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Abstract

In a recent comprehensive investigation, we largely failed to identify significant genetic markers 

associated with P3 amplitude or to corroborate previous associations between P3 and specific 

single nucleotide polymorphisms (SNPs) or genes. In the present study we extended this line of 

investigation to examine time-frequency (TF) activity and intertrial phase coherence (ITPC) in the 

P3 time window, both of which are associated with P3 amplitude. Previous genome-wide research 

has reported associations between P3-related theta and delta activity and individual genetic 

variants. A large, population-based sample of 4211 subjects, comprising male and female 

adolescent twins and their parents, was genotyped for 527,828 single nucleotide polymorphisms 

(SNPs), from which over six million SNPs were accurately imputed. Heritability estimates were 

greater for TF energy than ITPC, whether based on biometric models or the combined influence of 

all measured SNPs (derived from genome-wide complex trait analysis). The magnitude of overlap 

in the specific SNPs associated with delta energy and ITPC and P3 amplitude was significant. A 

genome-wide analysis of all SNPs, accompanied by an analysis of approximately 17,600 genes, 

indicated a region of chromosome 2 around TEKT4 that was significantly associated with theta 

ITPC. Analysis of candidate SNPs and genes previously reported to be associated with P3 or 

related phenotypes yielded one association surviving correction for multiple tests: between theta 

energy and CRHR1. However, we did not obtain significant associations for SNPs implicated in 

previous genome-wide studies of TF measures. Identifying specific genetic variants associated 

with P3 amplitude remains a challenge.
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1. Introduction

1.1. Endophenotypes and gene discovery

Since a recent article by Gottesman and Gould popularized the concept (Gottesman and 

Gould, 2003), endophenotypes have seen increasingly widespread use in psychiatric 

genetics. A number of slightly different definitions of an endophenotype have been proposed 
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(e.g., Almasy and Blangero, 2001; Cannon and Keller, 2006; de Geus, 2010; Gottesman and 

Gould, 2003; Iacono and Malone, 2011; Kendler and Neale, 2010; Miller and Rockstroh, 

2013), yet at the heart of all of them is the notion that endophenotypes are closer to the 

actual gene product than psychiatric categories and are likely genetically less complex than 

psychiatric disorders. This characteristic implies that endophenotypes are likely to produce 

larger effect sizes in relation to specific genetic markers than psychiatric categories and 

disorders, which has led to the hope that endophenotypes will facilitate identifying genes 

associated with psychopathology (e.g., Iacono and Malone, 2011).

We and our colleagues recently conducted a comprehensive set of molecular-genetic 

analyses of 17 psychophysiological measures that can, to different degrees, be considered 

candidate endophenotypes for various psychiatric disorders (Iacono, 2014; Malone et al., 

2014a,b; Vaidyanathan et al., 2014a,b,c; Vrieze et al., 2014a,b). Our sample consisted of 

>4000 subjects, most measures were at least moderately heritable in our data, and our 

approach was comprehensive, including sequencing rare variants in addition to genome-

wide association study (GWAS). Nevertheless, our results failed to produce compelling 

evidence of specific genetic variants associated with these candidate endophenotypes. 

Although we did obtain several novel findings across the set of studies, and these may well 

ultimately provide insight into the endophenotypes and the disorders with which they are 

commonly associated, significant findings were few in number and at least some are likely 

false positives. These findings collectively challenge the notion that endophenotypes will 

facilitate gene finding.

1.2. P3 amplitude, its time-frequency constituents, and phase resetting

Although P3 amplitude is a robust endophenotype for different forms of disinhibitory 

psychopathology, including substance abuse (Euser et al., 2012; Iacono and Malone, 2011; 

Iacono et al., 2003; Porjesz et al., 2005), we uncovered virtually no evidence of specific 

genetic variants that were significantly associated with it; only one gene (MYEF2) was 

significantly associated with P3 amplitude, and its relevance is unclear. In a paper that in 

some ways anticipated these findings, Miller and Rockstroh (2013) argued that the kinds of 

measures psychologists and psychiatrists commonly consider as candidate endophenotypes 

are themselves too far downstream from the action and expression of specific genes, and the 

causal pathway from susceptibility genetic markers to manifest psychopathology is 

nonlinear and complex. They suggested that endophenotypes for our endophenotypes are 

necessary. P3 amplitude is certainly not a unitary phenomenon, reflecting at least two 

different subcomponents (P3a and P3b). Moreover, waveforms recorded at the scalp are 

made up of sources of activity from different brain areas that combine in very particular 

ways at the recording electrode. It may be that measures that are more elementary than P3 or 

that reflect characteristics of brain activity that contribute to what we observe as the P3 wave 

are closer to gene action than P3 itself, providing greater sensitivity to detecting genetic 

effects (cf. Ford, 2014).

Current models of ERPs that attempt to describe the relationship between them and ongoing 

EEG activity emphasize three main phenomena. The classic view holds that ERPs reflect 

evoked activity: activity of neural ensembles elicited by events in the experimental task, 
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independent of ongoing activity. More recent views, although not without their critics, hold 

that events influence ongoing activity in a way that gives rise to the observed ERP, either by 

modulating the amplitude of ongoing activity in the absence of stimulus locking or by 

partially resetting the phase of ongoing oscillations (Klimesch et al., 2007; Makeig and 

Onton, 2009; Makeig et al., 2002; Sauseng et al., 2007). Of course, these models are not 

mutually exclusive (Fell et al., 2004; Min et al., 2007).

At the same time, approaches that simultaneously measure brain activity with respect to its 

time course and underlying frequencies have become popular in recent years. Such 

approaches lend themselves directly to describing specific ways that events modulate 

ongoing activity, both in time and frequency. Our own work has suggested that such 

approaches may offer incremental validity or other advantages over traditional approaches 

that focus on voltage deflections in the time domain only (Gilmore et al., 2010a). Moreover, 

preliminary evidence indicates that measures of time-frequency activity have some of the 

properties of an endophenotype (Gilmore et al., 2010a,b; Jones et al., 2006b; Kamarajan et 

al., 2004, 2006; Padmanabhapillai et al., 2006a,b; Rangaswamy et al., 2007; Yoon et al., 

2013).

1.3. Theta and delta activity and specific molecular-genetic markers

Indeed, the only published studies using a genome-wide search for genetic markers other 

than our previous GWAS of P3 amplitude focused on time-frequency features rather than P3 

amplitude (Chen et al., 2009; Jones et al., 2004, 2006a; Kang et al., 2012; Zlojutro et al., 

2011), examining energy in the theta and delta ranges during a time window that spans the 

P3 response. This focus accords with evidence that P3 amplitude is primarily composed of 

activity (energy) in the theta and delta ranges (Basar et al., 2001; Karakas et al., 2000; 

Yordanova et al., 2000), with the former more prominent at frontal electrodes and the latter 

more prominent at parietal ones (see Fig. 1 in Karakas et al., 2000). In a genome-wide 

linkage analysis in a large family sample of over 1300 individuals in 253 families with a 

dense history of alcoholism, followed by linkage disequilibrium analysis in a subset of 

Caucasian families, Jones and colleagues observed linkage between frontal theta activity and 

a region of chromosome 7, containing CHRM2, which codes for a muscarinic cholinergic 

receptor. Given the likely importance of acetylcholine to ERP generation (Frodl-Bauch et al., 

1999; Kenemans and Kähkönen, 2010), follow-up association analysis was conducted for 

several SNPs in this gene. One showed a strong association with frontal theta, while another 

showed a strong association with central-parietal delta.

This initial study was followed by two additional investigations using essentially the same 

sample but a slightly modified time-frequency window, or time-frequency region of interest 

(TFROI), in order to focus especially on midline frontal theta activity. The first investigation 

also expanded the number of CHRM2 SNPs examined (Jones et al., 2006a), while the 

second examined SNPs in GRM8 (Chen et al., 2009), a gene coding for a glutamate 

receptor, which is in the same region as CHRM2. Jones and colleagues found that six SNPs 

in CHRM2, in addition to rs2359786, the SNP associated with frontal theta activity in their 

original report, were associated with midline frontal theta energy. Four of these, including 

rs2359786, were associated with midline parietal theta energy as well. Chen and colleagues 
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reported significant associations between eight SNPs in GRM8 and frontal theta activity. 

Seven also showed significant associations with central and parietal theta activity.

