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Urbanization-induced population migration has
reduced ambient PM2.5 concentrations in China
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Direct residential and transportation energy consumption (RTC) contributes significantly to ambient fine particulate
matter with a diameter smaller than 2.5 mm (PM2.5) in China. During massive rural-urban migration, population and
pollutant emissions from RTC have evolved in terms of magnitude and geographic distribution, which was thought
to worsen PM2.5 levels in cities but has not been quantitatively addressed. We quantify the temporal trends and
spatial patterns of migration to cities and evaluate their associated pollutant emissions from RTC and subsequent
health impact from 1980 to 2030. We show that, despite increased urban RTC emissions due to migration, the net
effect of migration in China has been a reduction of PM2.5 exposure, primarily because of an unequal distribution of
RTC energy mixes between urban and rural areas. After migration, people have switched to cleaner fuel types, which
considerably lessened regional emissions. Consequently, the national average PM2.5 exposure concentration in 2010
was reduced by 3.9 mg/m3 (90% confidence interval, 3.0 to 5.4 mg/m3) due to migration, corresponding to an annual
reduction of 36,000 (19,000 to 47,000) premature deaths. This reduction was the result of an increase in deaths by
142,000 (78,000 to 181,000) due to migrants swarming into cities and decreases in deaths by 148,000 (76,000 to
194,000) and 29,000 (15,000 to 39,000) due to transitions to a cleaner energy mix and lower urban population den-
sities, respectively. Locally, however, megacities such as Beijing and Shanghai experienced increases in PM2.5 expo-
sure associated with migration because these cities received massive immigration, which has driven a large increase
in local emissions.
INTRODUCTION
Air pollution in China causes 1 million premature deaths each year and
ranks first among many environmental concerns in terms of health
(1–3). Among various sources that are attributable to air pollution,
direct energy consumption in residential and transportation sectors
(referred to as “RTC” in this study) contributes significantly to the
emissions of air pollutants, such as carbon monoxide (CO), nitrogen
oxide (NOx), sulfur dioxide (SO2), black carbon (BC), organic car-
bon (OC), and benzo[a]pyrene (4–8).

Unlike emissions from other sources, emissions from RTC are
determined by the time, location, and intensity of residents’ daily activ-
ities and, therefore, are spatially correlatedwith population distribution.
Given the same level of emissions, RTC emissions are associated with
higher levels of population exposure compared to other sources, be-
cause of their proximity to people (9, 10). Hundreds of millions of peo-
ple have moved into cities over the past three decades of rapid
urbanization inChina (11). Thismassive rural-urbanmigration has sig-
nificantly altered the spatial distribution of RTC emissions and popula-
tion exposure for multiple reasons. First, rural-urban migration is
associated with a spatial relocation of RTC pollutant emissions from
rural areas to cities. The tendency of both emissions and the number
of population exposed to these emissions to increase in cities has impor-
tant impacts on public health. Second, the amount of per-capita RTC
emissions tends to be reduced bymigration because the migrating pop-
ulation transitions to a cleaner energymix. For example, most migrants
abandon the use of biomass fuel after settling down in cities and, instead,
use energy sources or fuels that emit fewer air pollutants (11, 12). These
two processes are competitive in terms of population health.

Specific influences of rural-urban migration on pollutant emis-
sions and health consequences have not been quantified to date in
China, mainly due to the lack of long-term spatially explicit data. Here,
we analyze the influence of the massive rural-urban migration on pol-
lutant emissions from RTC sources and population exposure to these
emissions from 1980 to 2012 in the country. We chose the year 1980
as the beginning of our study period because it corresponds to the date
when urbanization started to accelerate following the initiation of the
Chinese economic reform and opening policy (11). We then evaluate
the resulting health impacts during the same period and forecast the
likely changes in these health impacts to the year 2030. We only focus
on RTC emissions. Influences of migration on other pollution sources
and the subsequent health impacts are beyond our scope.
RESULTS
Integrated model framework
Rural-urban populationmigration is associated with urban land expan-
sion, increased urban RTC emissions, decreased rural RTC emissions,
and increased number of people being exposed to polluted urban air.
The impact of migration is thus a combined consequence of different
changing factors (Fig. 1).On the basis of accountability analyses (13), we
carry out model simulations for two scenarios to evaluate the impact of
migration. One is the real-world scenario that considers all historical
and future-projected changes in population distribution and RTC
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energy mix during the study period from 1980 to 2030. The other is a
counterfactual scenario that assumes that no migration happened since
1980. In this scenario, the per-capita urban and rural RTC energymixes
for a given year are consistent with those in the real-world scenario, but
the proportions of urban population are increasingly lower over time.
We evaluate the net impacts ofmigration based on cross-sectional com-
parisons of the total RTC energymixes, pollutant emissions, particulate
matter with a diameter of 2.5 mm or less (PM2.5) concentrations
(primary and secondary), and premature deaths between the two sce-
narios. We find that the disparity between urban and rural RTC energy
mix is critical because it determines how much rural emissions will be
decreased by migration compared to the increase in urban emissions
(Fig. 1; discussed in detail in subsequent sections). To quantify the as-
sessment, we characterize the urban and rural RTC per capita and total
energy mixes, the geographical distributions of rural-urban migration,
emissions of primary PMpollutants and secondary PMprecursors, and
population exposure to ambient PM2.5. We investigate their changes
over time using remote sensing data, air qualitymonitoring data, official
statistical data, and questionnaire survey data.We use a series of energy
statistical models, an air quality model, and a Gaussian downscaling
method to integrate these data for evaluation. We conduct comprehen-
sive sensitivity and uncertainty analyses to address the uncertainty in
the emission estimation, air quality modeling, and health risk assess-
ment. A detailed description of this integrated model framework is
provided in Materials and Methods.

Changes in population
On the basis of the unique registration system (hukou) of citizens in
China, urban population can be classified into three categories: (i) OUs,
old urban residents registered with urban hukou before 1980; (ii) NUs,
new urban residents who are rural-urban migrants and got an urban
hukou after 1980; and (iii) MUs, unregistered rural-urban migrants who
live in cities without an urban hukou. When rural residents (RRs) who
live in rural areas migrate to cities, they become either NUs or MUs,
depending on whether they can get an urban hukou. With a hukou,
NUshave a lifestyle similar to that ofOUs, and their energymix changes
accordingly. By contrast, MUs who do not have an urban hukou have
limited access to urban energy infrastructure, social welfare, and other
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
city services. Our surveys show that the energy mix of MUs is very dif-
ferent from that of OUs and NUs, and because they lose access to
biomass fuels when they move to the city, MUs use an energy mix dif-
ferent from that of the RRs as well (12).

