intermediates. If this ligand was chiral, such a 

DyKAT could be realized. A broad ligand evaluation showed that 

diarylbicyclo[2.2.2]octadiene 230 (Figure 19) provided the desired product in both high 

yield and enantioselectivity. Consistent with the authors’ observations, electron-rich anilines 

formed adducts with lower enantioselectivity than their electron-deficient counterparts. This 

trend likely stems from the correspondingly higher rates of addition of these more 

nucleophilic coupling partners.

These authors have also developed a closely related Ir-catalyzed dynamic kinetic 

asymmetric fluorination of racemic, secondary allylic trichloroacetimidates with Et3N·3HF 

as the fluoride source.217

Kitagawa and coworkers reported the use of a DyKAT process for the synthesis of axially 

chiral 1,2-biaryl indoles via a Pd-catalyzed C–N bond-forming 5-endo-hydroamination 

(Scheme 51).218,219 The authors recognized that the (2-t-butylphenyl)indoles have a high 

rotational barrier and can be accessed via an atroposelective, intramolecular cyclization 

starting from ethynylaryl anilines 232. Of the numerous chiral ligands screened, (R)-

SEGPHOS 168 (Figure 13) was found to affect the cyclization with highest 

enantioselectivity. Best results were obtained with substrates in which the alkyne moiety was 

capped with 2-susbtituted phenyl groups (ring A). It is believed that in the enantiodeterming 

step, axial chirality is generated due to the presence of a substituent at the 2-position of ring 

A. As a result, the conformation with minimum steric clash between the R group on ring A, 

the t-butyl moiety on ring B and the chiral ligand on the catalyst is favored. Thus, for R = H, 

the indole product was obtained in 60% ee whereas for R = Br the ee was determined to be 

83%, correlating agreeably with the hypothesis. Replacing the tert-butyl group on ring B 

with the smaller isopropyl or phenyl groups was detrimental to the observed 

enantioselectivities.220,221,222

4.2.2 Carbon–Oxygen Bond-Forming Reactions—Trost and coworkers reported a 

Pd-catalyzed AAA–DyKAT approach for the synthesis of tetrahydropyran (THP) moieties 

from racemic Baylis–Hillman-type adducts bearing a tethered alcohol as the nucleophile 

(Scheme 52).223 High yield and enantioselectivity was observed for both ester and nitrile 

substrates, although the two required slightly different conditions to achieve the highest 

levels of efficiency and enantioselectivity. The dynamic system is set up through π-allyl 

equilibration and enantioselectivity is achieved when this process is faster than the attack by 

the pendant alcohol. Interestingly, a highly selective kinetic resolution process is observed 

when the reaction is carried out at 23 °C, indicating that higher temperature is required for 

the π-allyl equilibration. Kitamura disclosed a similar transformation utilizing allylic 

alcohols, rather than acetates, and showed that one of their substrates provides 

enantioselective products through a Type I DyKAT.224
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Zhang and coworkers have reported an interesting extension to the Pd-catalyzed allylic 

substitution by O-nucleophiles (Scheme 53).225 Their approach utilizes racemic vinyl-

substituted ethylene carbonates as substrates that undergo CO2 extrusion upon exposure to 

catalytic Pd2(dba)3·CHCl3 and (S,S,S)-phosphoramidite 174 (Figure 20), leading to a rapidly 

interconverting dynamic system comprising of diastereomeric π-allylpalladium 

intermediates. Formaldehyde then reversibly captures the Pd-alkoxide intermediate, 

generating a new pair of diastereomeric Pd-allyl complexes, which is much slower to 

equilibrate. The DyKAT is realized when due to rapid reductive elimination of one of the 

two glycolates undergoes reductive elimination, affording methylene acetal-protected 

tertiary vinylglycols in excellent yield and enantioselectivity.

The Toste group has demonstrated the use of a chiral cationic Au(I)–carbene complex as 

catalyst for the asymmetric synthesis of highly substituted chromene analogs from suitably 

functionalized propargylic esters (Scheme 54).226 A variety of chiral phosphines and NHC 

ligands were evaluated, and ligand 244 (Figure 20) was identified to be the optimum 

candidate that delivered the desired product in high yield and selectivity. Both free phenol 

and benzyl aryl ethers may be used as substrates. The reaction initiates with Au-catalyzed 

formal [3,3] sigmatropic rearrangement of propargylic ester substrate to generate a gold-

bound allene. The allene–gold interaction results in scrambling of axial chirality and 

stereoselectivity is achieved via a 6-endo-trig attack of the phenolic oxygen to construct the 

chromene skeleton, followed by either proton or benzyl group transfer to the insipient 

cation. Mechanistic studies indicate that one of the enantiomers of the substrate reacts faster 

while the unreacted isomer undergoes racemization via the aforementioned gold-allene 

pathway.

