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Abstract

It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk 

of complex diseases. These genetic constructs each contain multiple SNPs, which are often 

correlated and function jointly, and might be large in number. However, only a sparse subset of 

SNPs in a genetic construct is generally associated with the disease of interest. In this article, we 

propose the generalized higher criticism (GHC) to test for the association between an SNP set and 

a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal 

detection settings when marginal test statistics are independent and the number of parameters is 

very large. However, these assumptions do not always hold in genetic association studies, due to 

linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic 

construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for 

arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic 

p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection 

boundary of the GHC test. We compared empirically using simulations the power of the GHC 

method with existing SNP-set tests over a range of genetic regions with varied correlation 

structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer 

genome-wide association study. Supplementary materials for this article are available online.
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1. Introduction

With the abundance of genome-wide association studies (GWAS) and with the increase in 

large-scale sequencing studies, there is an increasing demand for development of advanced 
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methodology capable of improving our chance for detecting genetic associations for 

complex diseases and traits. Common analysis of GWAS data tests single nucleotide 

polymorphisms (SNPs) individually (Manolio et al. 2009; Visscher et al. 2012). GWAS has 

been successful in identifying thousands of SNPs associated with complex diseases and 

traits. However, it has been shown that individual SNP effects are generally weak, and the 

disease/trait associated SNPs identified in GWAS are insufficient in explaining much of the 

heritability of complex diseases and traits, even for highly heritable traits, such as height 

(Visscher et al. 2012).

These findings suggest that single SNP analysis may be underpowered. This is particularly 

the case for low-frequency SNPs in sequencing association studies (Lee et al. 2014). Region-

based analyses have recently become more popular in genetic association studies as a 

complementary approach to individual SNP analysis by combining information from 

multiple SNPs in a genetic construct (Li and Leal 2008; Lee et al. 2014). Genes, gene 

networks, and pathways are examples of genetic constructs that are likely to have multiple 

SNPs that function simultaneously to affect diseases and traits, for example, due to 

functional similarity or interaction. The signal SNPs in a genetic construct are likely to be 

sparse and have weak signals. Hence, a methodology that does not require strong marginal 

SNP effects but is capable of aggregating these weak and sparse SNP effects together into a 

detectable signal at the genetic construct level, such as a gene, is needed to help increase the 

chance of detecting the effects of these genetic constructs and find the causes of the missing 

heritability.

Motivating data examples are the data from the Cancer Genetic Markers of Susceptibility 

(CGEM) GWAS breast cancer study, which is a case-control study with postmenopausal 

women of European ancestry that was aimed at identifying genetic variants that are 

associated with breast cancer risk (Hunter et al. 2007). These authors analyzed the data by 

examining the effects of individual SNPs across the genome. They found that several SNPs 

in the FGFR2 region showed strong evidence of association with breast cancer risk using 

individual SNP analysis. These results were validated in a separate study sample. However, 

none of these SNPs reached genome-wide significance when analyzing the CGEM GWAS 

data using the traditional individual SNP analysis.

In an effort to gain more power by studying genetic constructs (SNP sets), for example, 

genes, instead of individual SNPs, Wu et al. (2010) scanned the genome at the gene level 

and found the FGFR2 region to be more significantly associated with breast cancer. Though 

the region contained 35 SNPs, the signal was sparse with only four of the SNPs showing 

evidence of any association with disease. Indeed, marginally, none of those four SNPs were 

at genome-wide significance levels due to the large multiple testing problem. However, 

when the signals from all SNPs in the region were treated as a unit, then the association 

became more significant. The approach of Wu et al. (2010) equally uses all the SNPs in 

FGFR2 and does not take into account the fact that the signals are sparse in this region. It is 

hence of substantial interest to develop a test that can be more powerful in the presence of 

sparse signals.
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Sparse signals in an SNP set, present a particularly difficult problem for detection. As will 

be shown, the current methodology for SNP-set testing excels when signals are dense and 

prevalent, but is greatly affected by loss of power when sparsity is high. Given this, the 

likely existence of undiscovered disease-associated genes and other SNP-sets requires new 

methodology that is better capable of detecting sparse signals. In addition, due to their close 

proximity, it is common for SNPs within the same gene to be correlated, also known as 

being in linkage disequilibrium (LD). As an example, Figure 1 shows the LD map of the 

FGFR2 gene region, which demonstrates that some SNPs in this region are in high and 

moderate LD. This demonstrates the importance of having a methodology for testing SNP-

sets that is powerful when the signal is sparse while also accounting for the LD between 

SNPs.

Several methods have been proposed for SNP-set testing, such as MinP and variance-

component tests. MinP calculates the marginal test statistic for each SNP in an SNP-set and 

then uses the maximum (or most extreme) marginal test statistic as the representative test 

statistic while adjusting for correlation among the test statistics within the SNP-set 

(Conneely and Boehnke 2007; Moskvina and Schmidt 2008; Zhang and Liu 2011). MinP 

has low power when multiple SNPs do not have strong signals and instead combine together 

to form a strong signal. Variance-component tests such as the Sequence Kernel Association 

Test (SKAT) offer an alternative to MinP for detecting SNP-set associations by combining 

all SNP information over the SNP-set (Wu et al. 2010; Chen, Meigs, and Dupuis 2013; 

Ionita-Laza et al. 2013). However, it equally aggregates information across all the SNPs and 

does not take into account that signals might be sparse. Hence, if the signal in the region is 

sparse, then SKAT can have low power due to giving equal weight to noncausal SNPs in the 

region, which can cover up the signal with noise.

The higher criticism is a global test that combines information over all the marginal test 

statistics of a set of variables (Donoho and Jin 2004). It provides an attractive approach for 

testing for the effect of an SNP set by combining information across a sparse few disease-

associated SNPs out of a large pool of unassociated SNPs if the SNPs were independent or 

sparsely and weakly correlated (Arias-Castro, Candès, and Plan 2011). Wu et al. (2014) 

studied the asymptotic power of the higher criticism of Donoho and Jin (2004) and showed 

its value in the sparse signal regime for testing the effect of an SNP-set in genetic 

association studies. These results rely on asymptotic p-values and assume the SNPs to be 

independent or sparsely weak correlated (Arias-Castro, Candès, and Plan 2011), which 

generally do not hold in GWAS.

There are several limitations of directly applying the higher criticism to testing for the SNP 

set effect in GWAS. First, some SNPs in an SNP set are strongly correlated due to LD. 