From 1980 to 2013, the urbanization rate in China, equal to
(OU + NU + MU)/(OU + NU + MU + RR), rapidly increased from
19.4 to 53.7% (11). Fractions of OUs, NUs, MUs, and RRs changed
markedly (Fig. 2A), coincident with an increase of 380 million in the
total population. The total number of rural-urban migrants (NU +MU)
increased from virtually zero in 1980 to 485 million in 2013, split be-
tween 341 million NUs and 144 million MUs. Consequently, the pop-
ulation distribution shifted from low-density rural areas to high-density
urban areas (Fig. 2B). It is predicted that another 254 million RRs, in-
cluding 38 million MUs, will settle in cities, pushing the urbanization
rate up to 70% by 2030 (14, 15). Meanwhile, from 1980 to 2013, the
total number of OUs remained relatively constant because of their very
low birth rate, which was constrained by the one-child policy (16). The
population in rural areas, where out-migration surpassed increasing
net birth rates, decreased since the early 1990s.

We recognize urbanization as a phenomenon that manifests in
terms of both increasing urban population and expanding urban land
cover across the landscape (see Materials and Methods and figs. S1
and S2). We find that urban areas increased from less than 0.4%
of the total country area in 1980 to 1.7% in 2013 (Supplementary
Materials). The urban area fraction is projected to reach almost 3%
in 2030 (Fig. 2C). The increase of urban area accelerated after
around 2007, when the mean annual income of urban residents
reached US$2000 per capita (in constant 2005 US$) and real estate
started to boom (11). Because of higher income and the stronger de-
mand for larger floor area per capita and more public space (11), ur-
ban area increased at a faster pace than urban population, leading to
an overall decrease in urban population density (Fig. 2C).

Changes in RTC energy mix
Because of differences in lifestyle, income, and access to various
energy resources, RTC energy mixes differ between urban and rural
dwellers. We combine OUs and NUs as a single urban resident (UR)
group because NUs attain a social status similar to that of OUs as a
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Fig. 1. Illustration of the changes in urban and rural RTC emissions and PM2.5 concentrations due to population migration. Distributions of RTC emissions and PM2.5

concentrations before (A) and after (B) migration. Comparedwith rural areas, urban areas are associatedwith lower per-capita RTC emissions due to cleaner RTC energymix used
by the urban population. A consequence of the population migration is the decrease in rural population density, which leads to decreases in RTC emissions and PM2.5 concen-
tration in rural areas. In contrast, migration-induced change in urban concentration is a competition between increased urban emissions and declined background concentra-
tions contributedbydecreased rural emissions. In addition,migration to cities causesmore people tobe exposed topolluted urban air. The overall change inpopulation exposure
concentration and premature deaths across China due to migration is the consequence of the concurrent changes in both concentrations and population distributions.
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result of their hukou registration and the two groups’ energy mixes are
expected to be comparable. By analyzing energy mixes of the three
groups (URs, MUs, and RRs), we find that, in China, RRs still rely
on biomass fuels (72% in 2010; see Materials and Methods), including
crop residue and firewood, and their per-capita energy consumption is
high (Fig. 3A) because of the low efficiency of biomass fuel combus-
tion. URs use a large quantity of fuel oil for transportation, and their
per-capita energy consumption is the highest among the three groups.
MUs have the lowest per-capita consumption among the three groups.
The per-capita energy consumption of URs and MUs in the north of
China is higher than that in the south, mainly due to their greater use
of coal and heat. Nevertheless, our questionnaire survey showed that
MU households in northern China are still underheated. Sixteen per-
cent of the MUs in Beijing do not heat their home in winter at all,
relying only on electric blankets (12). The MU energy mix is very dif-
ferent from the UR energy mix in northern China, where more coal
and less gas and heat are used by MUs (Fig. 3A) as a result of limited
access to natural gas distribution networks and centralized heating
systems (12). In general, differences in socioeconomic status yield
large disparities in RTC energy mixes between URs and RRs; MUs
represent a transition stage from the solid fuel–dominant rural energy
mix to the clean fuel–dominant urban energy mix.
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
Driven by important economic changes, the RTC energy mix has
changed rapidly since 1980. We find differential changing patterns be-
tween URs and RRs, as is shown in fig. S3 where we plot the per-
capita RTC consumption against the per-capita gross domestic product
(GDPcap) using provincial-level statistical data from 1980 to 2012.
Although the per-capita consumption of clean energy (all fuel types
excluding solid fuels) among both URs and RRs, except heat, which
is not available in rural areas, has increased as GDPcap increases, the
consumption of RRs started at a much lower level and would only
catch up with that of URs when GDPcap reached a value of around
US$10,000 (in constant 2005 US$) (fig. S3). In rural China, both
liquefied petroleum gas (LPG) and electricity have been progres-
sively adopted for cooking because of their low prices (17) and high
accessibility due to the adequate power grid and road networks. In
2009, 99.4% of villages were connected with paved roads (18), and
in 2013, 99.6% of rural residences were connected to electric grids
(19). Meanwhile, the per-capita solid fuel consumption decreased
rapidly in urban areas but remains almost constant in rural areas
between 1980 and 2012 (fig. S3). Encouraging the transition from
coal and biomass to other energy sources is the biggest challenge in
promoting clean energy in rural China. Because of data limitations,
there is more uncertainty in the trends of the energy mix of MUs
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than the other two groups of people. Here, we use the data from Ru et al.
(12), which indicate that the MU energy mix changed muchmore slowly
during the last three decades than the UR, likely due to the former’s
unchanged social status and living conditions.