4.2.3 Carbon–Phosphorous Bond-Forming Reactions—Glueck and coworkers 

pioneered Pd-catalyzed C–P cross-couplings involving DKR to obtain chiral 

phosphines.227,228 Since then, this field has evolved substantially and reviewed in the recent 

literature.229,230 As such, only a couple of representative examples will be discussed here. In 

2007 Bergman and Toste designed a Pd-catalyzed arylation of tertiary racemic 

silylphosphines as a means to synthesize P-stereogenic phosphines (Scheme 55).231 After 

extensive screening it was discovered that ortho-benzamide substituents improved the 

enantioselectivity of the C–P coupling. The authors found that the one-carbon arylacetamide 

homologs provided decreased ee’s, implying that a five-membered palladacycle was crucial 

for obtaining the highest enantioselectivity. The source of DyKAT stems from the low 

barrier to epimerization of Pd(II)-phosphide intermediates (due to the facile pyramidal 

inversion of metal phosphido complexes) which occurs faster than the reductive elimination. 

Exploration of substrate scope around iodobenzamides revealed that changes in electronics 

para- to the iodide or to the amide have very little effect on the ee. Electron-rich iodides 

required longer reaction times but also show excellent enantioselectivities. Other competent 

variations include substrates with extended conjugation, electron-rich heteroarenes, 

thiophenyl substrates, and sterically congested amides. Exploration of substrate scope 

around phosphines revealed that electron-poor substrates decrease ee. Tolerated phosphine 

variations include less sterically congested alkyl groups as well as oxygenated alkyl groups.
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Stoltz and Virgil reported a palladium-catalyzed, atroposelective DyKAT for the asymmetric 

synthesis of the chiral ligand QUINAP (258, Scheme 56).232 Using a Pd(0)/Josiphos (118, 

Figure 9) catalyst system, racemic triflate precursor 257 was phosphinated to afford 

QUINAP 258 in good yield and enantioselectivity. It is believed that the diastereomeric 

arylpalladium intermediates 259 and 261, produced after a nonselective oxidative addition 

event, undergo racemization to preferentially form one atropisomer that upon phosphination 

yields QUINAP with high selectivity. Interestingly, replacing triflate with bromide on the 

substrate results in a kinetic resolution process that provides both QUINAP and the 

unreacted bromide in high yield and enantioselectivity.

4.3 Asymmetric Reduction

Dong and coworkers have developed a Rh-catalyzed asymmetric hydrogenation proceeding 

through a DyKAT process on allylic sulfoxides, an entirely different substrate class than 

those discussed above.233,234 This interesting transformation provides a complementary 

route to chiral sulfoxide products (Scheme 57), which are usually accessed via the oxidation 

of sulfides. Racemic allylic sulfoxides of the type 262 were transformed into 

enantioenriched sulfoxides 263 under a hydrogen atmosphere with Rh(cod)BF4-(S,S)-Ph-

BPE (255, Figure 21) as the catalyst. The authors postulate a pathway wherein the Rh-

catalyst is involved in both the racemization of the allylic sulfoxide via reversible C–S bond 

cleavage-recombination, in addition to the selective hydrogenation of one of the resulting 

substrate enantiomers to deliver the desired product in moderate to good yield and 

enantioselectivity. The reaction optimization process revealed several noteworthy aspects: a 

relatively low hydrogen pressure (0.1 atm) ensures that the rate of hydrogenation is slow 

compared to the rate of racemization, and the use of polar solvents, such as methanol, favors 

the intermediacy of polar intermediates during racemization.

4.4 Miscellaneous Reactions

Wang and coworkers recently disclosed the first example of an intermolecular DKR of α-

ketoesters through the synergistic combination of NHC and Lewis acid-catalysis (Scheme 

58).235 The reaction between α-ketoesters (267) and β-methylenals (268) occurred to 

produce δ-lactone products (269) in good to excellent chemical and stereochemical 

efficiency. The methodology tolerates a wide substrate scope and furnishes products that 

have numerous functional group handles for further manipulations. The exact role of the 

Lewis acidic Sc(OTf)3 co-catalyst is not fully understood at this time, however it was 

required to achieve high enantioselectivity in addition to high yield in the transformation.