Second, the asymptotics of the higher criticism requires the number of SNPs (p) in a genetic 

construct to be extremely large, for example, p > 106. However, the number of SNPs in a 

genetic construct is finite and not very large. For example, p is usually in tens to thousands 

in a gene and in hundreds to thousands in a genetic pathway or a network. Hence, these 

implementations of the higher criticism based on asymptotic results give quite biased p-

values in practice (Barnett and Lin 2014), and one often has to rely on simulations to 

calculate p-values more accurately for testing for genetic constructs. However, these 
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simulation-based p-value calculations for genes are computationally unpractical when used 

to scan the genome at the gene-level in GWAS. Recently, methods for obtaining accurate p-

values of the higher criticism analytically for any finite number of SNPs in a SNP set have 

been developed for the case when test statistics are independent (Barnett and Lin 2014; 

Moscovich-Eiger, Nadler, and Spiegelman 2013). However, these methods are not directly 

applicable to GWAS and will yield biased p-values as SNPs in a genetic construct are 

commonly correlated due to LD.

To handle an arbitrary correlation structure among individual tests in a global test of a set of 

variables, Hall and Jin (2010) proposed the innovated higher criticism (iHC), which first 

transforms the test statistics to independent test statistics using the Cholesky decomposition 

of the correlation matrix and then applies the higher criticism after the transformation. We 

will show that iHC based on this transformation can be unstable when SNPs are in high LD, 

and is also subject to considerable loss of power in the presence of correlation among the 

SNPs, as shown in our numerical studies.

In this article, we propose the generalized higher criticism (GHC) test statistic that is 

suitable for testing for the effect of an SNP-set in GWAS containing any finite number of 

correlated SNP markers. The GHC method accounts for sparse signals and the correlation 

among the SNPs in both the construction of the test statistic and analytic p-value 

calculations. It does not require any transformation of the original test statistics. In contrast 

to prior treatments of the higher criticism, the GHC is both flexible to any correlation 

structure while obtaining its analytic p-values in an accurate and computationally efficient 

manner without requiring simulation of the null distribution. Hence, it is computationally 

feasible and accurate when scanning the whole genome in GWAS by adapting to varying LD 

structures in different genes. We also studied the asymptotic properties of GHC.

The power of GHC relative to iHC, SKAT, and MinP is compared over extensive simulations 

using SNP-sets with varied correlation structures by generating genotype data similar to 

GWAS. While MinP and SKAT are sensitive to sparsity, the robustness of GHC is 

demonstrated through simulation over regions with varying degrees of sparsity and LD 

structures. With a wide variety of LD patterns across the genome, it is not only important for 

a test to be robust to signal sparsity, but a reliable test must also be robust to a wide range of 

correlation structures. Many tests, such as SKAT, can lose power if a strong LD block in an 

SNP-set does not contain the causal SNPs. The GHC avoids this problem by thresholding 

the marginal test statistics. As a result, its power is robust to the correlation structure. We 

show in some situations SKAT and MinP can be more powerful than GHC. Hence, to 

increase the power for detecting the effects of genes across the genome that have a wide 

range of sparsity and correlation structures, we also propose the omnibus test by combining 

the GHC, MinP, and SKAT, and show it is robust and powerful.

We applied the GHC to perform a gene-based genome-wide analysis of the GWAS data of 

the Cancer Genetic Markers of Susceptibility breast cancer study. We compared the 

performance of GHC with the competing methods for their ability to detect the genetic 

associations with breast cancer risk across the full spectrum of correlation structures and 

sparsity levels that the genome has to offer. In addition to p-value comparison, the Type I 
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error rates for GHC are shown to be accurate in both high LD and low LD SNP-sets, as well 

as through simulations across a wide range of randomly selected genes taken from the 

CGEM data.

The remainder of the article is organized as follows. In Section 2, we introduce the SNP-set 

generalized linear model. In Section 3, we briefly review the higher criticism as well as the 

problems it has in accounting for correlation among SNPs in SNP-sets. In Section 4, we 

propose the GHC and an analytic accurate procedure for obtaining p-values using the GHC 

for any arbitrary correlation structure and size of a SNP set. In Section 5, some results of the 

asymptotic detection boundary for GHC are established. In Section 6, the omnibus test 

combining SKAT, MinP, and GHC is introduced. In Section 7, we evaluate the performance 

of the GHC relative to competing methods using extensive simulations. In Section 8, the 

GHC and competing methods are used to analyze the CGEM breast cancer GWAS data. 

Finally, we conclude with discussions in Section 9.

2. Generalized Linear Model and Marginal SNP Score Test Statistics

We consider a sample of N individuals genotyped over a region with p observed SNPs in a 

SNP-set. Possible SNP-sets include genes, gene networks, or genetic pathways. Individuals 

have phenotypes Y = [Y1, …,YN]T. The N by p genotype matrix G is constructed such that 

Gi = [Gi1, …, Gip]T with  as the ith row vector of G containing the genotypes in a genetic 

construct for the ith individual. The N by q matrix X contains covariates, with Xi = [Xi1, …, 

Xiq]T and  being the ith row vector of X containing the covariate values for the ith 

individual. Suppose that conditional on (Xi, Gi), Yi follows a distribution in the exponential 

family (MacCullagh and Nelder 1989) f (Yi) =exp{(Yiθi − b(θi))/ai(ϕ) + c(Yi, ϕ)}, where f 
(Yi) is the conditional distribution of Yi|(Xi, Gi), a(·), b(·), and c(·) are known functions, θi is 

the canonical parameter, and ϕ is the dispersion parameter. To construct a marginal test 

between the jth SNP and Y, we model μi = E(Yi|Gi, Xi) = b′(θi) using the generalized linear 

model (GLM) (MacCullagh and Nelder 1989)

(1)

where g(·) is a link function and (α, β) are the regression coefficients. For simplicity, we 

here restrict to the canonical link. The variance of Yi is Var(Yi) = ai(ϕ)v(μi), where v(μi) = 

b″(θi) is a variance function. The dispersion parameter ϕ is replaced by its estimate for 

normally distributed outcomes but needs not be estimated for dichotomous outcomes. We 

are interested in testing for the overall effect of the SNP set Gi, which corresponds to the 

global null H0 : β = 0.

The dimension p of β might be large. In a genetic construct, SNPs are often correlated and 

generally only a small subset of SNPs are signals, that is, a sparse set of the βj are not zero. 