The total RTC energy mixes of URs and RRs show very distinct
patterns over time (Fig. 3, B to D). For the URs, the consumption of
all fuel types except coal has increased markedly after the mid-2000s
because of the increase of per-capita energy use (accounting for 65%
of the overall increase) and the increase of UR population (34%). For
the RRs, there is no significant change in the total amount of energy
consumption because the decrease in biomass consumption is nearly
compensated by the increase in the consumption of electricity and
LPG. Compared to the gradual transition of the rural energy mix,
the energy mix in urban areas has been shifting faster toward a higher
share of clean fuels since the early 1990s. Because of the fast energy
transition in the urban area and the increasing proportion of urban
population due to population migration, RTC energy consumption
in China has increased at a fast pace with the energy structure shifting
from being solid fuel–dominated (95% in 1980) toward becoming
cleaner energy–dominated (62% in 2013). Population migration has
facilitated this process by providing more people with easier access
to clean fuels. According to our estimate, without the three decades–
long migration, solid fuel would still be the dominant fuel type, ac-
counting for 60% of the total RTC energy consumption today (see
Materials and Methods). Our findings suggest that population migra-
tion and associated policies will continue to drive the energy demand
and, to a large extent, the energy mix in the decades to come.

Influences of population migration on pollutant emissions
and PM2.5 concentrations
On the basis of the per-capita energy mix (Fig. 3), we estimate the per-
capita emissions of primary PM pollutants and secondary PM precur-
sors among the URs, MUs, and RRs (see Materials and Methods for
the emission estimation and spatial allocation, and note that emissions
from electricity consumption are spatially allocated to the locations of
individual power plants). Disparities in the RTC energy mix among
the three groups lead to differential pollutant emission profiles (Fig. 4).
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
For SO2, which has a higher emission factor (EF; defined as the emission
per unit energy consumption) for electricity, which is generated
predominantly by coal-fired power plants in China, than for other fuel
types, the per-capita emissions of URs and MUs are higher than those of
RRs because of the higher share of electricity consumption of URs and
MUs. For NOx, which has high EFs for both electricity consumption and
transportation, the per-capita emissions of URs are the highest. For most
other pollutants, including all primary PM pollutants and other
secondary PM precursors, solid fuels have a much higher EF than other
fuel types. Therefore, RRs have the highest per-capita emissions because
of their higher share of solid fuels. Therefore, except for SO2 and NOx,
the direct result of the migration from rural to urban areas is an overall
reduction in emissions of most PM-related pollutants.

The massive rural-urban migration and the changes in the energy
mix of migrants as they settle in urban areas have caused remarkable
changes in the pollutant emissions and PM2.5 concentrations across
China. Given the higher health concerns from PM2.5, we show here
the changes in the PM2.5 (primary) emissions and the PM2.5 (primary +
secondary) concentrations in 2010 caused by population migration
between 1980 and 2010 (see Materials and Methods). In rural areas,
decreases in the population due to out-migration to urban areas have
caused an annual reduction of 2.8 Tg in PM2.5 emissions from RTC
sources. In the meantime, there has been a corresponding increase in
PM2.5 emissions in the urban areas but of a considerably smaller
magnitude owing to the newly arriving migrants upgrading their
energy mix. We estimate that the increase in urban PM2.5 emissions
was 0.5 Tg, which equated to only 18% of the reduction in rural
emissions. Hence, there was a net reduction of 2.3 Tg in PM2.5 emis-
sions in 2010, owing to the rural-urban migration. Transitions of
RRs to NUs and MUs contributed 70 and 30%, respectively, to the
net emission reduction.

Spatially, all cities showed an increase in PM2.5 emissions due to
migration, with a higher level of the emission increase occurring in
megacities across China and most cities in the North China plain
(Fig. 5A). On the other hand, PM2.5 emission per unit urban area
decreased in most cities because the extent of the cities expanded
faster than their urban PM2.5 emissions did. The few exceptions
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were mostly located in the southwest, where the increase in urban
area was slower than the increase in migration-induced urban emis-
sions and the emission intensities eventually increased. The relative
change in the rural area is much smaller than that in the urban area,
considering that, in China, a 100% increase in the urban area
corresponds to a 0.6% decrease in the rural area. Thus, the loss of rural
population directly led to the decrease in rural population density.
Both rural PM2.5 emission and PM2.5 emission density decreased ac-
cordingly. This is particularly true for the regions that contributed
dominantly to the out-migration of migrants such as Sichuan and
Anhui provinces. Unlike the primary PM2.5 emissions, the emissions
of the secondary PM precursors, including SO2 and NOx, slightly
increased in response to migration due to their higher per-capita emis-
sions among the urban population, as mentioned above.

Considering all PM-related pollutants, we evaluate the migration-
induced change in PM2.5 concentration (primary + secondary) in 2010
acrossChina at a 5-km×5-km spatial resolution,which is fine enough to
capture the urban and rural changing patterns separately (see Materials
andMethods) (Fig. 5B). In rural areas, population migration has caused
a pervasive reduction in PM2.5 concentrations over the central and east-
ern part of China. Inmost urban areas, decreases in background concen-
trations surpassed the influence of increased local emissions, leading to
an overall improvement in urban PM2.5 concentrations as well. In con-
trast, megacities, including Beijing, Tianjin, Shanghai, and Guangzhou,
experienced increases in PM2.5 concentrations because these cities are
the major destination of migrants; that is, even with the reduction in
background concentrations, the numbers of migrants were so large that,
overall, the PM2.5 concentrationswere significantly elevated owing to the
migration-induced increase in local emissions.

Influences on exposure and health
By analyzing the difference in simulated exposure to PM2.5 before
and after migration, we find that the overall population exposure to
PM2.5 has decreased because of the migration-induced change in RTC
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
emissions. For example, the national average exposure concentration
was 58.6 mg/m3 in 2010. It would have been 62.5 mg/m3, had the rural-
urban migration not happened and the migrants still relied on rural
RTC mix in their rural households. A direct consequence of this
difference has been an annual reduction of 36,000 (90% confidence
interval, 19,000 to 47,000) premature deaths in China in 2010 and a
cumulative reduction of 450,000 (195,000 to 490,000) premature
deaths from 1980 to 2010 (see Materials and Methods), indicating a
health benefit from the three decades of migration. Migration
benefited both urban and rural populations; the reduction in the ex-
posure concentrations was 7.2 mg/m3 (5.0 to 11.4 mg/m3) and 7.4 mg/m3

(5.7 to 10.0 mg/m3) in urban and rural areas, respectively. The reason
why the reduction in urban and rural areas is comparable is that, as
urban areas expanded, surrounding areas with lower levels of concen-
trations were included in the assessment of urban exposure and
contributed to an additional reduction in the calculated exposure level.
Our findings indicate that the migration-induced reductions in PM2.5

exposure concentrations over China essentially started from the early
1990s; these reductions are expected to reach up to 8.8 mg/m3 by 2030,
doubling the current benefits on air quality and health (fig. S6).