Moriwaki, Liu, Soloshonok and coworkers recently reported a Ni-promoted DKR of 

unprotected α-amino acids (271, Scheme 59).236 It was postulated that when the 

enantiomers in the racemic sample were subjected to the reaction conditions, chiral ligand 

273 (Figure 22) reacts faster with the R enantiomer of the substrate to make the (S,R) 

diastereomer (272) as the kinetically favored product. The other (S,S) diastereomer (not 

shown) forms slowly and converts to the (S,R) diastereomer via a base-catalyzed enolate 

equilibration. Access to the enantiopure amino acid products can be readily realized via 

treatment of intermediate 272 with 6N HCl. This also allows for the recovery and recycling 

of the chiral ligand. Furthermore, similar efficiency of this DKR to the S/R interconversion 
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of α-amino acids was also demonstrated. Structural analyses show that (S)-Ligand 273 
creates S-helical chirality of the chelate rings, which gives rise to the R-absolute 

configuration of the α-amino acid. The substrate scope of this resolution encompasses 

aliphatic, aromatic, and ω-functionalized amino acids with high yields and 

diastereoselectivity.

Córdova and coworkers have developed a fascinating one-pot oxa-Michael/cyclization 

cascade between propargyl alcohols 276 and enals 277 to produce highly substituted 

dihydrofurans (DHFs) 278 that proceeds under a synergistic combination of chiral amine 

274 (Figure 22) and PdCl2 (Scheme 60).237 The authors reasoned that while the addition of 

propargyl alcohol (PrgOH) to the iminium intermediate was expected to be reversible and 

non-selective, the participation of palladium via its interaction with the triple bond would 

force the reaction forward. Irreversible asymmetric induction takes place at this stage of the 

reaction, as only the sterically favored diastereomeric Pd-alkyne complex 281 can entertain a 

nucleophilic attack to forge oxacyclopentane 282 that contains an exocyclic olefin at this 

stage. Thermodynamic equilibration to the fully substituted and conjugated olefin eventually 

yields 278 as the overall product. The authors were not able to rule out the possibility of 

Pd(II) acting as a Lewis acid that activates the triple bond toward an enantioselective, and 

therefore a non-DyKAT, attack by the enamine onto the Pd-alkyne prior to oxa-Michael 

addition, however. The Cordova group has since expanded this technology to obtain a 

variety of useful structural motifs.238,239

Feng and coworkers recently disclosed an iron-catalyzed asymmetric Cannizzaro reaction 

(Scheme 61).240 A variety of aryl and alkyl glyoxal hydrates reacted smoothly with alcohols 

to produce α-hydroxyesters with excellent ee. The mechanism for stereoinduction in 

asymmetric Cannizzaro reactions is subject to an ongoing debate, and where one proposal 

qualifies as a DyKAT (path A),241,242 another favors an enantioselective addition route (path 

B).243 It is postulated that under the reaction conditions, substrate 283 dehydrates to form 

glyoxal 285 that can reversibly form racemic hemiacetals 285. The chiral iron-N,N′-dioxide 

(275, Figure 22) complex then selectively binds and promotes the suprafacial hydride 

migration to afford α-hydroxyester product 284. As shown in path B, one can imagine the 

iron catalyst chelating to the glyoxal (287) and inducing enantioselective alcohol addition. In 

the present case the authors, based on experimental evidence, believe that both DyKAT (path 

A) and enantioselective addition of alcohol to glyoxal (path B) to be in synergy and deliver 

the products in excellent yield and enantioselectivity. Considering that these conditions 

promote the reverse of the alcohol addition (rendering path B reversible), we feel that path A 

is likely predominant, and thus classify this transformation as a DyKAT.

The Dong group reported their initial investigations on the rhodium–catalyzed ring 

expansion methodology to obtain indanone 292 from benzocyclobutanone 288 (Scheme 

62).244 The proposed C–C bond cleavage approach was broadly effective for racemic 

reactions, however, limited success was achieved in an asymmetric variant catalyzed by 

Rh(I)/(S)-SEGPHOS (168, Figure 23) with product 292 obtained in a modest 42% ee 

(Scheme 62). The reaction is believed to be an example of DyKAT and at the moment 

requires careful optimization for achieving useful levels of yield and selectivity.
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4.5 DyKATs in Complex Molecule Synthesis

Muscone: In 2005 Ikariya and co-workers completed the asymmetric synthesis of muscone 

(297) establishing the lone stereocenter with a ruthenium-catalyzed asymmetric double bond 

isomerization of an allylic alcohol precursor (295, Scheme 63).245 Using a chiral catalyst 

comprising of Ru(I) and L-proline derived ligand 293 (Figure 23) the (±)-(E)-allylic alcohol 

precursor 295 afforded the (S)-ketone 296 in 74% ee. The authors speculate that the allylic 

alcohol is reversibly oxidized to enone 298, providing the active hydrogenation catalyst and 

electronically activating the now-conjugated olefin. Enantioselective reduction delivers 

ketone 297 via a selective 1,4-addition event.