The proposed GHC test aims at accounting for both sparse signals and correlation among 

SNPs when combining individual marker test statistics.
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Letting  and P = W − WX(XTWX)−1XTW, the 

marginal score test statistic for βj under the global null is

(2)

where  is the MLE of α under the null model of , and Gj 

denotes the jth column vector of G. These individual SNP test statistics are asymptotically 

jointly distributed as , where we estimate cov(Zj, Zk) = σjk, the (j, k)th 

component of Σ by

While the Z are correlated, we define the uncorrelated transformed test statistics Z∗ to be

where  is the Cholesky decomposition.

3. The Higher Criticism Test

The higher criticism tests H0 : β = 0 from model (1) against the alternative that a sparse set 

of the βj are nonzero. An idea proposed first in passing by Tukey, the higher criticism was 

developed by Donoho and Jin (2004) for summary statistics in the setting where under the 

alternative the marginal test statistics come from a mixture of normal random variables, as 

well as by Arias-Castro, Candès, and Plan (2011) in the regression setting. Because the Z are 

correlated, Hall and Jin (2010) proposed a higher criticism test based on the transformed Z∗. 

To do so, let

Note that under H0, S∗(t) ∼ Binomial , where  is the survival 

function of the normal distribution. The innovated Higher Criticism (iHC) test statistic is 

defined as
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for some t0 ≥ 0. This test rejects H0 for large values of iHC.

There are drawbacks to iHC due to having to first transform the marginal test statistics from 

Z into Z∗. In the presence of even moderately small correlation, there can be a significant 

loss of power due to the noise diluting the sparse signals after being mixed in the 

transformation. For example, alleles in the FGFR2 gene have been linked to breast cancer 

risk (Hunter et al. 2007). The CGEM breast cancer data has 35 SNPs in the gene, four of 

which have marginal test statistics greater than 4.3 in absolute value indicating a strong 

association between FGFR2 and breast cancer incidence. However, after transforming these 

test statistics to become Z∗, none of the transformed statistics exceed 2.6 in absolute value 

(Figure 2). These transformed test statistics are so attenuated toward the null that it can lead 

to a significant loss in power. This motivates our generalization of the higher criticism to 

accommodate the use of the original untransformed correlated test statistics Z to avoid this 

loss of power.

If we allow p → ∞, the higher criticism has been shown to be powerful for high sparsity 

situations (i.e., when the number of βj ≠ 0 are less than ) with low dependence (Donoho 

and Jin 2004; Hall and Jin 2010). For very large p, iHC can be viewed as the supremum of a 

normalized empirical process which converges asymptotically to a Gumbel distribution at a 

very slow rate of O{(log p)−1/2} (Jaeschke 1979). With such a slow rate of convergence, the 

size of the test is drastically incorrect when using the asymptotic distribution to calculate p-

values for p as large as a million (Barnett and Lin 2014). Around 92% of genes in GWAS 

have p < 50, and with most functional networks and pathways containing a few hundred 

genes, the size of SNP-sets in both gene-level and pathway-level analyses are generally not 

large enough for the asymptotic distribution of the iHC to be of any practical use.

For finite p, a different analytic approach to finding the distribution of the iHC statistic must 

be taken. As the transformed test statistics Z∗ used in iHC are independent, the exact p-value 

calculation that was developed for the original higher criticism for independent marginal test 

statistics (Barnett and Lin 2014) can be used for p-value calculation for iHC without relying 

on asymptotics. This p-value calculation is an exact and computationally efficient method 

for all finite p, and therefore ideal for testing SNP-sets in genetic association studies. We 

build on this approach to further accomodate correlation to avoid the power loss that results 

from using the decorrelated Z∗.

4. The Generalized Higher Criticism Test

If the LD structure in a gene or SNP-set is even moderately weak, it is likely that 

transforming Z by U−1 can result in the transformed test statistics Z∗ being underpowered. In 

addition, for stronger LD, which is common between some SNPs, the matrix inverse 
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operation of U−1 can be quite unstable. To avoid the drawbacks of such a transformation, we 

propose the generalized higher criticism (GHC) test statistic based on the original Z.

4.1. Definition of the Generalized Higher Criticism (GHC) Test

Define S(t) as

For general Σ ≠ Ip, S(t) is no longer binomial. The correlation among the SNPs in a SNP set, 

whether positive or negative, increases the variance. Using the original higher criticism in 

this case would result in standardizing with the incorrect variance. Furthermore, analytic p-

value calculations of the original higher criticism using Barnett and Lin (2014) when applied 

to the original Z statistics, fail to account for the correlation among the original Z statistics, 

and will hence result in biased p-values and incorrect Type I error rates. Instead, we estimate 

cov(S(tj), S(tk)) using the sample correlation  using Theorem 1, and account for the 

correlation among the marginal Z statistics when deriving the distribution of the proposed 

generalized higher criticism (GHC).

Theorem 1—Let  and let  be the Hermite 

polynomials: , and so on. Then

The proof of Theorem 1 is left to the supplementary materials. Using Theorem 1 with 

instead of Σ we obtain estimates of var(S(t)). Though Theorem 1 involves an infinite sum, 

the terms tend to zero so rapidly that in practice we suggest that only the first few terms are 

necessary for estimating the covariance with great accuracy. For example, in simulation 

studies, we have found first eight terms will provide sufficient accuracy. With these 

estimates, we define the generalized higher criticism test statistic to be:

(3)

For simplicity, we will assume t0 = 0. In the independent case when , the GHC 

statistic reduces to the original higher criticism. The stronger the correlation structure, the 

larger the denominator (3) becomes. However the GHC numerator tends to be larger than the 
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iHC numerator due to the transformed Z∗ being attenuated toward the null. If the Zj’s were 

normally distributed and Σjk = 0 for  for some fixed bandwidth b, which usually 

holds in GW|AS, then as N, p → ∞, Hoeffding and Robbins (1948) show using the central 

limit theorem for dependent random variables that 

converges to the standard normal distribution.

Convergence of the GHC under the null can be established under suitable mixing conditions 

(Doukhan 1991) following ideas from Andrews and Pollard (1994) and Leadbetter, 

Lindgren, and Rootzén (1983). Refer to Zhong et al. (2013) for more details. In Section 5, 

we establish the asymptotic minimax detection boundary for GHC under weak correlation 

conditions similar to Arias-Castro, Candès, and Plan (2011) for Gaussian outcomes. Since 

mixing conditions do not necessarily translate into weak correlation conditions, we do not 

pursue establishing the asymptotic null distribution of GHC under mixing conditions. 