Although the total PM2.5 (primary + secondary) concentration de-
creased with migration, secondary PM2.5 did not decrease simulta-
neously. Instead, we find steady increases in secondary PM2.5 caused
by migration in the metropolitan areas of the Pearl River Delta
(3.8 mg/m3), Beijing-Tianjin-Tangshan (1.3 mg/m3), and the Yangtze
River Delta (1.2 mg/m3) as a result of increased emissions of secondary
PMprecursors such asNOx and SO2 frompower generation andmotor
vehicles. This is consistent with the recent observations showing that
secondary aerosols are playing an increasingly prominent role in urban
air degradation in China (20, 21).

Simulated changes in PM2.5 (primary + secondary) concentrations
in the urban areas across China varied from−30 to 5 mg/m3 (Fig. 6).We
find that the exposure reduction is related to both socioeconomic and
climatic factors. Themigration-induced decline in the PM2.5 exposure is
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more pronounced in cities with a moderate level of GDPcap (Fig. 6A).
Both the least-developed and the most-developed cities benefit much
less from the migration in terms of reduced PM2.5 exposure. The
least-developed cities attract fewmigrants, whereas the most-developed
ones must cope with massive migration such that population densities
remain high, precluding any reduction in exposure. Another important
factor affecting the change in exposure during migration is the number
of heating degree day (HDD) (Fig. 6B) (22). Higher HDD is associated
with a smaller reduction in PM2.5 concentration because, in cities in
colder climates, new migrants use relatively more energy for heating
compared to those in cities in warmer climates. Coal, a type of solid fuel
that emits more pollutants, is usually used by migrants as an alternative
fuel when other heating options are not available.

Attribution to individual migration-related and
non–migration-related factors
Our evaluation showing the reduction in ambient PM2.5 in 2010 is based
on the simulation of a counterfactual scenario by excluding the migra-
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
tion and the change in RTC emissions caused bymigration alone.How-
ever, other factors that are not related to migration, such as population
growth and the increase in per-capita energy consumption, can also
affect energy-related emissions and PM2.5 concentrations. When
considering the overall change of emissions from RTC, we find an
increasing trend of ambient PM2.5 concentration during the last three
decades (fig. S6). To compare themigration-induced effects with other
factors, we involve all of the changes in RTC sources, derive four
factors that are unrelated to migration and five that are related, and
evaluate their incremental effects on emissions, exposure concentra-
tions, andmortality during the study period. The four factors unrelated
to migration are population growth (N1), increase in per-capita RTC
energy use (N2), change in RTC energy mix due to improvement in
living conditions (N3), and decrease in EFs due to technology develop-
ment (N4). The five migration-related factors are relocation and energy
mix shift of theNUgroup (U1 andU2) and theMUgroup (U3 andU4)
and urban area expansion (U5) (see Materials and Methods). We find
that the exposure to PM2.5 is enhanced by factors N1, N2, U1, and U3,
whereas they are reduced by factors N3, N4, U2, U4, and U5.

The influences of these nine factors on PM2.5 emissions, PM2.5

exposure concentrations, and annual deaths from exposure to ambient
PM2.5 in 2010 are presented in Fig. 7. Of the four non–migration-
related factors, the increase of per-capita energy use leads to a
marked increase in the exposure in both urban and rural areas, given
that per-capita RTC energy consumption has increased by 49.6 and
64.2% in urban and rural China, respectively (11). On the contrary,
exposure concentrations are brought down by EF reductions due to
advances in technology. For example, the EFs of PM2.5 for cars have
been reduced by 80% during the study period, along with continuously
tightened regulations (23). In addition, stove improvement campaign
has significantly increased the efficiency of millions of stoves in rural
China (24). The overall consequence of all non–migration-related
factors was an exposure increase of 7.8 mg/m3 (6.0 to 10.6 mg/m3) be-
tween 1980 and 2010.

Among the migration-related factors, spatial relocation and shift in
energy mix of NUs contribute the most to the increase and decrease in
the exposure, respectively, primarily in urban areas. The influence of the
energy mix change for MU is important, although to a lesser extent. In
addition, the decrease in the urban population density caused by urban
expansion is also responsible for the reduction in the urban PM2.5 ex-
posure concentration. In terms of population health, the spatial reloca-
tion of migrants (U1 + U3) was responsible for an increase of 142,000
(78,000 to 181,000) deaths in 2010, whereas the energy mix change
(U2 + U4) and urban expansion (U5) led to decreases of 148,000
(76,000 to 194,000) and 29,000 (15,000 to 39,000) deaths, respectively.
The overall consequence of all migration-related factors was a reduc-
tion in exposure of 3.9 mg/m3 (3.0 to 5.4 mg/m3) and a decrease in pre-
mature deaths by 36,000 (19,000 to 47,000) in China in 2010.

The urban and rural populations have benefited differently from the
rural-urban migration. For example, relocation of MUs (U1) led to a
large increase in PM2.5 exposure concentration (35.6 mg/m3) in the ur-
ban areas but a small decrease (−0.6 mg/m3) in the rural areas, whereas
the shift in the energy mix of MUs (U2) caused a reduction of 33.4 and
4.8 mg/m3 in exposure concentrations in the urban and rural areas, re-
spectively. In general, effects of various migration-related factors are
more pronounced in the urban areas owing to relatively high popula-
tion and emission densities compared to those in the rural areas. With-
out migration, the overall change in emissions from RTC would have
led to an increase of 7.8 mg/m3 in population exposure to ambient PM2.5
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Fig. 6. Changes of PM2.5 exposure concentrations in urban areas of individual
cities as a result of population migration in 2010. Each bubble represents an
individual city. The areas of the bubbles are proportional to urban population
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since 1980. (A) Relationship between the migration-induced change in PM2.5 ex-
posure concentrations with GDPcap. (B) Relationship between the migration-induced
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between 1980 and 2010 in China. Given that the consequence of all
migration-related factors is a decrease of 3.9 mg/m3 in exposure to am-
bient PM2.5, migration has compensated for 50% of the increase in
PM2.5 exposure concentration on a national scale.
DISCUSSION
Focusing on RTC sources, our study reveals that rural-urbanmigration
is a unique process in China that has reduced the national overall PM2.5

concentration and exposure of population to PM2.5 during the last
30 years despite the increase in both urban emissions and population
being exposed to urban air. The fundamental causation comes from the
uneven distributions of clean fuel accessibility for RTC between urban
and rural areas, which is typical of China and other developing coun-
tries. The observedmigration has bridged the transition from solid fuel–
dominant rural energy mix to clean fuel–dominant urban energy mix,
leading to a reduction in pollutant emissions and improvement of re-
gional air quality.