M58163 and M58169: Saitoh, Mikami and co-workers completed the asymmetric total 

syntheses of M58163 (303) and M58169 (304), both of which display antithrombotic 

activity (Scheme 64). Access to their imidazopyrazinone core (301) was achieved using a 

lanthanum-catalyzed asymmetric cascade cyclization proceeding through racemic aminal 

302.246,247 Mechanistic studies revealed that the aminal is formed reversibly, with 

enantioselection occurring during the La-catalyzed amide bond-forming step. A survey of 

various lanthanide metal complexes revealed that the La-linked BINOL complex 294 (Figure 

23) gave the best yield and selectivity. Despite the modest enantioselectivity, the authors 

note that this marks the first catalytic enantioselective aminal synthesis.

Hydroxypyrrolidine Natural Products: Trost and coworkers reported a versatile 

application of the Pd-catalyzed AAA in the total synthesis of (+)-broussonetine G (313) and 

other structurally related pyrrolidine-containing alkaloids like (+)-

dihydroxymethyldihydroxypyrrolidine (DMDP) (311) and (−)-bulgecinine (312, Scheme 

65).248 In the event, racemic butadiene monoxide undergoes a Pd-catalyzed DyKAT with 

phthalimide to afford homoallylic alcohol 307 with excellent yield and enantioselectivity 

(Scheme 65). 307 was then transformed into oxazolidinone 308, which was used for a 

second Pd-catalyzed DyKAT with butadiene monoxide to produce alcohol 309, once again 

with high yield and selectivity. Pyrrolidine scaffold 310 is forged using RCM technology. 

Thus sequential application of AAA transforms readily available feed-stock material into a 

flexible intermediate 309 that was further elaborated to accomplish the total synthesis of (+)-

broussonetinine G (313), (+)-DMDP (311) and (−)-bulgecinine (312).

Elbasavir: Researchers from Process Chemistry at Merck have recently disclosed a Pd-

catalyzed Buchwald–Hartwig C–N coupling to synthesize chiral indoles 317 (Scheme 

66).249 Using a high-throughput experimentation approach, palladium(II) acetate, bis-

phosphine ligand 315 (Figure 24) and K3PO4 in toluene were identified as the optimum 

conditions to transform racemic hemiaminals 316 to chiral benzoxazino-indoles in excellent 

yield and high enantioselectivity. While the exact mechanistic pathway has yet to be 

confirmed, the authors postulate a base-promoted epimerization to be key in the 

isomerization of the substrate via its ring-open form (318). The “matched” hemiaminal-Pd 

complex (320) selectively undergoes reductive amination to forge the C–N bond. The 

methodology was used as the key step in the efficient synthesis of elbasvir (322), a drug 

candidate for treating HCV infections.
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4.6 Concluding Remarks – Dynamic Kinetic Asymmetric Transformations

While DyKAT systems have the added complexity of a catalyst-mediated racemization 

event, they also offer the possibility of stereoconvergence to substrates that are not typically 

prone to epimerization. As such they form a fine complement to DKR processes, and as 

newer and more sophisticated catalytic systems are introduced, we can expect this field to 

continue its pattern of rapid growth.

5. Dynamic Substrate-Directed Resolutions

As mentioned in the Introduction section, during the preparation of this review we came 

across a few systems that displayed dynamic behavior, yet were not controlled by a chiral 

catalyst. While these do not fall under one of the traditional categories of stereoconvergence, 

we were intrigued by the concept of a Dynamic Substrate-Directed Resolution and thus 

opted for their inclusion with the hope of inspiring future work in this area.

Azatitanacyclopropane Reductive Cross-Coupling

In 2013, Micalizio and co-workers, observed the epimerization of azatitanacyclopropanes 

under reductive cross-coupling conditions (Scheme 67).250,251,252,253,254 Application of this 

phenomenon to the stere-oconvergent reductive cross–coupling of achiral aromatic imines 

323 with chiral allylic alcohols 326 provided homoallylic amines 327 in good yields and 

high enantioselectivity. Treatment of the achiral aromatic imines with Ti(OiPr)4 and c-

C5H9MgCl gives a rapidly interconverting mixture of enantiomeric azatitanacyclopropanes, 

which upon treatment with 1.3–2.0 equivalents of chiral allylic alcohol provides the 

stereodefined amine product (327). Both TMS- and Bn-substituted aromatic imines can be 

employed. The methodology has also been applied cyclic and acyclic allylic alcohols, with 

di- or tri-substituted alkene functionality, including and is tolerant of vinyl bromides.