However, it is worth noting, that the slow convergence to the asymptotic null distribution of 

iHC is present for GHC as well, under suitable mixing conditions.

Parallel to the results of the higher criticism (Barnett and Lin 2014), the asymptotic 

distribution of GHC requires an extremely large p for the approximation to work. As the 

number of SNPs in a genetic construct is finite and is not extremely large, asymptotic-based 

p-value calculations of GHC are not accurate in genetic association studies. Hence, in the 

next section, we propose a more accurate p-value calculation for GHC in finite p settings 

that does not rely on asymptotics.

4.2. Calculation of the Generalized Higher Criticism p-value for Finite p

For a given observed GHC statistic, h, we show in the supplementary materials that the 

corresponding p-value is

(4)

where, for k > 1,

for k = 1, q1,a = pr(S(t1) = a), and tk is solved for in the equation

(5)

for each k ∈ {1, …, p.
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When the test statistics are independent Σ= Ip, then S(t) is the sum of independent indicator 

variables and the distribution of S(tk) conditional on S(kt−1) = m and 

is binomial with m events and probability of success . When calculating the 

p-value for GHC for general Σ, S(t) is not binomially distributed. Since S(t) is a sum of 

correlated binary random variables, S(t) follows an overdispersed binomial distribution 

(MacCullagh and Nelder 1989). Hence, to account for overdispersion, the distribution of 

S(tk) conditional on S(tk − 1) = m and  is approximated with a beta-

binomial distribution (Crowder 1978).

The condition distribution of S(tk) is approximated by

This approximation is an equality if the marginal test statistics are independent due to the 

Markov property of empirical processes (Gaenssler 1983). The approximation accuracy 

decreases as correlation increases, and we show in through a simulation study that this 

approximation works well in practice when analyzing GWAS data. The variance of S(tk) 

conditional on S(tk−1) = m is obtained by conditioning on which of the m different |Zj| are 

greater than tk−1. The expectation is  just like in the independent case. 

Using these first two moments, the parameters of the beta-binomial distribution (α and β) 

are solved for numerically using moment matching in the equations

where pr(|Zj|, |Zl| > tk) can be obtained as in Schwartzman and Lin 2011) (see the 

supplementary materials). The unconditional distribution of S(tk) can be obtained in the 

same way by substituting tk−1 = 0 and m = p.

5. The Detection Boundary of GHC

In this section, we examine the asymptotic properties of GHC with hopes that its asymptotic 

properties can help inform us about the performance of GHC in a more general setting. 

Asymptotic results, in particular, the detection boundary, for the higher criticism have been 

well studied in the context of Gaussian linear regression for low-coherence design matrices 

(Arias-Castro, Candès, and Plan 2011). The detection boundary refers to a function of 

sparsity that defines the minimum signal strength required for a test to be asymptotically 

powerful (Ingster, Tsybakov, and Verzelen 2010). Recall that, from Equation (2) we have 

Barnett et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2018 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the score vector Z is approximately multivariate normal in large samples. Hence, it is 

worth exploring, if the proposed GHC test attains the detection boundaries obtained in 

Arias-Castro, Candès, and Plan (2011) and Ingster, Tsybakov, and Verzelen (2010) under the 

same regularity conditions for linear regression of normally distributed outcomes. Since in 

large samples, the Z-statistic approaches a multivariate normal distribution, this is likely to 

provide one intuition with validity of the proposed method in an asymptotic sense under 

suitable regularity conditions. Indeed, the degree of closeness to a normal experiment in 

some sense, is crucial to decide sharp detection limits for the problem in a GLM.

For a general class of design matrices and in the GLM framework, it is a subtle problem and 

does not follow directly from the Gaussian linear regression results. In particular, 

Mukherjee, Pillai, and Lin (2015) demonstrated that for binary regression models under 

certain sparsity structures on discrete design matrices, there exists an extra phase transition 

for the detection limits of sparse signals. However, it was also argued (without proof) that 

for more a general class of dense and not necessarily discrete design matrices, the phase 

transition behavior for detection limits is similar to the Gaussian regime, modulo sharp 

constants. Indeed, for GWAS-type studies, the theory demands a study of relatively dense 

design matrices as GWAS deals with common variants. Since the theory of sharp detection 

limits for the original higher criticism under a GLM is still under development, we wanted to 

gauge the performance of the suggested GHC against the established detection limits in 

Gaussian linear regression—for which the theory is well understood under low coherence 

conditions on the design matrix. In the same vein, we only consider asymptotic properties of 

GHC in Gaussian linear regression framework and for design matrices satisfying low 

coherence conditions similar to Arias-Castro, Candès, and Plan (2011).

We show in this section that GHC has the detection boundary as low as the higher criticism 

in Gaussian linear regression under some assumptions. We first study the situation in the 

absence of covariates for the sake of simplicity of notation, and then extend the results to the 

situations with covariates. Following the notation of Section 2, for simplicity, we assume no 

covariates with each column of Gj standardized and Y centered. The individual marker test 

statistics can be written as . To mimic the regression setting of (Arias-Castro, 

Candès, and Plan 2011), we consider the case where the individual marker test statistics Z = 

(Z1, …, Zp)T follow a  distribution, where .

Let  and let . For some A > 0, we are 

interested in testing the global null hypothesis

(6)

Set k = p1−α with α ∈ (0, 1]. We note that this types of alternativ has been considered by 

Arias-Castro, Candès, and Plan (2011), referred to as the “Sparse Fixed Effects Model” or 
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SFEM. We say a test is asymptotically powerful if the worst sum of the Type I error and 

Type II error over β ∈ H1 tends to 0 as p → ∞ and a test is asymptotically powerless if the 

sum tends to 1. In the following theorem, we show that the GHC attains the same detection 

boundary as the higher criticism under the same relatively weak correlation structure and the 

supremum as considered by Arias-Castro, Candès, and Plan (2011):

Theorem 2

Let  for every j ≠ k and  for all j where 

 O(p), and  for all ε > 0. Then the test 

based on GHC with the supremum taken over  is 

asymptotically powerful against alternatives defined by sparsity 

 p1−α, and r > c∗(α), where

(7)

A few remarks:

i.
The conditions on  imply a weak correlation structure among the genotypes, 

though it does satisfy a banded correlation structure. These conditions are the 

same as those assumed by Arias-Castro, Candès, and Plan (2011) in their 

derivation of detection boundary for the usual higher criticism test. Our results 

therefore demonstrate that under similar conditions in the presence of sparse 

alternative, the GHC attains the optimal detection boundary and therefore is 

asymptotically as good as the higher criticism under weak dependence among 

the genotypes. However, as demonstrated in our simulation results, GHC has a 

nonasymptotic advantage over iHC by accounting for correlation among SNPs 

(LD) in an SNP set, especially in the presence of possibly stronger correlations 

among a subset of SNPs in a SNP set and in finite samples.

ii. Although Theorem 2 is derived under no covariates assumptions, it is worth 

noting that as discussed by Arias-Castro, Candès, and Plan (2011), the same 

results go through provided  satisfies the conditions on G imposed by 

Theorem 2, where  is the orthogonal projection of G onto the null space of 

X with the intercept included in X. In other words, controlling for covariates in 

the regression should not alter this result.