Still, issues regarding migrants remain. In particular, MUs lack
access to clean fuel sources because of the hukou registration system.
They do not only end up contributing significantly to the emissions
of air pollutants, which the entire urban population is exposed to, but
also live in the so-called urban villages where air quality is often worse
than other parts of the cities (25). This is particularly true in the north-
ern cities where many of the MUs still rely on coal stoves for heating in
winter (12). With the current hukou registration system in operation, it
is almost impossible to provide them with better alternatives. A reform
of this system has been discussed in a number of cities without much
progress toward a solution (26). New strategies against this deep-rooted
hukou system should be developed to diminish the socioeconomic sta-
tus and welfare disparities between registered and unregistered urban
residents. In addition, construction of urban energy infrastructure that
can balance the RTC energy mix between registered and unregistered
residents would remarkably improve urban air quality.

In China, as elsewhere in the world, cities experiencing rapid growth
and economic development often face severe air pollution issues (27).
Our study reveals that rural-urban migration is an important factor
leading to air pollution in large cities that attract many more migrants
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
than smaller cities do.Migration factors into the degradation of air qual-
ity in those cities because of significant increases in local pollutant emis-
sions. Urban land expansion can help reduce population densities and
exposure concentrations, only if it can bemanaged well, given that land
is precious in China for sustainable agricultural and ecological conser-
vation (28, 29). A recent study found that urban density can influence
energy use as much as efficiency improvements such as transitioning
to cleaner energy mixes (30). From orderly urban expansion to im-
provements in transportation system to upgrading the RTC energy
mix and industrial-residential codevelopment (31, 32), there are op-
tions available for urban planning and governance to comprehensively
address air quality issues in the context of rural-urban migration.
Effectively harnessing the air quality dividends from rural-urbanmigra-
tion will benefit both rural and urban residents and will contribute to
improving the quality of life in Chinese cities.
MATERIALS AND METHODS
Quantification of China’s urban expansion
from 1980 to 2030
Although numerous studies have focused on urbanization in China, a
comprehensive geospatial data set recording urban expansion since
the beginning of China’s reform and opening up is still lacking. Spa-
tially, to extract urban areas (or built-up areas), we used two types of
data sources, including the remote sensing data and the nighttime
light (NL) data. The former is represented by the Landsat Multi-
spectral Scanner System, Thematic Mapper, and Enhanced Thematic
Mapper, and the latter is represented by the Defense Meteorological
Satellite Program’s Operational Linescan System (DMSP OLS) (33, 34).
However, the Landsat data are limited by the spatial coverage and
labor-consuming extraction procedures, whereas the NL data are
limited by the spatial uncertainty and temporal coverage (recorded
only after 1992). Here, we combined these two sets of data to extract
urban expansion across China from 1980 to 2012. The future projection
used here was derived according to future urban expansion forecasts in a
previous study (29).

To derive urban area from NL digital values, threshold values need
to be determined. However, given the spatial difference in socioeconomic
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Fig. 7. Influences of individual non–migration-related and migration-related factors on PM2.5 emissions, PM2.5 exposure concentrations, and annual deaths
from exposure to ambient PM2.5 in China in 2010. The results are presented as changes in PM2.5 emissions (A), PM2.5 exposure concentrations (B), and annual deaths
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tration but an increase in annual deaths because the urban population base was increased as a result of migration.
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characteristics in China, a single threshold cannot be applied to all re-
gions and years. For the year 2010, we calculated the fractions of urban
built-up areas of individual counties based on the Landsat-based
product of Global Land Cover maps with 30-m spatial resolution
(GlobeLand30) provided by the National Geomatics Center of China
(35). We used these fractions to address the threshold values of the
NLdata for individual counties in 2010. For historical periods, we used a
Landsat-based data set containing the urban expansion of 32 major
cities from 1978 to 2010 as a basis to determine the changing trends
of the NL threshold values. The 32 major cities cover most of the mu-
nicipalities and all provinces in China (36, 37). The spatial coverage of
the data set is shown in fig. S1A, and as an example, the urban expansion
process in Beijing between 1980 and 2010 is illustrated in fig. S1B.More
detailed information on the data set was described in a previous study
(37). These data recorded urban areas with a 5-year interval. The
fractions of urban areas in each of the 32 cities were then calculated
for each recorded year, and the fractions between recorded years were
obtained by a linear interpolation. Future urban expansion to 2030 was
determined using the probabilistic forecasts provided by a previous
study (29). Grids with probability (of being converted to urban areas)
higher than 95% were defined as urban areas. Additional information
on the intercalibration of the NL data (38) and the determination of
the threshold values can be found in the Supplementary Materials.
The urban areas in 1980, 1990, 2000, 2010, and 2030 are provided
in the Supplementary Materials at a 30–arc sec spatial resolution (ap-
proximately 1 km).