Intramolecular Ring-Closing Ene Reaction

In 2005, the Pearson group reported a novel intramolecular ene-type reaction between a 

diene-Fe(CO)3 complex and an alkene resulting in the stereospecific generation of the 

corresponding spirolactam (Scheme 68).255 The precursor can be easily synthesized from 

the corresponding chiral amino ester and the racemic carboxylic acid as a diastereomeric 

mixture of 328 and 329. Under photolytic conditions, the iron-center loses coordination to 

the diene, eventually establishing an equilibrium between the two π-faces that allows for the 

dynamic interconversion of 328 and 329. The two diastereomers can be separated, and when 

individually subjected to the [6+2] ene-type reaction conditions one generated the 

spirolactam and the other converted to the reactive diastereomer and then underwent the 

cyclization. The authors propose that interconversion of diastereomeric precursors 328 and 

329 occurs faster than the formation of the putative reactive intermediate 330. Initially, one 

product is formed but thermal rearrangement gives access to olefin isomers (not shown); 

however, all isomers converge to a single product after demetalation and hydrogenation. In 

this process the chiral amide substituent directs the stereospecific formation of a single 

enantiomer, setting multiple stereocenters in a single step.
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Atroposelective Biaryl Vinylation

Soon afterward, Yang and co-workers256 reported the C–H alkenylation of biaryls bearing a 

chiral phosphinate (Scheme 69).257 Using Pd(OAc)2 and N-acyl glycine as the catalyst 

system, a wide variety of alkenes were coupled in good yield and diastereoselectivity. The 

methodology can also be extended to acylation, hydroxylation, acetoxylation and iodination 

on the same substrates albeit though kinetic resolution.

Carbon–Oxygen Bond Formation via C–H Activation

A highly diastereoselective Pd-catalyzed acetoxylation of biaryls 335 that contain a chiral 

sulfoxide auxiliary was disclosed by Wencel-Delord and Colobert and coworkers (Scheme 

70).258,259 The C–O coupling was realized using ammonium persulfate in a 1:1 mixture of 

acetic acid and hexafluoroisopropanol (HFIP) as the solvent. The reaction was performed at 

ambient temperature and was found to be tolerant to air and moisture, implying that Pd(II), 

rather than Pd(0), was the key catalytic intermediate in the transformation. Moreover, 

replacing the persulfate reagent with N-iodosuccinimide affords the corresponding iodinated 

product with good to excellent yield and diastereoselectivity.

Application of DSDR in Total Synthesis

Carbohydrates—Guo and Tang recently reported an impressive application of the 

Achmatowicz rearrangement260,261 for the formal synthesis of several deoxysugars that 

progress via an iridium-catalyzed dynamic kinetic internal transfer hydrogenation (Scheme 

71).262 Alcohol 337, which can be accessed as an enantiopure, 3:1 mixture of diastereomers 

in two steps via the asymmetric reduction of acetylfuran followed by an Achmatowicz 

rearrangement. In the key step, subjecting the diastereomeric mixture of 337 to catalytic 

[Ir(cod)Cl]2 and 2,6-dichlorobenzoic acid (2,6-DCBA) results in a stereoselective internal 

transfer hydrogenation to generate lactone 338 in 99% ee with complete diastereocontrol. 

Mechanistically, the reaction is believed to proceed through a rapid acid-catalyzed 

epimerization of the hemiacetal, followed by stereoselective Ir-catalyzed internal transfer 

hydrogenation via a dynamic system. Lactone 338 can be processed to a number of 

deoxysugars by utilizing previously established protocols.263

6. Conclusion

Stereoconvergent methods for the construction of enantioenriched organic molecules remain 

among the most valuable for the construction of chiral, non-racemic organic molecules. In 

particular, the ablative or dynamic aspect of these processes is a significant advantage, 

allowing for the full conversion of racemic starting materials to products of a single 

enantiomer. We hope that this review has served as an educational tool to not only 

summarize work in this field, but also instruct readers as to the proper use of these 

terminologies.
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ABBREVIATIONS

9-BBN 9-borabicyclo[3.3.1]nonane

AAA asymmetric allylic alkylation

acac acetylacetonate

Ar aryl

ATH asymmetric transfer hydrogenation

BArF tetrakis[3,5-bis(trifluoromethyl)phenyl]borate

Boc tert-butoxycarbonyl

BPE 1,2-di(phospholan-1-yl)ethane

BPin (4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-2-yl

Bz benzoyl

cat. catalyst

Cbz carboxybenzyl

CFL compact fluorescent lamp

cod 1,5-cyclooctadiene

conv. conversion

CPA chiral phosphoric acid

CPME cyclopentyl methyl ether

CSA camphor sulfonic acid

DAC donor-acceptor cyclopropane

dba dibenzylideneacetone

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene

DCBA dichlorobenzoic acid

DCC N,N′-dicyclohexylcarbodiimide

DCM dichloromethane

DFT density functional theory

DHF dihydrofuran

DIBAL-H diisobutylaluminum hydride

DKR dynamic kinetic resolution
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DMA N,N-dimethylacetamide