The proof of Theorem 2 is given in the supplementary materials. The implications of 

Theorem 2 are that the same asymptotic properties that hold for higher criticism also hold 

for GHC under the same assumptions made for the higher criticism. It also suggests that the 

GHC test can have greater power than comparable methods when there are a sparse few 

SNPs associated with disease in large p settings. However it is important to note that this 
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large p performance will not necessarily translate to finite p situations with moderate and 

stronger correlation structures among some SNPs in a genetic construct that are frequently 

encountered in genome-wide association studies, which are accounted for by the finite 

sample p-value calculations for GHC. Next, we introduce the omnibus test which provides a 

robust test for different scenarios, and then evaluate the finite p performance of all 

competing methods through simulation.

6. Omnibus Test

Testing for the effect of an SNP set concerns a composite null hypothesis. The alternatives 

are unknown and vary from one genetic construct to another in the genome. Indeed, sparsity 

of signals and LD structures vary across different genes in the genome. For example, signals 

can be sparse in some genes but dense in other genes. Some genes might have high LD and 

some might have low LD. Hence, as will be seen in Section 7.2, no single test is the most 

powerful in every correlation and sparsity setting. SKAT is a variance component score test 

that rejects the null hypothesis of β = 0 for large values of the quadratic form 

 where  and τ is selected to minimize the 

p-value (Wu et al. 2011; Lee, Wu, and Lin 2012). The power of SKAT is sensitive to the 

correlation structure. MinP, defined by the test statistic maxj |Zj|, and GHC are less affected 

by the correlation structure but could lose power in the presence of dense signals. For very 

sparse signals, MinP outperforms GHC, whereas for moderate sparsity GHC is more 

powerful.

Given the wide variety of signal sparsity and LD structures that can be encountered over the 

entire genome, a powerful test that is adaptive to different sparsity and LD structure is 

desirable when scanning the genome. Indeed, it is very likely that SKAT would be a more 

powerful test for some genes, while GHC or MinP would be a more powerful test for others. 

Because we do not know where the causal SNPs are located a priori, we cannot know which 

test will best detect the presence of causal SNPs in a gene. This motivates the usage of an 

omnibus test, which performs each of MinP, SKAT, and GHC for each gene, and uses the 

test with the most significant p-value as the test statistics, on a gene-by-gene basis.

To leverage the strengths of all three of these complementary tests, letting pvalSKAT, 

pvalGHC, and pvalMinP be the p-values for SKAT, GHC, and MinP, respectively, we define 

the omnibus test statistic to be

The distribution of OMNI is difficult to obtain analytically due to the high dependence 

between the three p-values, so instead p-values for OMNI are obtained through simulation of 

the null distribution. To generate its null distribution, we produce  for b 

= 1, …, B. For each Z(b) the MinP p-value is defined as , 

whereas the corresponding p-values for SKAT and GHC are obtained analytically. The 
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minimum of these three p-values belongs to the null distribution of OMNI and so this 

process is repeated for each b ∈ {1, …, B} to construct the null distribution of OMNI.

Simulating the null distribution of OMNI for each gene at genome-wide significance levels 

is prohibively slow, especially given different genes have different sizes (p), sparsity, and LD 

structures. However, this computational burden is alleviated somewhat by using the 

following scheme for each gene: First use B = 103 and if p-value is greater than 0.10, stop 

here. Otherwise, repeat with B = 104, and if the p-value is greater than 0.01, stop here. 

Otherwise, repeat with B = 107. This approach will save time by not simulating the null 

distribution of genes with insignificant p-values with unnecessary accuracy. Despite this 

improvement, these simulation-based p-values were still much slower than methods with 

analytic p-value calculations used for calculating GHC and SKAT p-values.

7. Simulation Studies

7.1. Type I Error of GHC

To determine the accuracy of the p-value calculation for the GHC, the Type I error of the 

method is estimated through simulation. To mimic the CGEM breast cancer data, a subset of 

35 common HapMap SNPs with minor allele frequency (MAF) greater than 0.05 in the 

FGFR2 gene were simulated using the LD structure from the CEU population in the 

HapMap project using HapGen2 (Su, Marchini, and Donnelly 2011). Because the accuracy 

of the p-value approximation for GHC is possibly dependent on the strength of the LD in the 

region being tested, two subsets of FGFR2 are separately considered. The subset of 8 SNPs 

in the strongest LD with each other (see Figure 1) and the subset of 8 SNPS with the lowest 

LD between each other are used separately to estimate the Type I error in high and low LD 

cases, respectively.

For each subset, the 8 SNPs are treated as an SNP-set and 1000 cases and 1000 controls are 

generated from logistic regression model (1) with β = 0, Xi = 1, and α = −0.5. The GHC p-

value in (4) is calculated for each simulated dataset and this is repeated 50 million times to 

have Type I error estimates for genome-wide significance levels as small as 10−6. To see that 

the size of the GHC is correct in the more general case beyond FGFR2, we also simulated 

Type I error in the same way except by using randomly selected genes from chromosome 5 

for each iteration. In each setting, Type I error of GHC is accurate at all significance levels, 

though slightly conservative for stronger correlation structures (Table 1). In contrast, the 

Type I error rate of the original higher criticism calculated by ignoring the LD among the 

SNPs using the analytic method of (Barnett and Lin 2014) is considerably anticonservative.

7.2. Power Comparisons for Different LD and Sparsity Settings in Hypothetical Genes

The power of GHC, iHC, SKAT, and MinP is compared in situations where the sparsity and 

LD structure of the SNP-set vary. The package SKAT in the statistical computing software, 

R, is used to calculate the p-values (Lee, Wu, and Lin 2012). For each setting in the power 

simulations, the MinP test statistic is also simulated 5000 times assuming the null 

distribution so that p-values can be obtained by comparing to the null distribution. p-values 

for iHC are calculated using the method of Barnett and Lin (2014). In addition, we also 
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consider the test, OMNI, the omnibus test statistic which is the minimum p-value from 

GHC, MinP, and SKAT.