Geospatial distribution of population in China
from 1980 to 2030
Several products provide information on population distributions
in certain years in China (39–41). However, a completed record of
population distributions during the last three decades has not been
established. Here, we integrated county-level census data, provincial-
level statistical data, and the urban expansion data to establish a
long-term population distribution data set in China. The 3rd, 4th,
5th, and 6th National Census conducted in 1982, 1990, 2000, and
2010, respectively, provide urban and rural population by county (42).
For years other than the census years, we used provincial-level urban/
rural population data to interpolate proportionally to county-level
population based on the county-level census data. Future population
growth was projected at a provincial level based on the methodology
of the United Nations Population Estimates and Projections (43). The
future urbanization rates were also projected to 2030 at a provincial
level based on the United Nations method (44) using the following
equation

U′ ¼ T′þ dR
T

� �
� U

where U and T are the total and urban population for the year t, re-
spectively, U′ and T′ are the same populations for the year t + 1, and
dR is the difference of rural population between the year t and t + 1.
The provincial-level total, urban, and rural population were then
adjusted to be consistent with the national total, urban, and rural pop-
ulation projected by the United Nations (14, 43). The projected num-
ber of MUs in 2030 was obtained from the Chinese Floating People’s
Development Report of the National Health and Family Planning
Commission (15).
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We defined the Oak Ridge National Laboratory’s LandScan popu-
lation distribution in 2010 as the referenced population distribution
(39). To derive historical population distributions, we spatially allo-
cated urban and rural population into urban and rural areas separately
by county. For future population distributions, the same procedure
was conducted by province. The population distributions within
urban/rural areas of each administrative unit (for historical distribu-
tions, the unit is one county; for future projection, it is one province)
were assumed to be geographically proportional to the referenced pop-
ulation distribution. The spatial allocation process can be described
using the following equation

GRIDpopi;y ¼
GRIDrpopi
rpopc;ur

 !
� popc;ur;y

where i represents a specified grid, y is the year, and GRIDpopi,y is the
population within the ith grid in the year y; c is the county where the
ith grid is located, ur is the urban/rural type of the grid, and popc,ur,y
represents the total urban (or rural) population of the county in the
year y; GRIDrpopi is the referenced population within the ith grid,
and rpopc,ur is the total urban (or rural) population calculated by ag-
gregating the grid population within the urban/rural area of the coun-
ty c in the year y. In general, the established data set can capture the
long-term spatial change of population at a county level and repre-
sents urban/rural population change and urban expansion within a
county. The overall framework of extracting urban area and addres-
sing population distribution is illustrated in fig. S2. The population
distribution data in 1980, 1990, 2000, 2010, and 2030 at a 30–arc
sec spatial resolution is provided in the Supplementary Materials.

According to the data reported by the 6th National Census (42), we
derived the numbers of MUs by county. These data were used to gen-
erate the spatial distributions of MUs before and after their migration
occurs. Within each county, the distribution of MUs within the rural/
urban areas was assumed to be proportional to that of rural/urban res-
idents. The overall distribution of the migrants (MU + NU) after the
migration was addressed by comparing the difference between the
2010 population distribution and the N1 population distribution (see
table S1 for the N1 scenario where the migration is excluded from
the population distribution). The migration of NUs was thus calculated
by subtracting the MU distribution from the overall distribution of the
migrants.

RTC energy consumption data for urban residents and RRs
and for rural-to-urban migrants
RTC in this study refers to the direct energy consumption for the de-
mand of residential cooking, heating, lighting, and household appliance
operation as well as the transportation energy consumption by private
and public vehicles (table S2). The provincial-level RTC data can be ob-
tained from China Energy Statistical Yearbook for different fuel types
and for urban and rural populations separately (45). Following the
method developed in our previous study (22), a series of empirical
models were established to predict the change of per-capita energy con-
sumption (Ecap) with economic development (using per-capita GDP as
an indicator) (table S3 and fig. S3). These models used the following
S-curve function to describe the relation between Ecap and GDPcap

y ¼ bþ a 1� exp �gjx � zcf jd
� �h i
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where y is log(Ecap) [in log(tons of coal equivalent per person per
year)], x is log(GDPcap) [in log(dollars per person per year)], and
a, b, g, d, and zcf are S-curve coefficients. Before curve fitting, Ecap
data were adjusted by various factors, including electricity price, per-
capita floor space, per-capita oil and gas production, HDD, and popu-
lation density. Provincial-level data were used to develop these models.
In addition, data in developed countries were added at higher GDPcap
levels to constrain the future tendency. The relationship between Ecap
and GDPcap was evaluated for individual energy types, including elec-
tricity, oil and gas, heat, and solid fuel. It should be noted that the fuel
type of oil and gas in the RTC energy consumption included both oil
and gas consumed in residential and transportation (private cars and
public transit buses) sectors. It appears that different fuel types show
different future tendencies (fig. S3). In general, they follow the Kuznets
curve. Solid fuel use decreases over time, oil and gas use increases with a
reachable platform in the near future, and electricity consumption in-
creases straightly. These models were used in three ways: to reconstruct
historical energy consumption before 1985 when provincial-level
energy data were not available, to predict future energy transition with
economic growth, and to downscale the provincial-level data to county
level according to county-level GDPcap. The final forms of these empir-
ical models are listed in table S3.

The future energy transitions of subfuel types within eachmajor fuel
type were simulated using a technology split method. Details about this
method can be found in previous studies (7, 46). Briefly, the fractional
changes of individual subfuel types in a major fuel type over time were
fitted using S-shaped curves for individual provinces based on historical
energy consumption data (46). These regression curves were then used
to determine future fractional trends. Therefore, future trends of energy
consumption of major fuel types were determined by the aforemen-
tioned energy empirical models, whereas fractions of subfuel types in
each major fuel type were addressed by the technology split method.

For the energy mix of unregistered rural-to-urban migrants (MUs),
no official statistical data could be found. Information was collected on
the basis of questionnaire surveys conducted in Beijing andGuangzhou,
both of which are inhabited by many MUs and can represent the MU
RTC energy consumption in the north and south of China, respectively.
The questionnaire covered information on personal, family, residence,
and average energy use. We collected a total of 440 and 86 valid ques-
tionnaires inBeijing andGuangzhou, respectively.Detailed information
on the questionnaire design, quality control, and the procedure to con-
vert collected data to energy consumption data can be found in our pre-
vious study (12). Because of data limitations, MUs in the northern
provinces with the centralized heating system were assumed to have
the same energy mix as those in Beijing, and MUs in the southern
provinces without centralized heating were assumed to have the same
energy mix as those in Guangzhou.