Two GWASs were conducted subsequently. Zlojutro and colleagues conducted a two-stage 

analysis (Zlojutro et al., 2011). The first stage consisted of a GWAS of frontal theta energy 

in a case-control sample of 1064 individuals, 640 of them with alcohol dependence and the 

remainder controls. In the second stage, SNPs were prioritized for follow-up analysis in a 

non-overlapping family replication sample, based on significance in the first stage, as well as 

putative function and other factors. Although neither stage yielded any associations that 

were genome-wide significant, four SNPs produced similar effect sizes and the same 

direction of effect across the two stages. The second GWAS consisted of a family-based 

analysis of frontal theta energy in >1500 individuals from 117 Caucasian families (Kang et 

al., 2012). A cluster of SNPs on chromosome 21 showed particularly small p-values, with 

seven being genome-wide significant. Fully half of the 22 SNPs with p-values < 10−5 and all 

of the genome-wide significant SNPs were contained in KCNJ6. The protein encoded by this 

gene is an inward rectifier potassium channel, which is widely distributed in the brain and is 

an important element in the transmission of many neurotransmitters, including dopamine, 

acetylcholine, GABA, and glutamate.

1.4. Rationale for and aims of the current study

Taken collectively, these studies indicate that potentially important genetic variants are 

associated with theta energy in particular, especially at frontal electrode sites. We undertook 

the present investigation to expand on our previous GWAS of P3 amplitude, following the 

lead of these two GWASs. Our primary aim was to determine whether time-frequency 

measures might provide a window onto the relevant molecular-genetic influences on P3-

related measures that P3 itself failed to do. Our secondary aim was to determine whether our 

results would be consistent with previous findings concerning these time-frequency 

measures, which would provide converging evidence concerning the influence of specific 

genetic variants on P3-related activity. We adopted the general analytic approach of our 

previous study, which comprised several aspects: In a family sample of approximately 4200 

individuals, the largest sample used to conduct genome-wide analyses of time-frequency 

measures to date, we 1) conducted biometric analyses of twin and family data to confirm 

that the phenotypes examined are heritable; 2) determined the proportion of variance in each 

phenotype accounted for by all SNPs on our genotyping array in aggregate (“SNP 

heritability”), a molecular-genetic analog of biometric heritability analyses using measured 

genetic variants rather than phenotypic relationships; 3) carried out a GWAS of the 

association between each of >6 million SNPs in turn and our phenotypes; and 4) conducted a 

similar analysis of individual genes, rather than SNPs. In addition to genome-wide analyses 

of SNPs and genes with a focus on discovery, we examined SNPs and genes that might be 

considered candidates for association with our phenotypes because they have previously 

been associated with theta energy or P3 amplitude. In a similar vein, we examined 111 SNPs 

that have recently been determined to be associated with schizophrenia due to the robust 

association between schizophrenia and P3 amplitude (Ford, 1999) and time-frequency 

measures (Ethridge et al., 2015).
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Using TFROIs corresponding to the P3 window, we examined total theta energy at electrode 

Fz, the primary focus of previous studies (Chen et al., 2009; Jones et al., 2006a; Kang et al., 

2012; Zlojutro et al., 2011), and total delta energy at Pz. This electrode-TFROI pair reflects 

the predominant topographic distribution of theta and delta and these two measures are 

likely the primary contributors to P3 amplitude. In addition, we examined inter-trial phase 

coherence (ITPC) within each TFROI (theta-Fz and delta-Pz). ITPC is a measure of the 

consistency of the phase of the signal at each time-frequency bin across trials, and thus 

permits one to quantify the degree to which brain activity shows time- and frequency-

dependent synchronization to stimulus onset (Tallon-Baudry and Bertrand, 1999). Although 

ITPC measures have not been previously examined, ITPC is reduced in externalizing 

disorders (Burwell et al., 2014), like P3 amplitude, and examining ITPC measures might 

shed light on our P3 findings.

2. Material and method

2.1. Participants

The sample for the present investigation was identical to the sample in our previous GWAS 

of P3 amplitude, which consisted of all twins from the Minnesota Twin Family Study 

(MTFS; Iacono et al., 1999; Keyes et al., 2009; McGue et al., 2007) who completed a 

laboratory assessment when they were approximately 17 years old and all parents who 

completed an identical assessment (N = 4214). The MTFS comprises three different cohorts 

of twin families. In two of the three, twins were approximately 11 years old during the year 

they were enrolled in the study, whereas in the third, twins were approximately 17 years old. 

The MTFS uses a longitudinal design, with assessment of twins repeated at 3- to 5-year 

intervals. Data for the present study are from the age-17 assessment, which was the second 

follow-up assessment of younger twins and the intake assessment of older twins. Because 

the midline frontal electrode was not part of the recording montage used at the beginning of 

the MTFS, fewer subjects have data from Fz (N = 3447) than Pz (N = 4167). There were 

2422 adolescent subjects (1247 females, or 51%) and 1745 parents (1183 fathers, or 68%). 

Adolescent participants ranged in age from 16.6 to 20.0 (mean, 17.7), while parents ranged 

in age from 28.4 to 65.3 (mean, 44.5). (A few parents of younger-cohort twins were <30 

years old at the time the family was enrolled.) Participants gave written consent or assent as 

appropriate, depending on their age.

The sample is broadly representative ethnically of the state of Minnesota during the relevant 

birth years, and it is predominantly Caucasian (96%). To avoid population stratification, 

which confounds molecular-genetic analyses if ethnic differences exist in allele frequencies 

and mean levels of the phenotype under study, we only included Caucasian subjects in these 

analyses, as in our previous study. Ethnicity was based on self-report, combined with 

principal component analysis (PCA) of genotype data (Miller et al., 2012).

2.2. Experimental task and time-frequency measures

Event-related potentials (ERPs) were elicited by means of the Begleiter rotated heads task 

(Begleiter et al., 1984). Subjects viewed a sequence of 240 stimuli, each appearing for 100 

ms. One third were designated targets and consisted of a superior view of a stylized head 
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with one ear. Subjects were instructed to press a button on the left arm of their chair if 

viewing a head with a left ear or the button on the right arm of their chair if viewing a head 

with a right ear. Half the target stimuli were rotated 180°. The remaining 160 stimuli 

consisted of plain ovals, which subjects were instructed to ignore.

2.2.1. Data collection—Data were collected over the course of >20 years using two 

different stimulus delivery methods and EEG recording systems. For approximately three-

fourths of the sample, stimuli were presented using in-house software, while EEG data were 

collected using Grass Neurodata 12 systems, with a passband of 0.1to30Hz(half amplitude;

6dBper octave rolloff), and digitized at 256 Hz with 12 bits resolution. Each trial consisted 

of 2 s, with a 500-ms prestimulus baseline. The intertrial interval varied between 1 and 2 s. 

Data were recorded from four electrodes (Fz, Pz, P3, and P4) with a linked-ear reference. 

Eyeblinks and other eye movements were recorded by means of a pair of electrodes in a 

transverse arrangement, with one superior to the eye and one over the outer canthus. For the 

remaining subjects, who were in the Enrichment Sample (ES; Keyes et al., 2009), data were 

collected continuously from 61 scalp electrodes using a Biosemi ActiveTwo system, a 

sampling rate of 1024 Hz, and 24 bits resolution. ActiveTwo amplifiers are DC-coupled. To 

avoid aliasing, all signals were filtered by means of a 5th-order Bessel sinc filter with a 

cutoff frequency of 205 Hz (3 dB attenuation), imposed in the ActiveView software. Four 

additional monopolar electrodes were placed superior to each eye and over each outer can-

thus. A script written in E-Prime software version 1.2 (Psychology Software Tools, 

Pittsburgh, PA) mimicked the original Pascal program as closely as possible.

2.2.2. Data processing—Data were processed in Matlab (The Mathworks, Natick, MA). 

After data from the Biosemi system were transformed to match the format of the Grass 

system data (Malone et al., 2014b), the same pipeline was used for all data, based on 

functions in the Psychophysiology Toolbox for Matlab (http://sourceforge.net/projects/

psychophys/) and custom scripts. Observations made when the data were collected guided us 

in identifying potentially problematic data. Trials containing artifacts such as excessively 

large voltage deflections and sudden transients were marked for exclusion. Eye blinks and 

other movements were corrected by means of the regression method of Gratton et al. (1983).

2.2.3. Time-frequency transform and dependent measures—Time-frequency 

transforms of all target trials of valid, artifact-corrected EEG were obtained by means of the 

reduced interference distribution (RID; Williams, 2001). The RID is a member of Cohen's 

class of bilinear time-frequency transforms (TFDs) (Cohen, 1989), and it has several 

advantages over wavelet methods: it preserves energy while satisfying the time and 

frequency marginals, meaning that it faithfully reproduces the signal energy at each time-

frequency bin, and its resolution is uniform in time and frequency (Bernat et al., 2005; Weis 

et al.,2010; Williams and Jeong, 1989). RIDs can be represented in a form that is equivalent 

to multiplying a signal's autocorrelation function, the inverse Fourier transform of the 

signal's power spectrum, by a kernel, which acts as a filter, and transforming the resulting 

“ambiguity function” back into the time-frequency domain. Using the RID with a binomial 

kernel, as in previous work (Williams, 2001), we derived the (squared) magnitude of the 

signal at each time-frequency bin for all artifact-free target trials, separately for Fz and Pz. 
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To reduce computational load, each time series was resampled at 64 Hz, resulting in a time 

resolution (sampling interval) of 15.625 ms and a frequency resolution of 0.5 Hz. These 

values were then averaged over trials to produce estimates of total energy (power) to capture 

all activity whether stimulus-locked or not (cf. Jones et al., 2006a). This is similar to the 

procedure used in previous genome-wide analyses (Kang et al., 2012; Zlojutro et al., 2011), 

although using a different transform to represent time-frequency energy (RID versus S-

transform). Power values were corrected for baseline variation by removing the mean of the 

200 ms preceding stimulus onset separately for each frequency bin. The mean energy 

distribution for each electrode is plotted in Fig. 1B.