DMAP 4-(dimethylamino)pyridine

DME 1,2-dimethoxyethane

DMF N,N-dimethylformamide

DMMPh 3,5-dimethyl-4-methoxyphenyl

DMPU N,N′-dimethylpropyleneurea

DMSO dimethylsulfoxide

DPEN diphenylethylenediamine

dppb 1,4-bis(diphenylphosphino)butane

dppf 1,1′-bis(diphenylphosphino)ferrocene

dr diastereomeric ratio

DTBM 3,5-di-tert-butyl-4-methoxyphenyl

DyKAT dynamic kinetic asymmetric transformation

ee enantiomeric excess

EtOAc ethyl acetate

Gly glycine

HetAr heteroaryl

HFIP 1,1,1,3,3,3-hexafluoro-2-propanol

HMPA hexamethylphosphoramide

Men(−) (−)-menthyl

MOM methoxymethyl

MS molecular sieves

MTBE methyl tert-butyl ether

Nap naphthyl

nbd norbornadiene

NBS N-bromosuccinimide

NHC N-heterocyclic carbene

NIS N-iodosuccinimide

phen 1,10-phenanthroline
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Pin pinacol; 2,3-dimethyl-2,3-butanediol

PMB p-methoxybenzyl

PMP p-methoxyphenyl

Prg propargyl, 1-propynyl

SDP 7,7′-Bis(diphenylphosphino)-1,1′-spirobiindane

TADDOL α,α,α′,α′-tetraaryl-1,3-dioxolane-4,5-dimethanol

TASF tris(dimethylamino)sulfonium difluorotrimethylsilicate

TBAB tetrabutylammonium bromide

TBAF tetrabutylammonium fluoride

TBAT tetrabutylammonium difluorotriphenylsilicate

TBD 1,5,7-triazabicyclo[4.4.0]dec-5-ene

TBDPS tert-butyldiphenylsilyl

TBS tert-butyldimethylsilyl

TEA triethylamine

TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl

TFE 2,2,2-trifluoroethanol

thexyl 2,3-dimethyl-2-butyl

THF tetrahydrofuran

THP tetrahydropyran

Tf triflyl, trifluoromethanesulfonyl

Tol tolyl, 4-methylphenyl

Ts tosyl, p-toluenesulfonyl
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Figure 1. 
Stereoablative enantioconvergent catalysis.
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Figure 2. 
Substrate scope in Stoltz’s allylic alkylation.
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Figure 3. 
Total syntheses using allylic alkylation.
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Figure 4. 
Selected scope of Fu’s stereoablative couplings.
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Figure 5. 
Catalyst and reagent from Schemes 9 & 10
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Figure 6. 
Chiral ligands from Schemes 12–14 and 45.
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Figure 7. 
Catalysts from Schemes 15 and 16. Changed
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Figure 8. 
Catalysts from Schemes 17 and 18.
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Figure 9. 
Chiral ligands used in Schemes 19, 20, and 32.
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Figure 10. 
Chiral ligands used in Schemes 21–27, 29–31, 35, and 48.
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Figure 11. 
Chiral ligands used in Schemes 27 and 28.
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Figure 12. 
Other total syntheses involving ATH-based DKR.
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Figure 13. 
Chiral ligands used in Schemes 33–34, 41, and 51.
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Figure 14. 
Other natural products and pharmaceuticals synthesized via DKR.
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Figure 15. 
Chiral ligands used in Schemes 37–39.
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Figure 16. 
Catalyst and chiral ligands used in Schemes 40 and 42.
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Figure 17. 
Chiral ligands used in Schemes 43, 44, and 46.
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Figure 18. 
Chiral ligands used in Schemes 46 and 49.
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Figure 19. 
Chiral ligands used in Schemes 50 and 52.
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Figure 20. 
Chiral ligands from Schemes 53 and 54.
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Figure 21. 
Chiral ligands used in Schemes 55, 57, and 58.
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Figure 22. 
Chiral ligands and catalysts used in Schemes 59–61.
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Figure 23. 
Chiral ligands and catalysts used in Schemes 62–64.
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Figure 24. 
Chiral ligands used in Schemes 65 and 66.
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Scheme 1. 
Stoltz’s stereoablative allylic alkylation.
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Scheme 2. 
Mechanistic investigation into allylic alkylations.
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Scheme 3. 
Double allylic alkylation leads to excellent ee.
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Scheme 4. 
Completion of the synthesis of (−)-cyanthiwigin F.
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Scheme 5. 
Stoltz’s stereoablative protonation reaction.
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Scheme 6. 
Simplified Nickel Catalytic Cycle.64
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Scheme 7. 
Reisman’s cross-electrophile coupling reactions.
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Scheme 8. 
Catalytic stereoablative oxindole synthesis.
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Scheme 9. 
Asymmetric aza-Petasis–Ferrier rearrangement.
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Scheme 10. 
CPA-catalyzed synthesis of 4H-chromenes.
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Scheme 11. 
Dynamic kinetic resolutions.
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Scheme 12. 
Luan’s dearomative spirocyclization via DKR.
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Scheme 13. 
Asymmetric Heck reaction of helical amide rotamers.
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Scheme 14. 
Asymmetric Heck reaction controlled by restricted rotation.
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Scheme 15. 
Jacobsen’s enantioselective enolate alkylation.
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Scheme 16. 
You’s atroposelective C–H activation strategy.
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Scheme 17. 
Zhao’s borrowing-hydrogen DKR strategy.
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Scheme 18. 
Fu’s non-enzymatic acylation via DKR.
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Scheme 19. 
Zhou’s and List’s aldehyde reduction via DKR. changed
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Scheme 20. 
Enantioselective hydrogenative DKRs. Changed
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Scheme 21. 
Hamada’s α-amino-β-ketoester hydrogenative DKR.
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Scheme 22. 
Enantioselective indole protonation/reduction. Changed
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Scheme 23. 
ATH-based DKR on 5-membered ring ketones and ketimines. changed
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Scheme 24. 
ATH-based DKR on β-ketosulfones.
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Scheme 25. 
Johnson’s ATH-based DKR strategies.
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Scheme 26. 
ATH-based DKR on β-ketophthalides.
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Scheme 27. 
ATH-based DKR on β-ketoesters and -amides. Changed
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Scheme 28. 
Cobalt-based ATH for chiral biaryl synthesis.
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Scheme 29. 
Johnson’s total syntheses of megacerotonic acid and shimobashiric acid.
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Scheme 30. 
Lee’s total synthesis of (−)-epi-cytoxazone. changed
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Scheme 31. 
Lee’s ATH-based synthesis of Reboxetine. changed
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Scheme 32. 
Xie and Zhou’s total synthesis of (+)-γ-lycorane.
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Scheme 33. 
Pfizer’s DKR-based synthesis of PF-00951966.
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Scheme 34. 
Merck process’ synthesis of GRA 172.
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Scheme 35. 
Buchwald’s total synthesis of eupomatilone-3.