Emission estimation of air pollutants and greenhouse gases
Weestimated emissions fromRTCusing a bottom-upmethod based on
energy consumption data and EFs. Various greenhouse gases and air
pollutants were considered, including carbon dioxide (CO2), CO,meth-
ane (CH4), nitrous oxide (N2O), mercury (Hg), non-methane volatile
organic compounds, SO2, NOx, OC, BC, TSP, PM10, PM2.5, and ammo-
nia (NH3). The emissions were estimated for individual fuel types (21
subfuel types in 7 major fuel types) from 1980 to 2012 and projected
from 2013 to 2030 at the 1-km spatial resolution (table S2). EF values
of various compounds over time were either derived from our EF
database of PKU Inventory (8, 47–50) or collected from literature re-
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
ports focusing on China (51–53). Table S4 lists the expected EF values
for various compounds and RTC sources. It should be noted that, be-
cause of the disparity in subfuel-type fractions and technology divisions,
such as the ratios of improved stoves to total stoves for residential
biomass burning, EF values applied in the study are different across
provinces and over time. Table S4 only shows the national average
values for the year 2010.

Emissions were calculated as products of energy consumption and
EFs for each source, compound, year, county, and urban/rural area.
Spatially, emissions from electricity and heat consumption were allo-
cated to the locations of energy generation plants (54) as stationary
point sources bymajor power grids, includingNorthChina PowerGrid,
East China Power Grid, Northeast China Power Grid, Central China
Power Grid, Northwest China Power Grid, South China Power Grid,
and Tibet Power Grid. The energy exchange acrossmajor grids was also
taken into consideration. We calculated the EF values of power plants
for individual power grids according to the proportions of electricity
generated by coal-fired, oil-fired, and gas-fired plants and from indige-
nous production within the grid regions.

Emissions from other RTC sources were allocated into urban/rural
areas by county using urban/rural population as surrogates. Monthly
variations of residential emissions were simulated following themethod
of Zhu et al. (22). The emission inventories for RTCwere compiled at a
30–arc sec resolution. For model simulation, emissions from sources
other than RTC were directly derived from PKU Inventory for OC,
BC, TSP, PM2.5, and PM10 and from Emissions Database for Global At-
mospheric Research for other compounds (6, 8, 50, 55) for the year
2010. To evaluate the net impacts of RTC, emissions from other sources
were set to be unchanged during the study period using 2010 as a
reference. RTC emissions and total emissions of various pollutants
and greenhouse gases in 2010 in China are listed in table S5.

Air quality modeling
TheWeather Research and Forecasting model coupled with Chemistry
(WRF/Chem) version 3.5 was used to simulate meteorological fields
and near-surface PM2.5 concentrations (56) at a 50-km × 50-km hori-
zontal resolution with a model domain covering the entire mainland
China (fig. S7). The model time step was 300 s. The chemical options
included the RADM2 (Regional Acid Deposition Model, version 2)
chemical mechanism and the MADE/SORGAM (Modal Aerosol Dy-
namics Model for Europe/Secondary Organic Aerosol Model) aerosol
scheme. The 1.0° × 1.0° National Centers for Environmental Prediction
Final Operational Global Analysis data (http://rda.ucar.edu/datasets/
ds083.2/) were processed to provide the initialmeteorological conditions,
boundary conditions, and the meteorological nudging field. WRF was
applied with a three-dimensional analysis nudging with 6-hour inter-
vals. For a 1-year simulation, the spin-up time was 10 days, and the
simulation was restarted every 1 month to avoid increasing uncertainty
inmeteorological prediction.We conducted a total of twelve 1-year sim-
ulations, including one 2014 simulation for model evaluation, one
2010 simulation, one 1980 base simulation, and nine simulation tests
to analyze the effects of migration-related and non–migration-related
factors between 1980 and 2010. The only difference among these simu-
lations was the emission inventory of RTC that was revised to fit spe-
cific cases.

On the basis of the high-resolution emission inventory established in
this study, the output fields of near-surface PM2.5 concentrations were
spatially downscaled using a Gaussian downscaling method (10). Be-
cause of the computing load, the concentrations were downscaled to
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a 5-km × 5-km resolution instead of the emission inventory resolution
of 30 arc sec. During downscaling, the primary and secondary PM2.5’s
were treated separately. For the primary PM2.5, including BC, OC, and
unspecifiedPM2.5, downscalingwas carriedoutbycalculating theweighting
factor (Wi) for the ith 5-km × 5-km grid using the following equation

Wi ¼ ∑
n

j¼1

2:03Qj fje�tji

ujszjxji

whereQj (inmicrogramsper second) is the emissiondensityof the jth emis-
sion grid at the 5-km resolution; fj (dimensionless) and uj (in meters per
second) are wind frequency (0 to 1) and speed, respectively, at the direction
from1 to16 (N,NNE,NE,NEE,E, SEE, SE, SSE, S, SSW,SW,NWW,NW,
and NNW) in the jth emission grid; tji (in seconds) and xji (in meters) are
distance and transport time, respectively, from the jth emission grid to the
ith receiving grid; and szj (in meters) is the vertical SD of the concentra-
tions. The downscaled concentrations of the ith grid were calculated as

Ci ¼ Wi

WI
CI

whereCi andWi are the downscaled concentration andweighting factor in
the ith grid, respectively; CI and WI are the modeled concentration and
average weighting factor, respectively, in the specific 50-km × 50-km
model grid, which contains the ith grid. Detailed information on the
Gaussian downscaling method, specifically on the determination of szj,
can be found in a previous study (10). The concentrations of secondary
PM2.5 were not downscaled. The distribution of simulated PM2.5 con-
centrations in 2010 is illustrated in fig. S7.

For model evaluation, we compared simulated near-surface PM2.5

concentrations with observations for each of the 190 Chinese cities in
2014 (figs. S8 and S9). The observations were reported by the National
Air Quality Monitoring Network (25). The comparison showed an
agreement between simulation and observation both spatially and
temporally. Population-weighted concentrations were then calculated
on the basis of the predicted PM2.5 concentrations and the established
population distributions.