Although it faithfully represents time- and frequency-varying energy, the RID is a real-

valued distribution, which makes it uninformative about signal phase, because phase is 

derived from the imaginary part of a complex-valued representation of a signal. We therefore 

used a parallel procedure to extract inter-trial phase coherence (ITPC) from the same data by 

means of the RID-Rihaczek (Aviyente et al., 2011), a recently developed application of the 

RID to the Rihaczek distribution, also a member of Cohen's class but one that yields a 

complex energy density function. Its time-frequency resolution is determined by the rate of 

change of instantaneous frequency, providing precise localization in time-frequency space of 

phase modulation (Aviyente et al., 2011). We used the RID-Rihaczek on all valid and 

artifact-free target trials to produce the time-varying complex spectrum representing each 

trial, similar to the time-varying energy spectrum produced by the RID (Tallon-Baudry et al., 

1996). For each electrode, the intertrial variability of the RID-Rihaczek phase estimate for 

each discrete time, t, and frequency, ω, was estimated as , 

where j represents trial, N is the total number of target trials, i is the imaginary unit , eiϕ 

is the complex representation of the phase angle Φ relative to the average of all phase 

estimates, and the vertical bars indicate the length of the vector contained within them 

(Burwell et al., 2014). Phase angles are normalized to unit length; as a result, ITPC is 

independent of magnitude. This is analogous to the approach of Tallon-Baudry et al. (1996). 

ITPC ranges from 0, indicating that phase are randomly distributed across trials, to 1, 

indicating identical phase estimates across trials. ITPC estimates were baseline-corrected by 

subtracting the average ITPC for the 200 ms before stimulus onset from each post-stimulus 

time-frequency bin, separately for each frequency bin, as for TF power (Aviyente et al., 

2011; Burwell et al., 2014; Cavanagh et al., 2010; Roach and Mathalon, 2008). The resulting 

values were averaged over all bins in each TFROI to produce estimates of the magnitude of 

theta and delta stimulus locking.

We derived average energy and ITPC in the recorded signals for two TFROIs. Both spanned 

300 to 700 ms (the P3 time window). One comprised 2.5 to 7 Hz and the other, 0.5 to 2.5 

Hz. Choice of ROIs was informed by visual inspection of the average ERP (Fig. 1A) and the 

average TF energy in our sample (Fig. 1B) as well as the roadmap provided by the two 

previous GWASs. Although appropriately tuned to the TF characteristics of our data, these 

ROIs thus conform closely to those used previously and are arguably most likely to aid in 

our goal of identifying genetic variants related to P3 amplitude. In particular, our first 

TFROI is virtually identical to the theta ROI used in Kang et al., which successfully 

identified genetic variants related to theta power: 3 to 7 Hz in the same time window. (The 
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GWAS of Zlojutro et al. defined theta as spanning 4 to 7 Hz but did not produce genome-

wide significant hits.). Owing to this similarity in TFROIs, and to avoid using more precise 

but potentially awkward and lengthy descriptors, we refer to our first ROI as theta, despite 

the fact that its lower frequency boundary is somewhat lower than typical, and the second as 

delta, despite the fact that it represents only the lower frequencies in the traditional delta 

band. We hope that what we gain in economy of description by using these terms more than 

offsets any potential confusion or misunderstanding.

Because theta is most prominent at frontal scalp locations and delta most prominent over 

parietal regions, we examined theta energy and ITPC at Fz and delta energy and ITPC at Pz. 

The mean ITPC for each electrode is displayed in Fig. 1C.

2.3. Molecular genetic data and genotyping

The pipeline for extracting and processing DNA and quality control procedures for the 

molecular-genetic data are described extensively elsewhere (Iacono et al., 2014a; Miller et 

al., 2012). Quality control filters were carefully applied to samples and markers on the 

Illumina array to eliminate problematic instances of either. Samples were dropped for having 

too many uncalled markers (at least 5000), low scores on a metric produced by the array 

manufacturer, extreme heterozygosity, and sample mix-ups or failure to confirm known 

genetic relationships with other subjects. Markers were eliminated if identified as 

problematic by Illumina; if the call rate was <99%; if mismatches occurred in duplicate 

samples; if the minor allele frequency (MAF) was <1%; if showing a significant deviation 

from Hardy-Weinberg genotype frequencies or Mendelian inconsistencies across families; if 

a significant association with participant gender or processing batch was obtained; and if 

there were excessive heterozygous calls for markers on the X chromosome in males or in 

mitochondrial DNA in the sample. PCA was subsequently conducted specifically on the 

genotypes of all Caucasian subjects in order to determine the major dimensions of genetic 

variation, and the first 10 components were used subsequently to statistically control any 

confounding due to residual variation in allele frequencies (Price et al., 2006).

SNPs were imputed from the 529,827 markers on the Illumina array that remained after 

these quality control filters had been applied using minimac (Howie et al., 2012). Genotypes 

were first phased in Beagle (Browning and Browning, 2009), which uses known familial 

structure to improve phasing accuracy, and then imputed using 1000 Genomes reference 

haplotypes (1000 Genomes Project Consortium, 2012). A total of 9,331,500 SNPs were 

imputed. We used only those SNPs with a MAF of at least 0.01 (which eliminated 1,131,558 

markers) and that had been imputed accurately, with an imputation r2 of at least 0.90 (which 

eliminated an additional 2,164,929 markers), leaving us with a final set of 6,035,013 

markers. Although we restricted our primary analyses to SNPs with imputation r2 of 0.90 or 

greater, we used all SNPs in our analysis of candidate SNPs drawn from the relevant 

literature. Whereas association analysis with measured SNPs typically uses a count of the 

number of minor alleles, ranging from 0 to 2,imputation instead produces an allele dosage 

for each variant. Each genotype (AA, Aa, and aa, represented as 0, 1, and 2, respectively) is 

weighted by the posterior probability of that genotype as estimated by the imputation 

algorithm and the three weighted allele counts summed.
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2.4. Statistical analyses

Measures of delta-Pz and theta-Fz energy and ITPC were adjusted for covariates likely to 

affect them: gender, age cohort, chronological age, and recording system (Biosemi or 

Grass). We also adjusted all outcome measures for the 10 PCs from Eigenstrat reflecting the 

major dimensions of genetic variation in the sample, as is customary in molecular-genetic 

research (Price et al., 2006). The specific method of adjusting for these covariates depended 

on the analysis, as described below: they were included as covariates of no interest in GWAS 

analyses and analyses of all SNPs in aggregate, whereas the phenotypes were adjusted via 

linear regression prior to biometric analysis.

2.4.1. Biometric heritability—We derived estimates of the amount of heritable variance 

in outcome measures using standard biometric approaches to twin-family data (Neale et al., 

2003) implemented in the OpenMx package for R (Boker et al., 2011). We fit models to data 

from only the twins as well as from the entire four-member family. Biometric models 

represent the (covariate-adjusted) time-frequency measures as due to (“caused by”) latent 

variables representing additive genetic influence (A), dominance genetic influence (D), 

reflecting nonadditive effects at a single allele, common, or shared, environment (C), and 

unique, or unshared, environment (E) (see Fig. 2). The logic of biometric model-fitting relies 

on the known correlations between family members with respect to the latent variables to 

derive the expected covariance matrix, which is compared to the observed covariance matrix. 

MZ twins are genetically identical, and the genetic correlation between them is therefore 1, 

whether for additive or dominance influences. DZ twins share half their segregating genes, 

on average, while parent-offspring pairs share half their genes by descent; the additive 

genetic correlation in these pairs is 0.5. The DZ twin correlation for dominance effects, 

which are based on inheritance from both parents, is 0.52, or 0.25. Parents are unrelated 

genetically. All family members by definition share the common environment, whereas E 

reflects environmental factors that are unique to each individual; it does not contribute to 

within-family correlations. Our models did not allow for assortative mating, the tendency for 

people with similar characteristics tend to marry (“like marries like”). We also did not allow 

for “vertical” environmentally-mediated influences between parents and twins.

Fitting models to four-member families allows us to estimate the variance of all four latent 

variables, and we report the results of such ADCE models in addition to ACE models. 