Genotype matrices were generated with N = 2000 (1000 cases and 1000 controls) and p = 40 

with each SNP having MAF = 0.30. The genotype matrices are generated such that all causal 

variants have pairwise correlation ρ1 with each other, all noncausal variants have pairwise 

correlation ρ3 with each other, and each causal variant has pairwise correlation of ρ2 with 

each noncausal variant. Power is simulated for ρ1 = 0, 0.4, ρ3 = 0, 0.4, and for ρ2 for all 

nonnegative multiples of 0.01 that result in positive definite Σ This structure gives enough 

flexibility to test a wide variety of correlation structures while being simple enough to be 

able to isolate clear aspects of the correlation structure that influence power. Two sparsity 

settings are considered, 2(5%) causal variants and 4(10%) causal variants, and in the case 

where ρ1 = 0 the causal SNPs are given effect sizes of β = 0.20 for both causal SNPs and β = 

0.18 for each of the four causal SNPs, respectively. When ρ1 = 0.4, then for 2 and 4 causal 

variants the effect sizes are reduced to β = 0.15 and β = 0.09, respectively, to avoid the 

powers from being too close to 1 to be comparable. Noncausal SNPs have β = 0.

The dichotomous traits are generated according to

(8)

where Xi1 and Xi2 are independent standard normal random variables. Cases and controls 

are generated in this fashion until 1000 cases and 1000 controls are obtained. In each 

sparsity and correlation setting, 500 simulations are performed and power is reported at the 

0.01 significance level. The results are displayed for ρ1 = 0 in Figure 3 and for ρ1 = 0.4 in 

Figure 4.

Figures 3 and 4 GHC and MinP are more similar in performance to each other in most 

settings than they are to either SKAT or iHC. This is expected, because they are both tests 

designed for testing for a sparse alternative based on the extreme marginal test statistics 

while ignoring the less significant test statistics except for taking correlation of the region 

into account. On the other hand, iHC is based on the extreme transformed marginal test 

statistics, which tend to be quite different, and SKAT is a weighted sum of the squares of all 

the marginal test statistics. GHC improves in performance relative to MinP when ρ1 

increases, ρ2 increases, or sparsity decreases. The iHC test has considerably lower power 

than GHC in most settings with correlation present. SKAT improves relative to MinP and 

GHC as sparsity decreases, but has very low power when ρ2 is low while ρ3 is large. The 

reason for this is because in this situation the noncausal variant block represents the 

direction of the first eigenvector of Σ, and the power of SKAT is very sensitive to this 

principal eigenvector direction, being nearly powerless when the signals are orthogonal to it. 

GHC and MinP do not rely heavily on the first few principal components of Σ and are robust 

due to their reliance on only the extreme test statistics. They receive only a slight penalty in 

power when taking the LD into account.
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Overall, MinP is ideal when there are few causal variants and no LD in the region, and 

diminishes in power relative to other methods as sparsity decreases and the correlations 

between causal variants and noncausal variants (ρ2) increase. SKAT does very well in low 

sparsity settings, but requires the causal variants to be in good correlation with the noncausal 

variants (ρ2 ≫ 0). In fact, if the correlations between causal variants and noncausal variants 

(ρ2) are sufficiently high, SKAT also works well even for high sparsity settings. However, 

where the correlation between causal variants and noncausal variants ρ2 is weak and the 

correlation among the noncausal variants ρ3 is not small, SKAT is subject to substantial 

power loss.

In contrast, GHC is very robust to all correlation structures and all sparsity levels. It 

outperforms iHC in the presence of correlation between SNPs in the region. GHC has a 

much higher power than SKAT especially in sparse settings when there are weak LDs 

between causal and noncausal variants (ρ2 is small) and good LDs among noncausal variants 

(ρ3 ≫ 0). GHC also outperforms MinP when sparsity decreases and the correlations between 

causal and noncausal variants (ρ2) increase.

The omnibus test OMNI, as a pick-the-winner test, is also very robust. While it rarely is the 

strongest method, it always performs well in every setting. This is expected because in 

general an omnibus test should not be able to outperform the tests that contribute to it when 

the assumption of the contributing test is correct. While OMNI loses a little power compared 

to the most powerful candidate method, it is certainly the most robust choice when scanning 

the genome in the absence of prior knowledge of sparsity and LDs, as it can always borrow 

some of the strengths from GHC, MinP, and SKAT by adaptively accommodating different 

sparsity and LD structures of different genes across the genome.

7.3. Power Comparisons for a Large Number of Real Genes in a Chromosome

To compare power in a more realistic setting with more complex LD structures, power 

simulations are repeated on randomly selected genes from chromosome 5 using the 1000 

cases and 1000 controls generated in the same fashion as (8). Genotype data are generated 

from common HapMap SNPs using the LD structure from the CEU population in the 

HapMap project using HapGen2 (Su, Marchini, and Donnelly 2011). Causal SNPs are 

selected at random from within each gene and the two sparsity settings considered are 2 

causal variant and 4 causal variants, with each causal SNP given an effect size of β = 0.30 

and β = 0.18, respectively. For each of the 839 genes inchromosome 5 containing more than 

1 SNP, 100 simulations are used to estimate the power. Because the power will depend on 

the size of each gene, p, as well as the minor allele frequency of the causal SNPs, Figure 5 

shows a smoothed power curve to represent the power averaged over all genes. In this case, 

ρ2 is the median pairwise correlation between causal and noncausal variants. These results 

mirror the results from the block diagonal correlation structures in Figures 3 and 4 with the 

only difference being that power for all methods is lower for smaller ρ2 in Figure 5 because 

in these realistic data lower correlation is often an artifact of low allele frequency which, in 

turn, leads to low power. This trend is not present in the block exchangeable setting 

considered in Figures 3 and 4, where allele frequency is fixed for all SNPs regardless of the 

correlation.
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Despite this, Figure 5 shows the results similar to those observed in Figures 3 and 4. As the 

LD between causal and non-causal variants increases, the powers of all the tests increase. 