Health assessment
Here, we used premature death as a health indicator. Premature deaths
refer to the number of deaths occurring earlier than they would be
expected if a risk factor could be avoided. We calculated relative risks
of mortality from ischemic heart disease, cerebrovascular disease
(stroke), chronic obstructive pulmonary disease, lung cancer, and acute
lower respiratory infection attributable to long-term inhalation expo-
sure to ambient PM2.5 based on the Integrated Risk Function (57).
The Integrated Riskmodel has been proven to be superior in predicting
relative risks compared to other forms previously used in burden assess-
ments. Detailed information on the model can be found in a previous
study (57). The population attributable fraction (PAF) was calculated
from the predicted relative risks, and the annual premature deaths
caused by ambient PM2.5 exposure were calculated by multiplying
PAF with provincial background disease burdens provided by GDB-
2010 (58) and the ratio of urban and rural background disease incidents
to total provincial background disease incidents (59). The background
disease burdens can be influenced by multiple factors. To evaluate the
net health impacts of migration, the disease rates in 2010 were adopted
and assumed to be constant over time.
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Evaluation of migration effects
We conducted a set of factorial simulation tests to evaluate the influ-
ences of the rural-urban migration and other non–migration-related
factors on PM2.5 (primary + secondary) concentrations. The effects of
migration for a given year were assessed by comparing the difference
in simulated PM2.5 concentrations between two simulations: (i) a real-
world simulation with the real-world population distribution and RTC
emissions and (ii) a counterfactual simulation excluding the effects of
migration on RTC emissions, that is, with the total and spatial
distribution of PM2.5 emissions being derived by locating rural-urban
migrants back to their rural areas of origin and assigning them the
energy mixes of local RRs.

The same factorial simulation framework was used to distinguish
the effects of nine driving factors including four non–migration-
related factors (N1, population growth; N2, increase in RTC energy
consumption; N3, change of energy mix; N4, decrease in EFs) and five
migration-related factors (U1, NU migration; U2, shift in the energy
mix of NUs due to migration; U3, MU migration; U4, shift in the
energy mix of MUs; U5, expansion of urban area). A detailed descrip-
tion of each factor is summarized in table S1. The influence of each
factor on energy consumption, population distributions, pollutant
emissions, PM2.5 concentrations, and population health was addressed
using an entering approach by including and keeping the factors in
the simulation one by one from N1 to U5 and comparing the effects
with previous simulation results. For example, the effect of U4 was
evaluated by comparing the results of the simulation including the
factors N1 to N3 with the simulation including the factors N1 to
N4. The overall influence of migration is equal to the combined effects
of the five migration-related factors (U1 to U5).

It should be noted that, although the nine factors represent the en-
tire change within the RTC sources in China, they proceed simulta-
neously in reality rather than taking place in a certain order. We
checked the effect of the factor orders by making sure that U5 takes
place before U1, and we found the results to be consistent with those
in the current order. We evaluated the influences of individual factors
on emissions for each year from 1980 to 2030 (fig. S10) and found a
continuous emission reduction caused by migration by 2030.

Uncertainty analyses, constraints, and limitations
Here, the uncertainties in emission estimate, air quality modeling, and
health assessment were comprehensively addressed. The uncertainty
in emission estimate was characterized using Monte Carlo simulation.
The distributions of EF values for all compounds were assumed to be
lognormally distributed, except for CO2, of which EF values were as-
sumed to be normally distributed. The expected values of EFs, E(x),
were determined using the following equation

EðxÞ ¼ expðmþ 0:5s2Þ

where m and s are the mean and the SD of log-transformed EFs,
respectively. The EF values for individual compounds and fuel types
are listed in table S4. On the basis of Cox’s method (60), the SD of
log[E(x)] can be calculated as follows

SD logfEðxÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n
þ s4

2ðn� 1Þ
� �s
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The consumption rates of individual fuel types in RTC were as-
sumed to be uniformly distributed. Variation intervals of historical con-
sumptions were set to be 20% of themeans for indoor biomass burning,
5% for electricity consumption, and 10% for all fuel types (7). Variation
intervals of future consumptionswere assumed to increase by a factor of
2 from2013 to 2030.MonteCarlo simulationswere used to characterize
the overall uncertainty of the emission estimates with 10,000 random
drawings of all inputs from the distributions.

The uncertainty of the modeled PM2.5 concentrations was char-
acterized on the basis of a model sensitivity analysis. Only uncer-
tainties induced by emission inventory were taken into consideration.
The sensitivity of population exposure to PM2.5 concentrations was
quantified by changing the emissions of individual pollutants by
±100, ±75, ±50, ±25, and ±10% separately and by addressing the re-
sulting change in PM2.5 concentrations based on a 1-month simulation.
The pollutants considered in the sensitivity analysis included BC, OC,
NH3, NOx, SO2, and unspecified PM2.5 (= PM2.5 − BC − OC). The
results are shown in table S6. These results were used to evaluate the
uncertainty range of PM2.5 concentrations reflecting uncertain pollu-
tant emissions.

For the health assessment, the uncertainty was also assessed using
Monte Carlo simulation. Both the abovementioned uncertainty in the
simulated PM2.5 concentrations and the reported uncertainty in param-
eters of the risk functions (57) were considered. In particular, the
study of Burnett et al. (57) provided 1000 sets of curve parameters for
each disease. Each time, one set of the parameters was randomly chosen
together with a randomly chosen PM2.5 concentration in the modeled
distribution to calculate relative risks. The Monte Carlo simulation was
run 10,000 times.

With data limitations, results obtained in this study bear relatively
high uncertainty. More detailed and better information is required for
future systematic assessment studies. First, the spatial allocation of the
urban and rural population was calculated on the basis of the satellite-
derived urban and rural areas instead of the areas defined by adminis-
trative boundaries because of a lack of spatial information on historical
district-level administrative division and because the criteria defining
urban administrative boundary in China have been changing over the
study period and cannot reflect the true dynamics of urban expansion
(fig. S11). The population distribution data set provided in this study is
probably the best data set currently available to represent the changing
population pattern over time in China but can be improved in the fu-
ture. Other information required for a more systematic assessment in-
cludes the energy consumption of rural-urban migrants, EFs of various
residential fuels, exposure-dose-response relationship, and cost of
energy substitution. In addition, this study focuses on migration effect
on direct energy consumption (RTC), whereas indirect emissions
(emissions embodied in production chains) are another important
driver that controls emissions and can be affected by migration. The
indirect emissions associated mostly with infrastructure development
and consumer commodities (61) are very likely to offset the health
benefits from direct emissions in the migration process, especially if
the industrial production of commodities is close to an urban area,
which is generally the case in China (27). Another limitation of the cur-
rent study is that only ambient air quality (PM2.5) is taken into consid-
eration in health impact assessment while residents spendmost of their
time indoors (62). The relationship between migration and indoor air
pollution exposure in both urban and rural areas ismore complicated to
establish because the indoor air is influenced by both indoor and out-
door sources.
Shen et al., Sci. Adv. 2017;3 : e1700300 19 July 2017
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