Parent-offspring correlations are often smaller in magnitude than DZ twin or sibling 

correlations. Although this can be consistent with dominance effects, which are shared by 

siblings but not parents and their offspring, it can also reflect gene-environment interactions, 

which cause different genetic effects to be expressed during different developmental periods 

or in different cohorts (Eaves et al., 1978), or simply reduced environmental sharing between 

parents and offspring. Twin data are unconfounded in this way and may produce a truer 

estimate of D effects. For twin data, we fit both ACE and ADE models and report the results 

of each. Only when the estimate of D is statistically significant do we consider it potentially 

meaningful.

Although systematic variation in mean levels of the time-frequency measures was 

accommodated through adjusting them for relevant co-variates, we accommodated gender 
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and, especially, age-cohort differences in phenotypic variances by means of scalar 

moderators of the model path coefficients (a, d, c, and e in Fig. 2). Although estimates of 

variance moderation were not significant in all analyses, this parameter was retained in all 

models for the sake of uniformity in model-fitting approach and ease of presentation.

We extended our biometric model to the bivariate case to estimate the magnitude of additive 

genetic variance shared by each phenotype and P3 amplitude. In addition, we estimated the 

genetic variance shared by the two energy measures, the two ITPC measures, and by energy 

and ITPC within a frequency band. These analyses provide an indication of how much 

genetic overlap likely exists between pairs of time-frequency phenotypes as well as between 

each such phenotype and P3 amplitude.

2.4.2. Genome-wide complex trait analysis: SNP heritability—Genome-wide 

complex trait analysis (GCTA) (Yang et al., 2011), also known as genomic restricted 

maximum likelihood (GREML), assesses the additive effect of all SNPs in aggregate. SNPs 

are characterized by high levels of linkage disequilibrium, or LD, due to the fact that certain 

combinations of SNPs are more likely to be inherited together than others. LD creates a 

correlation among SNPs, which aids in imputing markers. However, it also inflates GCTA 

estimates (Speed et al., 2012), and the behavior of GCTA with imputed markers is not yet 

well understood. We therefore opted to use only the genotyped SNPs in our GCTA analyses, 

which also facilitates comparisons with our previous results for P3 amplitude. GCTA treats 

each SNP as a random effect in a linear mixed model (LMM). Fixed effects consisted of the 

covariates described above. A matrix of genotypes comprises the matrix of random effects in 

LMMs, which can be parameterized as a matrix of pairwise genetic relationships among all 

participants (the genetic relatedness matrix, or GRM). Restricted maximum likelihood is 

used to estimate the random effect variance, which is the total variance in the phenotype 

accounted for by all SNPs. (Strictly speaking, it is the phenotypic variance accounted for by 

variants on the genotyping array or in LD with them.) GCTA thus estimates the degree to 

which phenotypic similarity is due to genotypic similarity, whereas biometric models 

estimate genetic influence on the basis of phenotypic covariances.

In samples made up of related individuals, estimates of the additive genetic variance in a 

phenotype are driven by the phenotypic correlations among individuals, which are therefore 

biased because they can be inflated by common environmental effects or nonadditive genetic 

effects. We used two approaches to address this. First, GCTA filters the sample using a user-

chosen threshold of relatedness to produce a sub-sample of individuals who are only very 

distantly related genetically in such a way as to maximize sample size. We used a threshold 

of relatedness of 0.05 in order to be consistent with the second approach, described next.

The goal of GCTA is to determine whether genetic similarity among individuals unrelated 

by pedigree is associated with phenotypic similarity, and filtering a family-based sample 

such as ours produces a sample of genetically largely unrelated individuals. However, this 

results in imprecise estimates (large SEs). We therefore also adopted an alternate method 

that has been recently proposed for estimating SNP heritability in samples of related 

individuals (Zaitlen et al., 2013), based on the fact that heritability can be estimated from 

identity-by-descent (IBD) co-variance matrices. The IBD covariance matrix in turn can be 
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approximated from the identity-by-state (IBS) matrix representing related individuals. 

Following Zaitlen et al., we used a relatedness threshold of 0.05 to identify related 

individuals, setting to 0 off-diagonal elements of the GRM for distantly related subjects 

(those below this threshold, the same subjects used to derive our first estimate of SNP 

heritability). Using GCTA with the full GRM and the IBS-based approximation to the IBD 

matrix simultaneously yields estimates of two variance components. One is an estimate of 

SNP heritability similar to the estimate derived from unrelated individuals, whereas the other 

reflects the portion of heritability captured by phenotypic relationships not due to genotyped 

SNPs. Zaitlen and colleagues labeled this “ unexplianed heritability” analogous to the notion 

of “missing heritability” (Maher, 2008). Total narrow-sense heritability is the sum of these 

two variance components. Because this method uses the whole sample while taking into 

account both closely related and unrelated, or distantly related, pairs, it produces more 

precise estimates than those based on a subsample of unrelated pairs. The estimate of 

narrow-sense heritability it produces can be compared to corresponding estimates from our 

biometric models.

GCTA can be extended to bivariate analyses, which produce estimates of the genetic 

correlation between phenotypes and its standard error, an indication of the degree to which 

the same SNPs contribute to two different phenotypes. We conducted bivariate analyses for 

the same pairs of variables as in our biometric analyses. As in the univariate case, whereas 

shared genetic influence between phenotypes is estimated in biometric models based on 

phenotypic covariances (correlations), in bivariate GCTA analyses it is estimated from 

measured SNPs. In order to obtain estimates paralleling our univariate SNP heritability 

estimates, we adopted a genetic relatedness threshold of 0.05 for these analyses as well.

Finally, GCTA has recently been extended to estimate dominance genetic influences from 

measured SNPs (Zhu et al., 2015).As with additive genetic influence, dominance is 

estimated from genetic similarity among unrelated individuals. We used the same threshold 

of 0.05 for this purpose as all other GCTA analyses.

2.4.3. Genome-wide association study (GWAS)—Our genome-wide analysis of 

individual SNPs consisted of regression analyses of the effects on our time-frequency 

measures of each of SNP. The nested structure of our sample, which induces a correlation 

among family members, is problematic for standard linear regression analyses. To account 

for the lack of independence in family data, we used Rapid Feasible Generalized Least 

Squares (RFGLS; Li et al., 2011). RFGLS is a computationally efficient form of generalized 

least squares (GLS), which can be appropriate when residuals are correlated (or 

heteroskedastic). The unknown residual covariance structure within higher-order units is 

estimated based on observed variance-covariance matrix. In the present case, data were 

clustered in families comprising one to four members, with three family types: MZ and DZ 

families and step-parents. RFGLS estimates the residual covariance matrix separately for 

each type.

Rather than estimating the residual covariance structure (conditional on model covariates 

and a given SNP) for each SNP, which can result in several million different regression 

analyses, RFGLS estimates the residual covariance matrix once, conditional only on model 
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covariates, based on the assumption that SNP effects on the residual covariances will be 

negligible. This produces significant savings in computational time and minimal bias or loss 

of power (Li et al., 2011). Constraints are imposed on elements of the residual covariance 

matrix in order to reduce the number of parameters to be estimated, thereby avoiding 

problems with algorithm convergence. The mother-offspring and father-offspring 

correlations are constrained equal, as are variances for the two members of a twin pair. In 

all, four correlations (MZ or DZ twin pair, mother-offspring, father-offspring, mother-father) 

and four variances (twin, mother, father, step-parent) were estimated for each time-frequency 

measure. The “working correlation matrix” of within-family correlations produced by 

RFGLS is reported in Table 2 for each phenotype. The independent variable in each analysis 

consisted of the allele dosage, and an additive model of association tested for each SNP 

association (with 1 df). We adopted the customary significance threshold of 5 × 10−8.

In addition to a genome-wide scan aimed at discovering significant SNPs, we examined two 

subsets of SNPs. The first consisted of 183 SNPs that have been reported to be associated 

with P3 amplitude or theta or delta energy (see Malone et al., 2014b). Fewer tests are 

involved in analyzing these SNPs than in a genome-wide analysis, and significance was 

therefore assessed against a Bonferroni criterion of 2.73 × 10−4 (0.05/183). The second 

subset was derived from a recent report of a multi-stage case-control GWAS of 

schizophrenia, which identified 128 genome-wide significant associations from 108 

independent loci (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). Because schizophrenics characteristically show P3 amplitude reductions (Ford, 1999) 

and reduced low-frequency ERP activity (Ethridge et al., 2015), we examined associations 

between these SNPs and our phenotypes, both individually and together, in the form of a 

genetic risk score.