GHC outperforms SKAT when signals are sparse and a gene has a weak LD, especially 

when the LDs between causal variants and noncausal variants (ρ2) are weak. SKAT slightly 

outperforms GHC when signals become denser and a gene has stronger LD, especially when 

the LDs between causal variants and noncausal variants are strong. Both GHC and SKAT 

outperform MinP and iHC. GHC is robust to all correlation structures and sparsity levels. 

The omnibus test, as the pick-the-winner method, is more robust and performs well in all 

settings.

8. Application to the CGEM Breast Cancer Genetic Data

We compared the effectiveness of GHC to detect disease-associated genes with comparable 

methods using the breast cancer CGEM GWAS dataset described in the Introduction section. 

A total of 1145 postmenopausal women of Euro-pean ancestry with breast cancer and 1142 

controls were included in the CGEM genome-wide association study (Hunter et al. 2007). 

These women were genotyped at 528,173 loci using an Illumina HumanHap500 array. The 

logistic regression model (1) was used while controlling for the covariates: age, post-

menopausal hormone usage, and the top three principal components to correct for population 

stratification (Price et al. 2006).

Hunter et al. (2007) performed individual SNP analysis for this GWAS. Four SNPs in the 

FGFR2 region had marginal p-values less than 1.7 · 10−5 and none of them were close to 

genome-wide significance levels. The most significantly associated SNP in FGFR2 

(rs1219648) was validated in further studies (Hunter et al. 2007; Stevens et al. 2006; Hayes 

et al. 2000; Eliassen et al. 2007). An SNP-set analysis can capture the amplified signal given 

off by multiple SNPs associated within the same gene.

To perform genome-wide gene-level analysis, for each gene, we group the SNPs within the 

gene as well as those in the 20 kb buffer region of the gene into an SNP-set. We applied five 

methods, GHC, iHC, SKAT, MinP, and OMNI, to analyze the GWAS data for gene-level 

analysis. The p-values for the five methods are displayed in Table 2 for genes with the most 

significant breast cancer associations. Only for these most significant genes was simulation 

of the null distribution used for calculating both OMNI and MinP p-values. To avoid the 

computational burden that simulation of the null distribution would require over a genome-

wide analysis, OMNI was omitted and p-values for MinP were approximated using 

Moskvina and Schmidt (2008) in the Q–Q plot (Figure 6).

For the most significant gene, FGFR2, the GHC had the smallest p-value of 2.41 × 10−5. 

This p-value should not be directly compared with SNP-level p-values because there is less 

of a multiple testing problem (528,173 SNPs compared to 14,991 genes, which give a 

Bonferroni genome-wide SNP significance level 9.5 × 10−8 versus gene significance level 

3.3 × 10−6). It should also be noted that the iHC p-value for FGFR2 is 0.107 which reflects 

the attenuated marginal test statistics seen in Figure 2. The second most significant gene, 

TBK1, is closely related to IKBKE, a known breast cancer oncogene (Boehm et al. 2007). 

For TBK1, SKAT detected the association with the smallest p-value of 5.63 × 10−5. The 
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third most significant gene, PTCD3, has previously been identified in a gene network 

signifi-cantly associated with breast cancer (Jia et al. 2011). For PTCD3, the GHC had the 

most significant p-value of 5.77 × 10−5.

The FGFR2 gene is located on 10q26, and has a relatively weak LD structure overall, 

containing just one small LD block located between 123.35 Mb and 123.45 Mb. The four 

SNPs identified by Hunter et al. (2007) were not in this LD block, and although these SNPs 

were all in low LD with the rest of gene, the pairwise correlations among the four SNPs 

were all very strong (r2 > 0.84). Due to the strong LD between these breast cancer-

associated SNPs, it was concluded that there was a single breast cancer risk locus among 

them. In this case, iHC may not do well to detect the FGFR2 association because 

decorrelating the marginal test statistics would greatly deflate the signal given off by these 

four SNPs due to their strong LD. In contrast, this same correlation greatly benefits GHC as 

the noncausal SNPs are in high LD with the risk locus inherit and amplify the signal given 

off by the gene. The advantage gained by having four significant marginal test statistics in 

the numerator of (3) far outweighs the slight inflation of the variance term in the 

denominator. These differences are evidenced by the large disparity in the p-values of iHC 

and GHC for the FGFR2 gene. This is also similar to the situation with ρ2 being small, and 

explains why GHC outperforms SKAT here. The signal is relatively dense with four strong 

marginal test statistics, and MinP is hurt by its failure to combine the strength of all four 

strong signals.

Overall, for the most significant genes (ordered by the minimum p-value of all four 

methods), MinP and iHC tended to yield less significant p-values than GHC and SKAT. 

SKAT and GHC both showed similar strength in detecting these top associations, but SKAT 

had some very insignificant p-values greater than 0.01 for a few of the top 15 genes 

(MMRN1 and HCN1) whereas GHC never had a p-value greater than 8.7 × 10−4. This 

difference demonstrates how GHC is more robust than SKAT to the LD in the top genes and 

is a safer bet in genome-wide association studies where there is a great variety of LD 

structures encountered. As expected, OMNI was the most robust method, whose p-values 

were closer to the most significant test (Table 2).

9. Discussion

In this article, we proposed the generalized higher criticism (GHC) test for testing for the 

effect of a genetic construct, such as a gene or a genetic pathway or network in genome-wide 

association studies. The GHC extends the higher criticism, an attractive detection method 

originally designed for testing for the global null hypothesis against a sparse alternative for 

independent data for high-dimensional problems, by accounting for correlation among SNPs 

in an SNP set. Unlike the original higher criticism, the GHC is flexible to SNP sets of 

arbitrary size and LD structure. We propose an analytic method to compute the p-values of 

GHC by accounting for correlation among the SNPs in an SNP set for finite samples that is 

computationally efficient and requires neither simulation nor asymptotics in p to obtain its p-

values. This is advantageous when scanning a large number of genes in GWAS. An 

implementation of the method is freely available for use in the R package, GHC. We showed 

through simulation and analysis of the CGEM breast cancer GWAS data that the GHC is 
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more robust to varied LD structures than competing methods, while ensuring appropriate 

Type I error control. In particular, we show that the GHC is more powerful than the iHC 

regardless of the LD structure.