Bhat et al. Page 102

Chem Rev. Author manuscript; available in PMC 2018 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 36. 
Schematic representation of Type I and Type II DyKATs.
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Scheme 37. 
Trost’s AAA reaction (Type I DyKAT) on 2-alkylpyridine systems. changed
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Scheme 38. 
Fletcher’s copper-catalyzed AAA reaction (Type II DyKAT).
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Scheme 39. 
Fernández and Lassaletta’s asymmetric biaryl synthesis.
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Scheme 40. 
Molander’s SET-based coupling (Type II DyKAT).
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Scheme 41. 
Gold-catalyzed [3+2] cycloaddition featuring a gold-mediated interconversion of 

enantiomers (Type II DyKAT).
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Scheme 42. 
Trost’s formal [3+2] cycloaddition (Type I DyKAT).
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Scheme 43. 
Xu’s and Shi’s formal [3+2] cycloaddition (Type I DyKAT). changed
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Scheme 44. 
Copper-catalyzed formal [3+2] cycloadditions from Tang and Waser (Type II DyKAT).
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Scheme 45. 
Cramer’s C–H activation via Type II DyKAT.
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Scheme 46. 
Willis’ rhodium-catalyzed allene hydroacylation.
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Scheme 47. 
Trost’s C–N bond-forming Type I DyKAT on allenyl acetates.
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Scheme 48. 
Widenhoefer’s vinylative pyrrolidine formation via Type I DyKAT.
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Scheme 49. 
Reversible addition of amine to benzylic site leads to efficient Type I DyKAT.
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Scheme 50. 
Nguyen’s Type I DyKAT-based synthesis of allylic amines.
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Scheme 51. 
Kitagawa’s Type II DyKAT method for atroposelective indole synthesis.
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Scheme 52. 
Trost’s Type I DyKAT-based method for THP synthesis.
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Scheme 53. 
Zhang’s decarboxylative Type I DyKAT for chiral dioxolane synthesis.
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Scheme 54. 
Toste’s Type II DyKAT-based strategy for asymmetric chromene synthesis.
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Scheme 55. 
Bergman and Toste’s Type I synthesis of enantioenriched P-stereogenic phosphines. changed
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Scheme 56. 
Pd-mediated Type I DyKAT for the synthesis of QUINAP.
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Scheme 57. 
Dong’s reductive chiral sulfoxide synthesis via a rhodium-catalyzed Type II DyKAT.
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Scheme 58. 
Wang’s Type I DyKAT for the synthesis of unsaturated lactones.
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Scheme 59. 
Type I DyKAT-based method for enantioconvergence of racemic α-amino acids.
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Scheme 60. 
Córdova’s Type II DyKAT for enantioselective DHF synthesis.
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Scheme 61. 
Feng’s asymmetric Cannizzaro reaction via a Type II DyKAT process. changed
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Scheme 62. 
Dong’s Type II DyKAT for benzocyclobutanone expansion.
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Scheme 63. 
Ikariya’s total synthesis of muscone utilizing a Type I DyKAT.
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Scheme 64. 
Saitoh’s and Mikami’s synthesis of antithrombotic agents 303 and 304 utilizing a Type II 