2.4.4. Versatile gene-based association study (VEGAS)—We tested associations 

between individual genes, rather than SNPs, and each time-frequency measure using 

VEGAS (Liu et al., 2010), which aggregates the results for all SNPs in a gene into a single 

score. This approach can be particularly powerful when several SNPs located in a gene are 

causally related to the phenotype, in which case the p-value associated with any one of them 

may not be small enough to be statistically distinguishable from noise. VEGAS assigns 

SNPs to a gene by reference to the UCSC Genome Browser assembly, including all SNPs 

within 50 kb of the 3′ and 5′ untranslated region (UTR) of a given gene in order to capture 

regulatory SNPs and SNPs in LD with those in the gene itself. Individual p-values for each 

SNP are converted into chi-squared statistics with 1 df and summed. Because the p-values 

were produced by RFGLS, they accurately reflect the nested structure of our data. VEGAS 

thus easily accommodates the clustered nature of our sample. LD causes SNPs and their p-

values to be correlated, which requires determining the null distribution of the gene score in 

the presence of LD. VEGAS uses Monte Carlo methods and the LD structure of a reference 

sample from the International HapMap Project (International HapMap Consortium, 2005). 

We selected the CEPH sample of Utah residents of European ancestry in HapMap (CEU) for 

this purpose.

We used VEGAS to conduct gene-based tests of association in a manner parallel to our 

analyses of individual SNPs. We tested the association between each of approximately 
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17,600 autosomal genes and our time-frequency measures in a genome-wide scan 

comparable to our GWAS of SNPs. A threshold of p < 2.84 × 10−6 was used for determining 

statistical significance, which corrects for the number of different genes. In addition, we 

evaluated a subset of 19 candidate genes that have been reported to be associated with theta 

or delta energy or P3 amplitude, using a significance threshold of 2.78 × 10−3. This list 

included MYEF2, which we found was associated with P3 amplitude in a genome-wide 

analysis (Malone et al., 2014b).

3. Results

3.1. Descriptive statistics

Fig. 1 illustrates sample averages for the grand mean ERPs, time-frequency energy, and 

ITPC. Amplitude of the grand mean was less overall at Fz than at Pz, and plots of the ERPs 

and of TF energy are separately scaled for the two electrodes in order to reveal detail in 

each. Whereas the Pz ERP is dominated by the P3 and slow activity, a P2-N2-P3 sequence is 

clear in the Fz grand mean. These well-resolved peaks suggest theta activity, which, 

although small in magnitude, is captured in the plot of TF energy in Fig. 1B. The plots of 

ITPC in panel C indicate two regions of increased theta phase consistency that correspond to 

the positive deflections in the ERP (P2 and P3), especially at Fz, although ITPC is strongest 

in the delta TFROI as well as in the low end of the theta range, both corresponding well in 

time to the peak of the P3. Table 1 presents descriptive statistics. Energy and ITPC values 

were greater for delta-Pz than theta-Fz. Energy and ITPC values were greater for female 

adolescents than males in all cases. Energy values were also greater for females than males 

among the parents, whereas the reverse was true for ITPC. These differences justify 

including these gender and age cohort as co-variates in all subsequent analyses.

Table 2 presents correlations for the different pairs of family members: MZ twins, DZ twins, 

mothers and their adolescent children, and fathers and their adolescent children. These were 

derived from RFGLS and represent the “working correlation matrix” used to accommodate 

within-family dependency in our data. The pattern of within-family correlations is 

informative about the likelihood and relative magnitude of genetic and environmental 

influences. MZ twin correlations were substantial, especially for the two energy measures. 

They were also at least twice the magnitude of the DZ twin correlations, indicating that 

genetic influences are clearly important. DZ twin and parent-offspring correlations were 

generally equivalent in magnitude, although there were exceptions. Overall, these 

correlations suggest that additive genetic effects, and maybe dominance effects as well, are 

important. There is little evidence for shared environmental influences.

3.2. Biometric heritability

Parameter estimates from fitting biometric models appear in Tables 3a and 3b. The first are 

based on the whole four-member family, whereas the second are based only on MZ and DZ 

twin pairs. Results are consistent in indicating the importance of genetic factors, more so for 

energy measures than ITPC measures. The ADCE model fits the family data better than the 

ACE model in every case, although, as noted earlier (Section 2.4.1), twin models are 

arguably more useful for assessing the significance of D. For three of the four twin models, 
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D could be constrained equal to 0 without significant loss of fit; chi-squared statistics with 1 

df were all <1. The sole exception was for theta-Fz energy, Δχ2 = 8.5 with 1 df, p < 0.002, 

indicating that D effects might be important for this phenotype. Estimates of A from ACE 

models may provide an upper bound on the likely degree of additive genetic influence, 

whereas estimates of A from ADE or ADCE models may provide a lower bound.

3.3. SNP heritability

Results from GCTA are presented in Table 4. They parallel the biometric heritability results 

in that estimates of additive variance (SNP heritability) were greater for the two energy 

measures than for the ITPC measures. The SNP heritability estimate for delta-Pz was 

significant; the likelihood-ratio test statistic was 3.27 with 1 df, p < 0.035. (The test statistic 

distribution is treated as a mixture of chi-square distributions with 0 and 1 df and p = 0.50, 

and the test is one sided.) The test statistic for theta-Fz was 2.07, p < 0.075. None of the 

estimates of dominance effects was significant, with the largest point estimate being 0.086 

(SE = 0.239).

GCTA results estimated separately for different allele frequency categories appear in Table 

5. The energy measures tend to be accounted for primarily by relatively more common 

SNPs, particular those with MAFs that are somewhat intermediate (neither low nor high). 

Several of the estimates for delta-Pz energy were significant by LRT, with values of the test 

statistic ranging from 2.83 to 5.80 (on 1 df), all p-values <0.05. Estimates for theta-Fz were 

not, which was in part likely due to the larger SEs accompanying them, but followed the 

same general pattern as estimates for delta-Pz. Results for the two ITPC measures are less 

consistent and it is difficult to discern any pattern, particularly in light of the large SEs, 

although SNPs with MAFs between 0.30 and 0.40 were significantly associated with delta-

Pz ITPC, Δχ2 = 3.14 on 1 df, p = 0.038. Owing to the correlation between markers induced 

by LD, these estimates are not independent; they cannot be summed to obtain an overall 

SNP heritability estimate.

3.4. Bivariate biometric and SNP heritability

The biometric model used to estimate phenotypic (univariate) heritability is readily extended 

to accommodate two phenotypes, which permits estimating the magnitude of shared genetic 

variance (covariance) between two phenotypes. Shared genetic variance, typically expressed 

as a genetic correlation, indicates the degree to which genetic influences are common to the 

two phenotypes. We examined the genetic correlation between each time-frequency measure 

and P3 amplitude as well as between pairs of time-frequency measures. The model also 

permits estimating the bivariate phenotypic correlation between these pairs of measures. 

Like the genetic correlation, this is a model-implied correlation based on data from our four-

member families, which makes the two correlations directly comparable. Point estimates for 

these and 95% confidence intervals around them are presented in the columns of Table 6 

labeled “Biometric Phenotypic r” and “Biometric Genetic r.”

We used GCTA to conduct parallel bivariate analyses, which also produces estimates of the 

genetic correlation between pairs of phenotypes. However, such estimates are based on 

measured SNPs rather than inferred from phenotypic covariances among family members. 
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They can therefore provide a more direct estimate of pleiotropy – the degree to which 

individual genetic variants affect two traits. To maintain parallelism with our univariate 

GCTA analyses, we used a relatedness threshold of 0.05 to produce subsamples of unrelated 

individuals.

For biometric and GCTA estimates, correlations between each time-frequency measure and 

P3 amplitude appear in the top of the table, while correlations between pairs of time-

frequency measures appear in the bottom (with the exception of cross-frequency, cross-

domain correlations, which were not estimated). Genetic correlations, whether derived from 

biometric model or GCTA, were larger for the association between delta-Pz measures 

(energy and ITPC) and P3 amplitude, and these were all significant; confidence intervals 

around the biometric genetic correlation estimates did not include 0 and likelihood-ratio 

tests of the GCTA genetic correlations were significant (χ2 = 4.71 and 2.91 with 1 df, p-

values <0.015 and 0.044 for delta-Pz energy and delta-Pz ITPC, respectively, by GCTA's 

one-tailed test). Theta-Fz energy was modestly associated with P3 amplitude as well as 

delta-Pz energy, the latter correlation also being significant for both biometric and GCTA 

estimates (χ2 = 5.88, p < 0.008 for the GCTA correlation). Biometric genetic correlations 

indicated that energy and ITPC were more strongly related for delta-Pz than theta-Fz; the 

two sets of confidence intervals did not overlap. A similar comparison for genetic 

correlations based on measured SNPs cannot be made, because correlations involving theta-

Fz ITPC could not be estimated with any precision; all SEs were quite large. The point 

estimates therefore cannot be considered trustworthy and the large SEs make a comparison 

between biometric and GCTA genetic correlations meaningless.