As demonstrated by the simulation studies and the analysis of the breast cancer GWAS data, 

both GHC and SKAT complement each other well. GHC tends to outperform SKAT in the 

high sparsity settings especially when the correlations between causal variants and 

noncausal variants are weak and correlations among noncausal variants are moderate or 

strong. On the other hand, SKAT outperforms GHC when sparsity is low, especially when 

correlations between causal and noncausal variants are moderate or strong. This suggests 

that an omnibus test that combines the strengths of both GHC and SKAT could potentially 

be a powerful alternative in a variety of scenarios when scanning the genome. The 

robustness of such an omnibus test was demonstrated in our power simulations and analysis 

of the CGEM GWAS data. To make this test feasible for large-scale datasets like GWAS, it 

will be important to develop in the future a method of computing analytic p-values of the 

omnibus test or to develop computationally efficient software that can perform the required 

large-scale simulation of the null distribution.

Though our proposed analytic p-value calculations of GHC does not require asymptotics in 

p, asymptotics in the sample size N is assumed. The marginal test statistics are assumed to 

be normally distributed. However, this is a poor assumption if SNPs are rare, for example, in 

sequencing association studies (Lee et al. 2014) or if the sample size is small. For GWAS, 

this is not a problem due to their tendency to have large cohorts and only common SNPs 

genotyped.

We study in this article the detection boundary of GHC in the Gaussian linear regression 

case, as the detection boundary for the original higher criticism is well established in the 

previous literature (Donoho and Jin 2004; Ingster, Tsybakov, and Verzelen 2010; Arias-

Castro, Candès, and Plan 2011). The recent work on the asymptotic properties of the original 

higher criticism for binary regression under sparse design matrices (Mukherjee, Pillai, and 

Lin 2015) shows that the detection boundary for binary regression is more complex. These 

results are not directly applicable for dense design matrices as observed in GWAS. It is of 

future research interest to study the detection boundaries of both the original higher criticism 

and GHC under dense design matrices for discrete outcomes in GLMs.

Advances in high-throughput sequencing technology are reshaping the field of genetics 

research, such as the 1000 Genomes Project and the NHGRI Genome Sequencing Program, 

as well as a rapidly increasing number of ongoing sequencing association studies. Indeed, 

candidate gene and whole genome sequencing studies have becoming rapidly available as 

the sequencing costs continue to drop. For sequencing association studies, as a vast majority 

of SNPs in the genome are rare, gene/region-based tests are often desirable (Lee et al. 2014). 

It is of future research interest to extend GHC region/gene-based tests to sequencing 

association studies to study for rare variant effects. To extend GHC to sequencing studies, 

the normality assumption of the marginal test statistics must be relaxed, and marginal test 

statistics that are robust to rare SNPs need to be developed by accounting for the 
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nonnormality of the test statistics in finite samples when constructing the analog GHC 

region/gene-based tests for rare variant effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The LD plot of the FGFR2 gene based on the CGEM genetic association study of breast 

cancer data. Pearson correlations are displayed, with negative correlations in blue and 

positive correlations in red.
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Figure 2. 
The marginal test statistics for 35 SNPs from the FGFR2 gene, each with MAF > 0.05, from 

the CGEM genetic association study of breast cancer are plotted. The original test statistics 

Z are in the top histogram, while the transformed test statistics Z∗ = U−1Z are in the bottom 

histogram.
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Figure 3. 
Power comparison of GHC, iHC, SKAT, MinP, and OMNI in hypothetical gene situations 

where there is no correlation within the causal variants (ρ1 0), for different correlations 

among the noncausal variants ρ3, as a function of the correlation between the causal and 

noncausal variants ρ2. Two sparsity levels were considered. Starting with ρ2 = 0, power is 

estimated from 500 simulations for each possible ρ2 > 0 that is a multiple of 0.01. There is a 

limit on how large ρ2 can be relative to ρ1 and ρ3 so that the correlation matrix remains 

positive definite, and for this reason the range of ρ2 values that power is estimated for varies 

with ρ1 and ρ3.
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Figure 4. 
Power comparison of GHC, iHC, SKAT, MinP, and OMNI in hypothetical gene situations 

where the correlation within the causal variants is ρ1 = 0.4 for different correlations among 

the noncausal variants ρ3, as a function of the correlation between the causal and noncausal 

variants ρ2. Two sparsity levels were considered. Starting with ρ2 = 0, power is estimated 

from 500 simulations for each possible ρ2 > 0 that is a multiple of 0.01. There is a limit on 

how large ρ2 can be relative to ρ1 and ρ3 so that the correlation matrix remains positive 

definite, and for this reason the range of ρ2 values that power is estimated for varies with ρ1 

and ρ3.
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Figure 5. 
Power comparison of GHC, iHC, SKAT, and MinP for all the genes in Chromosome 5. For 

each of the 839 genes in chromosome 5, causal SNPs are selected at random and power is 

estimated at the α = 0.05 level based on 100 simulations. Additionally, the median 

correlation between causal SNPs and noncausal SNPs (ρ2) is recorded. The smoothed curves 

to each of these power estimates is displayed.
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Figure 6. 
Q–Q plot of p-values for the SNP-set tests on the CGEM breast cancer GWAS data. SNP-

sets were constructed at the gene-level, also including SNPs within 20 kb from the border of 

each gene. SNP-sets with 4 or fewer SNPs were not included in the analysis leading to total 

of 14,991 SNP-sets evaluated.
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Table 1

Type I error of GHC is estimated in each setting with 50 million simulations. The strong LD setting is based 

on a subset of eight FGFR2 HapMap SNPs that are in high LD with one another. The weak LD setting is based 

on a subset of eight FGFR2 HapMap SNPs that are in weak LD with one another. For reference, we also 

include the Type I error of the original higher criticism ignoring the presence of correlation, with p-values 

computed as in Barnett and Lin (2014).

Significance Level Strong LD
(FGFR2 subset)

Weak LD
(FGFR2 subset)

Random chr5 genes Random chr5 genes (original higher criticism)

α = 5.0 · 10−2 4.62 · 10−2 4.91 · 10−2 4.64 · 10−2 7.23 · 10−2

α = 1.0 · 10−2 9.59 · 10−3 1.04 · 10−2 9.53 · 10−3 1.38 · 10−2

α = 1.0 · 10−3 9.63 · 10−4 1.08 · 10−3 9.80 · 10−4 1.19 · 10−3

α = 1.0 · 10−4 9.51 · 10−5 1.00 · 10−4 9.63 · 10−5 1.26 · 10−4

α = 1.0 · 10−5 9.70 · 10−6 9.50 · 10−6 8.05 · 10−6 1.26 · 10−5

α = 1.0 · 10−6 8.60 · 10−7 7.00 · 10−7 8.63 · 10−7 1.30 · 10−6
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