DyKAT.
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Scheme 65. 
Trost’s syntheses of some hydroxypyrrolidine natural products utilizing a Type I DyKAT.
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Scheme 66. 
Merck’s Type I DyKAT-based synthesis of Elbasavir.
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Scheme 67. 
Micalizio’s use of chiral alcohols for the synthesis of enantiopure amines.
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Scheme 68. 
Pearson’s use of an iron-bound diene for enantioselective lactam synthesis.
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Scheme 69. 
Yang’s enantioselective biaryl vinylation.
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Scheme 70. 
Colobert’s atroposelective C–H acetoxylation/iodination.
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Scheme 71. 
Guo and Tang’s synthesis of deoxysugars.
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	Muscone: In 2005 Ikariya and co-workers completed the asymmetric synthesis of muscone (297) establishing the lone stereocenter with a ruthenium-catalyzed asymmetric double bond isomerization of an allylic alcohol precursor (295, Scheme 63).245 Using a chiral catalyst comprising of Ru(I) and L-proline derived ligand 293 (Figure 23) the (±)-(E)-allylic alcohol precursor 295 afforded the (S)-ketone 296 in 74% ee. The authors speculate that the allylic alcohol is reversibly oxidized to enone 298, providing the active hydrogenation catalyst and electronically activating the now-conjugated olefin. Enantioselective reduction delivers ketone 297 via a selective 1,4-addition event.M58163 and M58169: Saitoh, Mikami and co-workers completed the asymmetric total syntheses of M58163 (303) and M58169 (304), both of which display antithrombotic activity (Scheme 64). Access to their imidazopyrazinone core (301) was achieved using a lanthanum-catalyzed asymmetric cascade cyclization proceeding through racemic aminal 302.246,247 Mechanistic studies revealed that the aminal is formed reversibly, with enantioselection occurring during the La-catalyzed amide bond-forming step. A survey of various lanthanide metal complexes revealed that the La-linked BINOL complex 294 (Figure 23) gave the best yield and selectivity. Despite the modest enantioselectivity, the authors note that this marks the first catalytic enantioselective aminal synthesis.Hydroxypyrrolidine Natural Products: Trost and coworkers reported a versatile application of the Pd-catalyzed AAA in the total synthesis of (+)-broussonetine G (313) and other structurally related pyrrolidine-containing alkaloids like (+)-dihydroxymethyldihydroxypyrrolidine (DMDP) (311) and (−)-bulgecinine (312, Scheme 65).248 In the event, racemic butadiene monoxide undergoes a Pd-catalyzed DyKAT with phthalimide to afford homoallylic alcohol 307 with excellent yield and enantioselectivity (Scheme 65). 307 was then transformed into oxazolidinone 308, which was used for a second Pd-catalyzed DyKAT with butadiene monoxide to produce alcohol 309, once again with high yield and selectivity. Pyrrolidine scaffold 310 is forged using RCM technology. Thus sequential application of AAA transforms readily available feed-stock material into a flexible intermediate 309 that was further elaborated to accomplish the total synthesis of (+)-broussonetinine G (313), (+)-DMDP (311) and (−)-bulgecinine (312).Elbasavir: Researchers from Process Chemistry at Merck have recently disclosed a Pd-catalyzed Buchwald–Hartwig C–N coupling to synthesize chiral indoles 317 (Scheme 66).249 Using a high-throughput experimentation approach, palladium(II) acetate, bis-phosphine ligand 315 (Figure 24) and K3PO4 in toluene were identified as the optimum conditions to transform racemic hemiaminals 316 to chiral benzoxazino-indoles in excellent yield and high enantioselectivity. While the exact mechanistic pathway has yet to be confirmed, the authors postulate a base-promoted epimerization to be key in the isomerization of the substrate via its ring-open form (318). The “matched” hemiaminal-Pd complex (320) selectively undergoes reductive amination to forge the C–N bond. The methodology was used as the key step in the efficient synthesis of elbasvir (322), a drug candidate for treating HCV infections.
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