3.5. SNP effects: Genome-wide analysis

GWAS results are presented in two forms for each measure: a Q-Q plot and a Manhattan 

plot. The former (Figs. 3-6) plots the observed distribution of p-values against the expected 

distribution under the null hypothesis, although a — log10 transformation is used in order to 

emphasize the most significant results (those with the smallest p-values). Because the vast 

majority of SNPs are expected not to have an effect on a given phenotype, the points 

produced should adhere closely to a line at a 45-degree angle, indicating that observed and 

expected values agree closely. Only small p-values, which might reflect true effects, are 

expected to deviate from this line. Excessive deviation from the line can indicate that the test 

results are biased, due to population stratification or other factors. The overall degree to 

which the observed points conform to expected values is quantified by genomic control 

(GC) statistics, which are printed in the upper left corner of each Q-Q plot. Both mean and 

median GC values were close to 1, where 1 indicates perfect agreement, indicating that there 

was no meaningful inflation (or deflation) in these data. For all measures but delta-Pz ITPC, 

the points corresponding to the strongest associations deviate from the expected line, 

although most do not exceed the significance threshold of 5 × 10−8 (discussed in the next 

paragraph), suggesting that there may be meaningful associations that are not quite strong 

enough to be statistically significant.

Manhattan plots (Figs. 7–10) also provide — log10(p-values) for each SNP, but SNPs are 

ordered by their position in the genome (and thus by chromosome), rather than by p-value, 
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which permits one to determine the location of any significant or interesting associations. A 

horizontal line indicates the threshold for genome-wide significance, which is 7.30 on the — 

log10 scale (p-value of 5 × 10−8). A second horizontal line is drawn at 5, which corresponds 

to a p-value of 10−5 and which is sometimes used to indicate suggestive significance. For 

theta-Fz energy (Fig. 7), four SNPs on chromosome 13 have p-values <10−7 and lie near the 

genome-wide significant threshold. p-Values this small often subsequently replicate, leading 

some to suggest that this an appropriate significance threshold (Panagiotou et al., 2012). 

These four SNPs thus might reflect a true association. However, they are located in an 

intergenic region. The Manhattan plot for delta-Pz energy (Fig. 8) indicates several regions 

with small p-values, especially on chromosomes 2, 3, 16 and 18, but none were significant. 

The Manhattan plot for delta-Pz ITPC (Fig. 10) is unremarkable.

On the other hand, the Manhattan plot for theta-Fz ITPC (Fig. 9) clearly shows an area of 

chromosome 2 with elevated — log-transformed p-values. Two exceed the genome-wide 

significance threshold and 25 others in the same region have p-values < 10−6. Given that 

neighboring SNPs tend to be correlated, one would expect this type of cluster of small p-

values if there is a clear association with the phenotype. Fig. 11 was produced by the 

locuszoom software tool (http://csg.sph.umich.edu/locuszoom/) to “zoom in” on this region, 

providing greater detail than is permitted by the Manhattan plot. In the top panel (labeled A), 

the — log-transformed p-values for all SNPs within 500 kb of rs2968663, the SNP 

producing the smallest p-value, are plotted. Points are color-coded by the average LD 

between the SNP represented by that point and the others in the plot. Most of the SNPs 

associated with the smallest p-values are characterized by high average LD, although not all 

are. Fig. 11 also displays known genes in the region by their location, and the most 

significant SNPs, those with — log10(p-values) greater than approximately 6, are contained 

in or flank two genes in particular: ANKRD20A8P and TEKT4. LOC442028, which also 

contains some of these SNPs, is a pseudogene – a nonfunctional gene that is likely defunct. 

A smaller region of chromosome 7 produced SNPs with p-values that were almost 

significant, with one approximately 10−7. Thus, these SNPs may truly be associated with 

theta ITPC. They are located within 15 to 30 kb of forkhead box P2 (FOXP2), which codes 

for a transcription factor expressed in brain and required for the proper development of 

speech and language regions during embryogenesis. Mutations involving different SNPs in 

FOXP2 are associated with schizophrenia (Sanjuán et al., 2006) and autism (Li et al., 2005). 

However, its relevance to theta-Fz ITPC is questionable, and these SNPs are nowhere near 

CHRM2 or GRM8, genes on chromosome 7 that have previously been reported to be 

associated with theta energy (Chen et al., 2009; Jones et al., 2006a).

To determine whether the signal on chromosome 2 is due to more than one source, we 

repeated our analysis using the dosage for rs2968663 as an additional covariate. Results are 

presented in the bottom panel of Fig. 11 (labeled B). All associations are clearly 

nonsignificant, suggesting that the SNPs with small p-values in the top panel (large — 

log10[p-values]) do not represent an association with theta-Fz ITPC that is independent of 

the association with rs2968663. There thus appears to be only one signal related to theta-Fz 

ITPC from this region of chromosome 2.
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3.6. SNP effects: Candidate SNPs

We examined a set of 183 candidate SNPs reported to be associated with P3-related time-

frequency measures or P3 amplitude (the same candidate SNPs assessed in Malone et al., 

2014b). Table 7 provides information about the 15 associations (for 13 different SNPs) that 

met a nominal significance level of p < 0.05. The majority is in GRM8 and several others are 

in CRHR1. None of the SNPs exceeded a significance threshold of 2.7 × 10−4, necessary to 

correct for all 183 tests (per time-frequency phenotype), which itself ignores the fact that 

four phenotypes were tested against these 183 SNPs.

A total of 111 out of the 128 markers identified in the recent large study of schizophrenia 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) were 

available in our imputed data. Twenty-three SNPs were associated with one or more 

phenotypes at an uncorrected significance level of p < 0.05 (27 associations in all), with 

delta-Pz energy showing the most such nominal associations (10). However, none of the 

associations exceeded a per-phenotype Bonferroni-corrected significance threshold of 4.50 × 

10−4 (0.05/111).

To construct a genetic risk score, we multiplied the allele dosage for each marker by the 

(log-odds) regression coefficient from the PGC report, after alleles had been aligned 

between datasets, and computed the sum of weighted dosages. RFGLS was used to assess 

the association between this risk score and each time-frequency phenotype, with the same 

covariate set as in our other analyses (age, age cohort, sex, recording system, and the first 10 

Eigenstrat PCs). Parameter estimates were in the expected direction in all four analyses, with 

a higher risk score associated with reduced energy or ITPC. The strongest effect was for 

theta-Fz ITPC, t = 1.85, p = 0.064; the zero-order correlation between it and the risk score 

was − 0.037.

3.7. Gene effects: Genome-wide analysis

In an analysis that paralleled our GWAS, we conducted a genome-wide examination of all 

autosomal genes, with a significance criterion of 2.8 × 10−6. One association was significant 

at this level, that between theta-Fz ITPC and TEKT4 on chromosome 2. As Fig. 9 indicates, 

and as discussed above, TEKT4 (tektin 4) is a small gene located near the SNPs with the 

smallest p-values; of the 25 SNPs on chromosome 2 with p-values < 10−6, nine are located 

in TEKT4 or flank it. This association thus likely reflects the same signal as is evident in 

Fig. 9. TEKT4 is a protein-coding gene but its relevance to theta ITPC is unclear. It appears 

to be a structural component of microtubules (cilia and flagella), and it has been linked to 

breast and colorectal cancer.

3.8. Gene effects: Candidate genes

Table 8 presents results from examining associations with 18 genes that might be candidates 

for association with P3-related time-frequency measures or P3 amplitude itself. Although 

the set of candidate genes is a subset of all genes examined in the previous genome-wide 

analysis, we adopted a significance threshold in these analyses that adjusts only for the 

number of candidate genes, rather than all genes in the genome, resulting in a threshold of 

2.8 × 10−3. An association between CRHR1 and theta-Fz energy was observed with a p-
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value exceeding this threshold (p = 1.47 × 10−3). As indicated previously, several candidate 

SNPs in CRHR1 were associated with theta-Fz energy at a threshold of p < 0.05. In addition, 

GRM8 was nominally associated (p < 0.05) with both delta measures (energy and ITPC). 

Although we previously obtained a genome-wide significant association with P3 amplitude 

and MYEF2, none of the associations between time-frequency phenotypes and MYEF2 were 

significant here.

4. Discussion

Biometric analyses confirmed the importance of genetic influences, primarily additive 

influences, for the four P3-related TF measures considered here. GCTA results supported 

this inference and suggest that these phenotypes are highly polygenic. For both theta-Fz and 

delta-Pz, TF energy was more heritable than ITPC, both in biometric models and GCTA 

analyses. Biometric heritability estimates were only slightly lower in magnitude than those 

reported previously by our group for a TF measure based on the ERP, rather than trial-level 

data as in the present investigation (Gilmore et al., 2010b). Estimates of h2
SNP from GCTA 

analyses were significant or nearly significant for both energy measures in GCTA analyses 

with unrelated individuals. Although the method for assessing h2
SNP in family data does not 

produce significance tests of the two variance components estimated, h2
SNP estimates were 

at least twice the SEs, suggesting that a significant proportion of variance is accounted for 

by all SNPs in aggregate.

SNPs with relatively large MAFs appeared to be most responsible for theta and delta energy, 

despite the fact that the number of SNPs is relatively uniform across the different MAF bins. 

Although estimates of h2
SNP were significant only for delta-Pz energy, the pattern of 

estimates was similar for the two phenotypes; SNPs with MAFs between 0.10 and 0.30 

yielded the largest h2
SNP estimates. SNPs with the smallest MAFs appeared to have a 

negligible influence on both. It is difficult to discern much of a pattern to the ITPC results. If 

anything, SNPs with the smallest MAFs seemed to be particularly important, in contrast to 

the case with energy measures. The pattern of h2
SNP estimates for the two energy measures 

is consistent with stabilizing selection pressures. However, the large SEs around these 

estimates and the arbitrariness of any approach to creating MAF bins requires more than a 

grain of salt to accompany any inferences about specific patterns of influence.

Bivariate analyses indicated that both delta-Pz energy and ITPC were highly related 

genetically to P3 amplitude, although the analogous bivariate GCTA analysis result was not 

quite significant. Shared SNPs also accounted for a significant amount of the energy in the 

two bands, but the overlap was not due to SNPs with the largest effects. For instance, the 

number of SNPs with p-values < 10−5 varied from 77 to 137 for the four phenotypes, but 

there was no overlap among the four sets. The genetic influence common to these 

phenotypes is likely due to many SNPs with small effects.

Analyses of candidate SNPs and genes failed to produce compelling results, including 

analyses of a risk score based on markers robustly associated with schizophrenia. We 

obtained nominally significant associations between GRM8 and both delta-Pz measures (p < 

0.05). However, GRM8 has previously been reported to be associated with theta activity, not 
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delta activity (Chen et al., 2009). The RID used in the present investigation is particularly 

effective in resolving very low frequency activity, which may account for the fact that we 

obtained an association between GRM8 and delta activity, whereas Chen and colleagues 

obtained one for theta activity. However, the two associations we obtained for GRM8 did not 

meet our threshold for correcting for multiple tests. Only one association – that between 

theta-Fz energy and CRHR1 – survived such correction. However, the significance of this is 

uncertain. CRHR1 is located on chromosome 17, and there is no evidence of small p-values 

on chromosome 17 in previous GWASs of TF activity (Figs.4 and 1 in Zlojutro et al., 2011 

and Kang et al., 2012, respectively). Our study may have been the first that was adequately 

powered to detect this association. CRHR1 was on our list of candidate genes because it was 

reported to be associated with P3 amplitude (Chen et al., 2010). In our previous GWAS, we 

obtained a nominally significant association between CRHR1 and a P3 genetic factor score 

(p ≤ 0.047) but not with measured P3 itself (p ≤ 0.475), with the magnitude of the p-values 

themselves as well as the discrepancy between them suggesting that there was no true effect 

(see online supplement at http://onlinelibrary.wiley.com/doi/10.1111/psyp.12345/suppinfo). 

Thus, it seems quite possible that this association represents a false positive.

4.1. Variation in findings across tasks and samples

The primary goal of the present investigation was to determine whether TF measures might 

provide insight into molecular genetic influences on P3 amplitude. Our approach was 

directly informed by two previous GWASs of TF activity elicited by a simple oddball task in 

the hope that using a similar approach might lead to significant findings. However, we did 

not obtain significant associations with any SNPs previously found to be associated with TF 

activity (Kang et al., 2012; Zlojutro et al., 2011). This may reflect differences in tasks and in 

samples. The rotated heads task used in the present study to elicit ERPs is somewhat more 

challenging than the simple oddball tasks used in those previous studies, requiring subjects 

to determine whether the stylized head displayed on screen for a particular trial includes a 

left or right ear, rather than simply that it has an ear (for example). That we did not obtain 

findings consistent with those previously reported may indicate that the variants associated 

with theta-Fz energy in previous studies are specific to the cognitive processes involved in 

simpler oddball tasks, such as attention and simple target detection. These variants may not 

be as relevant to the processes involved in identifying the type of stimulus (head with left or 

right ear), although both tasks presumably tap attentional processes to varying degrees. The 

TF activity elicited by this task has a clear posterior maximum, reflected in the lesser 

magnitude of TF power in the signal at Fz relative to the signal at Pz. Most power is in the 

low frequencies comprising our delta TFROI even at Fz. However, GCTA analyses indicated 

the presence at a gross level at least of a detectable genetic signal in theta-Fz energy, 

particularly by the method of Zaitlen and colleagues adapted for family data that improves 

the precision of SNP heritability estimates (Zaitlen et al., 2013).

Our sample included a large number of adolescents, and the distribution of TF energy may 

be subtly different between adolescents and adults. However, the ratio of theta energy to 

total energy in our data was virtually identical for the four age-gender groups, ranging from 

0.428 to 0.438 (see Table 1). More important is the fact that the sample for the present 

investigation was population based whereas previous GWASs used case-control samples, in 
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which cases were drawn from families with a dense history of alcoholism. Enriching one's 

sample in this way likely increases variation at the lower end of the distributions of 

psychopathology and associated phenotypes. Yet the present sample, being representative of 

the broader population of Minnesota, is certainly not lacking for psychopathology (see 

discussion in Iacono et al., 2014b). Moreover, conditioning subject selection on a dense 

family history of alcoholism also creates the potential for spurious associations. If a specific 

genetic marker and a putative endophenotype are both associated with the characteristic on 

which subject selection is conditioned, such as alcoholism, this can produce an apparent 

association between the two even in the absence of a causal influence of the marker on the 

putative endophenotype; in this case the association is simply due to the fact that both are 

associated with alcoholism. Thus, it may be that the associations between specific genetic 

markers and TF phenotypes observed in previous GWASs are spurious, which is why we did 

not obtain similar results despite having a larger sample.

In fact, findings from previous genome-wide studies of TF activity are at variance with one 

another. The two GWASs failed to corroborate findings from previous studies of TF activity, 

which consisted of genome-wide linkage followed by association analysis. It is unclear 

whether any SNPs significantly associated with theta power in follow-up association 

analyses in these studies were on the genotyping chip used in subsequent GWASs, but there 

were no SNPs on chromosome 7 in either GWAS with p-values < 10−5 (see Fig. 4 in 

Zlojutro et al., 2011 and Fig. 1 in Kang et al., 2012). In Supplementary Table S2 associated 

with their paper, Kang et al. reported that six SNPs in GRM8 and two in CHRM2 were 

associated with theta energy at a nominal significance level of p < 0.05. However, these are 

different SNPs than those that were significant in the original reports, and this cannot 

therefore be strictly considered a replication; it requires more stringent control of Type 1 

error than a significance criterion of 0.05. In addition, the significant findings of Kang et al. 

(2012) were different from the findings of Zlojutro et al. (2011). This may well be due to 

differences in samples and design. The sample in Kang et al. was primarily Caucasian, 

whereas a substantial number of African-Americans were included in Zlojutro et al. The 

latter study used a case-control sample in their first stage and a smaller family sample in the 

second, whereas Kang et al. used a (larger) family sample, which may in some situations 

provide greater power for detecting genetic variants (Sham and Purcell, 2014).

On balance, however, the lack of consistency across studies is unsettling, differences in 

approach and sample notwithstanding. One interpretation is that each finding is particular to 

a unique combination of sample, task, SNPs examined, and method. A more parsimonious 

interpretation is that many or all of these findings are false positives. This would be in 

keeping with the conclusions of a recent paper on genetic research with endophenotypes 

(Iacono et al., 2016). Based on a comprehensive review of a variety of biological 

phenotypes, including psychophysiological ones, we argued that such phenotypes, including 

putative endophenotypes, are themselves complex and highly polygenic. The effect sizes of 

genetic variants influencing them are typically quite small, accounting for a fraction of a 

percent of phenotypic variance. This in turn requires samples an order of magnitude or two 

larger than have been used in endophenotype research, including the sample used here, 

which itself is larger than the samples used in previous GWASs of TF activity. “Small” 
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samples such as these provide adequate power only for detecting large effects. However, in 

light of what we have recently learned, true effect sizes of this magnitude are unlikely.

We ourselves failed to corroborate our own prior report of genome wide significance for an 

association between MYEF2 and P3 amplitude despite using TF components derived from 

the same data and sample. This included a null finding for delta-Pz energy despite the fact 

that its association with P3 amplitude, whether its phenotypic correlation (r = 0.80), its 

biometric genetic correlation (r = 0.86), or its GCTA genetic correlation (r = 0.96), was 

substantial. None of the TF measure associations with MYEF2 produced a p-value < 00.42. 

These disappointing findings call into question the likely robustness of theMYEF2–P3 

association we previously reported. It is potentially noteworthy that only 12 SNPs were 

contained within this gene in VEGAS, which would tend to make estimates of statistical 

association less reliable than for genes defined by more SNPs.

On the other hand, we obtained one potential new discovery: an association between theta-

Fz ITPC and SNPs on chromosome 2 in and around TEKT4, although its functional 

significance is unclear. Four SNPs on chromosome 3 were associated with theta-Fz energy, 

although with p-values just below the threshold for genome-wide significance. Because 

many associations with p-values of 10−7 or less replicate in subsequent GWASs (Panagiotou 

et al., 2012), this may reflect a true finding. Its relevance is uncertain, however, especially 

because these SNPs are located in an intergenic region of the chromosome, and we are 

skeptical of the validity of these findings.

5. Conclusions

Our findings assist attempts to understand molecular-genetic influences on P3 amplitude by 

further confirming that the effects are small and polygenic, and by showing that in this case, 

having an arguably simpler endophenotype comprising elements of the brain electrical 

activity underlying P3 amplitude did not make the problem of identifying genetic variants 

more tractable. Our one discovery was for theta-Fz ITPC. The significance of this 

association may indicate that investigations of phase resetting of theta activity will be 

potentially useful for understanding P3 amplitude reduction as an endophenotype, it is 

striking that theta-Fz ITPC was the most weakly correlated with (parietal) P3 of all time-

frequency phenotypes. Despite finding that delta-Pz energy and ITPC share significant 

additive genetic influence with P3 amplitude, we failed to obtain any significant SNP 

associations with these two measures.

We obtained one genome-wide significant GWAS signal and one subthreshold signal. In 

addition, clusters of SNPs with small p-values (large −log10[p-values]) are evident in our 

Manhattan plots like skyscrapers beginning to rise above a crowded city. These plots 

resemble the skyline of the borough of Manhattan more than the comparable plot for P3 

amplitude does, which suggests the presence of a stronger genetic signal. In addition, GCTA 

yielded significant results in some instances. Time-frequency measures thus appear to be 

slightly more sensitive to genetic signal than measured P3. However, the effect sizes were 

not enough larger to yield many hits. Candidate time-frequency endophenotypes appear to 

be highly polygenic and genetically complex, and the common SNP influence on these 
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measures also appears to be due to many variants with small effects. We previously failed to 

identify variants associated with P3 amplitude (Malone et al., 2014b), arguably the most 

robust endophenotype for clinical phenotypes investigated to date (Miller and Rockstroh, 

2013). The present results do little to advance our understanding of the nature of the specific 

molecular genetic influences on P3 amplitude. Nor do they suggest that endophenotypes will 

turn out to be useful for gene discovery, despite the hope shared by many that their greater 

proximity to gene action relative to DSM diagnoses or other complex phenotypes makes 

them particularly attractive for identifying genetic variants associated with psychopathology. 

Because endophenotypes are themselves complex, to the extent they tap into biological 

processes, their utility may best be realized by providing insight into neural mechanisms 

once disorder relevant genetic variants are identified and found to be associated with the 

endophenotype (Iacono et al., 2014b; 2016).
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Fig. 1. 
The grand mean ERP and mean time-frequency measures, by electrode. The grand mean 

ERP responses to target stimuli are plotted in panel a. The two plot abcissas are separately 

scaled. The mean time-frequency representation of the data for each electrode is plotted in 

panel b. This was derived by averaging the RID time-frequency transform of all artifact-free 

EEG waveforms for target trials. The heat maps for these two plots are also separately 

scaled. Panel c provides a plot of the mean intertrial phase coherence (ITPC), derived for the 

same set of EEG waveforms that went into panel b. Because we subtracted the frequency-

specific mean ITPC in a 200-ms prestimulus baseline period from the vector of ITPC values 

in that frequency, small negative values are possible, where poststimulus ITPC was slightly 

less than prestimulus ITPC was at the same discrete frequency. For the figures in both 

panels, the theta and delta time-frequency regions of interest are outlined (in red and blue, 

respectively).
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Fig. 2. 
A schematic of the biometric latent variable model. Two family members (individuals i and 

j) are included to illustrate the model. Their phenotypes are represented by the boxes labeled 

Pi and Pj. Each phenotype is due to the influence of the four latent variables (ADCE). The 

variance of each family member's phenotype and the covariance between each pair of family 

members are determined by the path estimates from each latent variable to the phenotype (a, 

d, c, and e) and the covariance between family members. The variances of each latent 

variable are fixed at 1. Their covariances are a function of the family relationships. The 

genetic covariance between pairs of individuals is depicted as rAij and rDij for additive and 

dominance variance, respectively. It equals 1 for MZ twins for both types of inheritance, 

whereas the covariance due to A is ½ for DZ twins and parent-offspring pairs. The 

covariance due to D is ¼ for DZ twins. C is assumed the same for all pairs and is equal to 1. 

E is by definition unique to each individual (uncorrelated for pairs of family members).
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Fig. 3. 
Q-Q plot for theta-Fz energy. Observed p-values are plotted against expected p-values under 

the null distribution. The vast majority of associations are expected to be nonsignificant, and 

their distribution therefore should conform closely to the null distribution, indicated by the 

red 45° line. A significant deviation from this line can indicate inflated power resulting from 

residual population stratification in allele frequencies. None is evident here. A value of 1 for 

genomic control (GC) statistics (mean and median), which are provided in the upper left 

corner of the plot, indicates complete absence of inflation. N in the upper-left box is the 

number of SNPs in the analysis, while pmin is the smallest p-value across all SNPs. To 

emphasize the smallest p-values, which may reflect true associations, they are typically 

represented as −log10(p-value). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Q-Q plot for delta-Pz energy. See the caption for Fig. 3 for details.
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Fig. 5. 
Q-Q plot for theta-Fz ITPC. See the caption for Fig. 3 for details.
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Fig. 6. 
Q-Q plot for delta-Pz ITPC. See the caption for Fig. 3 for details.
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Fig. 7. 
Manhattan plot for theta-Fz energy. This plots −log10(p-values) against their location, 

grouped by chromosome, to permit one to locate regions of significant and subthreshold 

associations in the genome. Vertical streams of points indicate a region harboring a likely 

association; LD among nearby SNPs creates a neighborhood of large −log10(p-values). A 

horizontal red line at 7.3 reflects the genome-wide significance level (5 × 10−8). A second, 

blue line is drawn at 5 (p-value of 10−5), which is sometimes used to indicate suggestive 

significance. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 8. 
Manhattan plot for delta-Pz energy. See the caption for Fig. 7 for details.
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Fig. 9. 
Manhattan plot for theta-Fz ITPC. See the caption for Fig. 7 for details.
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Fig. 10. 
Manhattan plot for delta-Pz ITPC. See the caption for Fig. 7 for details.
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Fig. 11. 
Detailed view of the region of chromosome 3 containing significant associations with theta-

Fz ITPC. Minus log-transformed significance levels for this region are plotted using the 

locuszoom software tool to providea detailed viewof this region. A rug plot at the top 

indicates the distribution of SNP locations. The color of each point in the plot indicates the 

average LD r2 of that SNP with other SNPs in the region. Genes in the region are displayed 

at the bottom of the plot. Panel A plots association results for the genome-wide scan. The 

SNP with the smallest p-value (rs2968663) is labeled. Panel B plots the results of a 

subsequent analysis that included each subject's value for this SNP as an additional covariate 

to determine whether there was more than one signal in this region, which would be 

indicated if strong associations remained after controlling for rs2968663.
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Table 6

Bivariate biometric and GCTA analyses.

Measure 1 Measure 2

Biometric

GCTA Genetic r (SE)Phenotypic r (95% CI) Genetic r (95% CI)

Delta-Pz energy P3 0.799 (0.787–811) 0.864 (0.835–0.890) 0.962 (0.122)a

Delta-Pz ITPC P3 0.428 (0.400–0.455) 0.593 (0.522–0.661) 1.000 (0.362)a

Theta-Fz energy P3 0.303 (0.268–0.337) 0.414 (0.339–0.487) 0.490 (0.377)

Theta-Fz ITPC P3 0.165 (0.129–0.200) 0.190 (0.081–0.298) 0.285 (0.617)

Delta-Pz energy Theta-Fz energy 0.413 (0.381–0.444) 0.469 (0.396–0.538) 0.852 (0.274)a

Delta-Pz energy Delta-Pz ITPC 0.348 (0.319–0.377) 0.432 (0.346–0.515) 0.289 (0.340)

Theta-Fz energy Theta-Fz ITPC 0.201 (0.165–0.235) 0.172 (0.059–0.282) 1.000 (0.917)

Delta-Pz ITPC Theta-Fz ITPC 0.241 (0.207–0.274) 0.412 (0.280–0.539) 1.000 (0.812)

“Phenotypic r” is the correlation based on the model-expected family covariance matrix. “Biometric Genetic r” is the correlation for the latent 
variable A representing additive genetic influences, based on the same model as the phenotypic correlation. The GCTA “Genetic r” is the 
correlation between each pair of traits based on the SNPs on the Illumina array. A threshold of 0.05 was used on the GRM to select unrelated 
individuals.

a
Significant by likelihood ratio test.
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